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ABSTRACT 

This study attempts to combine human mechanisms of 
speech production into automatic speech recognition 
(ASR) approaches by using articulatory movements as a 
constraint.  A primary experiment was first conducted on a 
set of articulatory data, where the articulatory data were 
treated in the HMM in the same way as the acoustic data.  
Recognition accuracy increased after adding the 
articulatory data to the HMM directly.  It indicated that the 
articulatory data have some additional information that is 
benefit to ASR. We then combined the articulatory data as a 
hidden parameter in the ASR system built on a hybrid 
HMM/BN model [1].  Experiments were conducted using 
this model in monophone recognition with individual 
models for each speaker and with a uniform model for all 
speakers, respectively.  The accuracy obtained from the 
HMM/BN was higher than that from the standard HMM 
without the articulatory data.   This study showed a way to 
incorporate the speech production mechanism in ASR 
system. 

1. INTRODUCTION 

Speech is generated and perceived by human in speech 
communication activities, where human performs almost 
perfect behaviors in speech processing.  However, the main 
flow of ASR approaches has not taken the human 
mechanism into account yet.  The primary tools used in 
ASR are the Hidden Markov Models (HMMs) -- they are 
used to estimate the probability of an acoustic sequence 
given the model parameters [2]. A nice feature of HMMs is 
that maximum likelihood techniques provide a way to 
automatically determine the model parameters from 
training data. While HMMs have been useful, it has been 
noted that “[the HMM] is a very inaccurate model of the 
speech production process” [3].  

To account for coarticulations, the common 
phenomena of speech production, in ASR, a number of 
models have been proposed as hidden dynamic models 
[4-6].  Such models describe the physical process of speech 
production, and attempts to account for the coarticulations 
and transitions between neighboring frames and phones.  Li 
considered the effects of articulatory movements on speech 
by modeling the dynamic properties using a quadratic 
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n equation, and applied this idea in speech 
ition [4].  Hogden et al. proposed a method so-called 
ALCOM, that treated the articulation as continuous 

ments in a virtual speech production space, and used 
ontinuity of the articulation to compensate some 
tinuities of acoustic parameters [5].  Gao et al. tried 
ld a uniform model for both speech production and 
h recognition via a combination of the Kalman filter 
ulti-layer perceptron networks [6].  However, these 

ls have not given a satisfactory answer for ASR.  

he goal of our study is to incorporate the speech 
ction mechanism in a stochastic model of ASR, so 
e automatic parameter estimation can be retained.  As 
st step, we applied the articulatory data on an ASR 
 via a combination model of HMM and Bayesian 
rk [1] to combine the speech production mechanism 

R.  Differing from the studies mentioned above, this 
employed observed data of the articulation, which 
e faithful human mechanisms, instead of the 
sitions.   

2.  A PRIMARY EXPERIMENT ON 
ARTICULATORY DATA  

he articulatory data used in this study were collected 
the electromagnetic midsagittal articulographic 

A) system at NTT, Japan [7].  Figure 1 shows the 
ent scheme of the receive coils used in the 

iment.  Four receive coils were placed on the tongue 
e in the midsagittal plane, named T1 through T4, and 
il for each of the upper lip, lower lip, maxilla incisor, 

ible incisor (LJ), and the velum, respectively.  The 
ing rate was 250 Hz for the articulatory channels and 
z for the acoustic channel.  The coordinate system is 
 in the figure, where the maxilla incisor was chosen 
 origin. Speech materials were about 360 Japanese 
ces, and three adult male speakers read the sentences 
normal speech rate.  The acoustic signal and 

latory data were recorded simultaneously.  

o confirm the validity of the articulatory data for the 
h recognition purpose, we conducted a primary 
iment using both the acoustic data and the articulatory 
 The HTK package was employed in the speech 
nition with a monophone unit.   The first part of the 
ry experiment was carried out on the articulatory 



parameters alone.  The articulatory data are time-varying 
vectors with 16 features, which consist of x- and 
y-coordinates of the eight observation points.  To apply the 
HTK on such data, parameters for the HMM were chosen 
as 48 dimensions with the displacements, velocities and 
accelerations of the eight observation points.  Features of 
the articulatory data were written in MFCC format.  The 
second part of the experiment was concerned with the 
acoustic data alone.   The same dimension was applied on 
acoustic parameters using MFCC with C0 and its first- and 
second-order coefficients.  The results show that the 
recognition accuracy from the acoustic parameter was 
higher than that from the articulatory parameters (see Table 
1).  It implies that the articulatory data have less useful 
information for speech recognition with the stochastic 
approaches than acoustic data do. 

 
Figure 1. The placement of the reserve coils in the EMA 
experiment, and the coordinate system used in this study.   

However, the articulatory data possibly possess some 
additional information that is benefit to speech recognition.  
To examine this conjecture, we constructed the third part of 
the primary experiment, in which MFCC consists of C0 and 
its first-order coefficients of the acoustic parameters (32 
dimensions), and the 16-dimensional displacement of the 
articulatory movements.  The recognition accuracies are 
shown in Table 1 for these three situations.  The mixture 
number of the Gaussian distribution in the models ranged 
from 3 to 16.  After the second-order acoustic coefficient 
was replaced by the articulatory displacement, the 
recognition accuracy increased more than 2% comparing 
with the condition of acoustic data alone.  This finding 
indicates that articulatory data possess some beneficial 
information, which is not covered by acoustic data.  Since 
the articulatory data is not easy to obtain always, the 
remaining question is how to utilize the limited data in ASR, 
in other words, how to use the articulatory parameter as a 
hidden parameter in ASR. 

Table 1.  The recognition accuracy obtained under three 
conditions: articulatory data alone, acoustic data alone, and 
combination of both.  
Mixture Artic. Data Acost. Data Acoust.+Artic. Data

3 74.70 80.77 83.92 
4 75.01 81.34 84.12 
5 75.80 81.81 84.76 
8 76.28 82.53 85.64 

12 78.42 84.04 86.82 
16 79.09 81.93 84.68 
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3. THE HYBRID HMM/BAYESIAN 
NETWORK MODEL 

ince the articulatory movement is not so easy to 
 as speech sounds.  For most of the cases, the 
latory movement can be considered as a hidden 
eter.  To combine such articulatory features into in a 

h recognition model with excellent learning 
ilities, the hybrid HMM/BN model proposed by 
v and Nakamura [1] comes in our mind.  The hybrid 
/BN model is a combination of the Hidden Markov 
l (HMM) and the Bayesian Networks (BN).  In this 
n, we briefly introduce the hybrid HMM/BN model 
] for the details).  

In the hybrid HMM/BN model, the temporal 
teristics of speech signal are modeled by HMM state 

tions, while HMM state probability density is 
led by the Bayesian Network.  A configuration of the 
/BN model is shown in Figure 2. 

q1 q2
q3

State Bayesian Network

 
gure 2. A configuration of the hybrid HMM/BN model 

his model is described by two sets of probabilities: 
 transition probabilities P(qj|qi) and joint probability 
ution of the Bayesian Network P(X1,…,Xk), where Xi, 
,K are the BN variables.  The BN joint probability 
y function (PDF) can be factorized as: 

∏
=
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1
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 Pa(Xi) denotes the parents of the variable Xi.  

Q

Y

X

 
Figure 3. Possible state structure for BN 

igure 3 shows an example of possible state BN 
ures, where the circle denotes a continuous variable, 
e squares are for the discrete ones.  BN variables can 
er discrete or continuous variables, and some of them 
 hidden.    These advantages are used in this study for 
nting for the articulatory data.  Here, variable Q 
ts HMM state, and Y can be observation vector of 

h spectrum.  X is the displacement of the observation 
 on the speech organs obtained from the EMMA 



system.  The dependency between variables is denoted by 
the arcs.  The relation of Q and Y is described by a 
conditional probability function.  The hybrid HMM/BN 
model adopted the same training approach as that used in 
HMM/NN, which is based on the Viterbi training 
algorithm. 

For recognition, the HMM/BN model employs the 
standard Viterbi decoding algorithm as the conventional 
HMMs.  During this procedure, it requires to calculate 
input observation likelihood P(Y| Q) for each state Q=qij, 
where i is the HMM index and j is the state index in the ith 
HMM.  For a simple state BN, P(Y|Q) can be derived 
analytically using the “brute force” inference method.  For 
a more complex state BN, standard exact inference 
algorithms such as “junction tree” algorithm are available. 

4. MODEL LEARNING WITH ARTICULATORY 
DATA 

In this study, we used a monophone HMM/BN model 
with 3-state left-to-right topology.  The structure of the 
Bayesian Network described above was employed.   

4.1 Combining Articulatory Data with the HMM/BN 
Model 

As shown in Fig. 3, the additional information is 
defined as a discrete variable in the state of the HMM/BN 
model.  It is necessary to discretize the articulatory data for 
combining them with the model.  To do so, the articulatory 
data were analyzed using the principal component analysis 
(PCA), and the first four components were used to 
represent the data. The total contribution ratio of the 
components was between 80-90%.  A vector quantization 
(VQ) is carried out after the data dimension was reduced. 
Thus, a discrete variable X is obtained.   

State output probability for the BN of Fig. 3 can be 
calculated from the joint PDF in a closed form shown as 
formula (2). 

( , , ) ( | , )* ( | )* ( )P Y X Q P Y X Q P X Q P Q=  (2) 

Since Y is a continuous variable, P(Y|X,Q) is modeled by 
the Gaussian density.  P(X|Q) can be represented by a 
conditional probability table (CPT) since X is discrete.  
Assuming that the articulatory data are known during the 
training, all BN parameters are fully observable.  Thus, 
Gaussian parameters can be estimated using the ML 
algorithm, while CPTs are obtained from sample counting.   

Since the articulatory data are usually unknown 
during recognition, variable X should be treated as a hidden 
parameter.  In this case, state output probability becomes 
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One can see that this expression is actually equivalent to the 
conventional mixture of Gaussian expression if simply 
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g the term of P(X=x|Q) as a weight coefficient, 
 P(X=x|Q) is the ratio of the sample number of class x 
 total sample number.  After this treatment, the 
/BN structure degenerates to the structure of the 
rd HMMs.  Thus, the existing HMM decoders can 
with the HMM/BN without any modification.  Note 
ere are some differences in the training processing 

en the HMM/BN and HMM. 

MM/BN Model Training  

he articulatory data set used in this study consists of 
 1080 sentences obtained from three male speakers.  
is limited data set, the initialization of the HMM/BN 
ied out using the bootstrap HMM trained on acoustic 
es.  After the initialization, the HMM/BN model is 
d according to the following steps: 

. Phoneme alignment:  to perform Viterbi alignment 
e training data.  It gives a time-aligned state 
ntation.  This procedure is to prepare training data for 
te Bayesian network. 

. BN training: to cluster the acoustic parameter and 
ticulatory parameter, X.  For each class, the state is 
ented as the Gaussian distribution, and its weight 
cient is calculated by the ratio of the sample number 
ss x to the total sample number.  

. HMM transition probabilities training: to 
ment the standard forward-backward training of the 
 transition probabilities. 

. Convergence check: the processing will go back to 
 for iterating if the convergence criterion is not met. 
aining is terminated when the criterion is met. 

ESULTS FROM THE HMM/BN MODEL 

HMM/BN Model for Individual Speakers 

 this study, we first trained HMM/BN model for each 
dual speaker. To make a comparison between the 
s with and without articulatory data, recognition 
iments were also conducted using the conventional 
 with the acoustic data alone.  The book size used in 
Q was designed between 4 and 128, and was 

erred into an equivalent mixture number for the 
arison. The equivalent number is approximated by the 
nt of the actual mixture number of the Gaussian 
ution to the state number that was 87 (27 HMM×3 
in the conventional HMM model.  Figure 4 shows the 
s for three speakers respectively.  The dark bars 
te the results using both acoustic and articulatory data 
/BN), and the light bars show the results with 

tic data alone (HMM). The basic tendency of the 
s is that the accuracy obtained from the HMM/BN is 
r than that from HMM.  As the mixture number get 
, the accuracy generally increases for both conditions.  
 mixture becomes 16, the result from HMM suddenly 
orse.  However, almost no damage was seen in the 
 of the HMM/BN.  The recognition accuracy for 



Speaker 3 is always lower than that from the others, but it 
shows the same tendency as the others.  This experiment 
reveals two facts: one is that the speech production 
mechanism is helpful for ASR; and the other is that the 
HMM/BN model is capable of combining any additional 
information in an ASR system via automatic learning. 
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Figure 4. Recognition accuracies using the acoustic data alone 
(light bars) both acoustic and articulatory data (dark bars) for three 
speakers 

5.2 HMM/BN Model for All Speakers 
Learning data for the uniform model were 900 

sentences from the three speakers (3×300), and the rest (3
×60) served in model testing.  Figure 5 shows the results 
for the uniform model, which are the average values over 
the three speakers.  The line with diamonds denotes the 
accuracy for HMM with acoustic data alone, and the line 
with squares shows the results from HMM/BN with both 
the acoustic and articulatory data.  For the uniform model, 
the HMM/BN model also demonstrated a better 
performance than the HMM.  In this figure, the result 
obtained in Section 2 is also shown by the line with 
triangles for a reference.  Among these three conditions, the 
case that the articulatory data replaced partial acoustic 
parameters in MFCC shows the highest accuracy.  This 
means that the articulatory data still have some potential for 
increasing the accuracy of ASR.  
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 5. Results obtained from a uniform model. The line with 
nds denotes the results with sound alone, the line with 
s for HMM/BN, and the line with triangles for the 
nation of sound and articulatory data in the same MFCC.   

. DISCUSSION 
his study confirmed that articulatory data have some 
icial information to speech recognition, which did not 

in speech sounds.  The HMM/BN model was 
yed to combine the articulatory data in speech 

nition by an automatic learning, and performed better 
he conventional HMM in almost all cases.  This study 
strated a way to apply the speech production 
nism on an ASR system.  To promote such a study, a 

ning issue is to generate more articulatory data by 
a physical articulatory model such as the one 

sed by the authors [8].   
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