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ABSTRACT

In most of the current speech recognition systems based
on HMM, existing decoding and utterance veri�cation
methods make use of state output likelihood as a mea-
sure of the acoustic match between the input data and
the acoustic models. In this paper, we present a new
and more generalized approach to the formation of the
acoustic match score. The essence of this approach is
to transform the likelihood of each acoustic vector with
respect to any particular HMM state according to some
non-linear function. We have investigated two types of
such transformation functions. The �rst one, performs
likelihood normalization, and the second one trans-
forms likelihoods into exponentially ordered weights.
The transformed likelihoods, as new acoustic scores,
are used further for decoding, recognition and veri�-
cation instead of the conventional likelihoods. In our
evaluation experiments we used TIMIT database for
phoneme recognition and veri�cation and a database of
710 speakers and a total of 4252 distinct words, for iso-
lated word recognition and veri�cation. The results we
achieved show that the transformed likelihood scores,
in average, increase slightly the recognition accuracy
and reduce the veri�cation error rates up to 30%.

1. INTRODUCTION

Acoustic modeling based on hidden Markov model has
proven to be very successful method and most of the
current state-of-the-art speech recognition systems uti-
lize the HMM for modeling temporal and spectral char-
acteristics of speech signals. Speech recognition is a
task where the aim is to �nd that sequence of speech
units (phonemes, words, etc.) which most probably
would have generated given sequence of observation
vectors. Essential for this process is to have con�-
dent and reliable information about the match between
the observed data and the models. Currently, the
HMM output likelihood is the most widely used numer-
ical representation of this match. Generally speaking,
the likelihood is a matching score, as is the Euclidean

distance in vector quantization or in former template
based approach to speech recognition. Since all further
processing is based on these scores, although a higher
level knowledge can be applied, from pattern recogni-
tion point of view it is essential that the probability
density functions (pdf) of the acoustic scores for cor-
rect and incorrect classes do not overlap. In practice,
however, this cannot be achieved, mainly because we
don't have accurate knowledge of the true data distri-
bution and due to errors in estimation of the parame-
ters of this distribution. Extensive research has been
conducted in order to �nd reliable methods for estima-
tion of data distribution. However, what really matters
is the pdfs of the acoustic match scores for correct and
incorrect classes and the distance between them as was
discussed in [1].

Our approach to the above problem is to transform
likelihood scores according to some function. In this
transformation we can include some additional knowl-
edge about non-target (incorrect) classes, which could
make our scores more con�dent measure of the acoustic
match and increase the separation between these scores
pdfs for correct and incorrect classes.

We have investigated two kinds of such transfor-
mation functions. The �st one performs a likelihood
normalization, technique widely used in speaker veri�-
cation [2, 3], but applied here at frame level. It is based
on likelihood ratio which has been used directly for ut-
terance veri�cation in several studies [4, 5, 8], but in
our study, we use it only to obtain new acoustic scores.
The second type of likelihood transformation, called
Weighting Models Rank (WMR), transforms the likeli-
hood into exponentially ordered weights which are used
further as acoustic scores. The weights correspond to
the model's rank from a list of all models sorted ac-
cording to their likelihood score with respect to a par-
ticular input frame. This approach is similar to the
rank-ordering method proposed in [6]. The di�erence
is that in out case weights are ordered exponentially
and that they are not used directly for utterance veri-
�cation.



2. FRAME LEVEL LIKELIHOOD
TRANSFORMATIONS

Transformed likelihood scores are obtained using the
following general formula:

Sc(oj�) = f(p(oj�)) (1)

where p(oj�) denotes the likelihood of observation vec-
tor o with respect to model � representing some partic-
ular data class. In order to be meaningful, the transfor-
mation function f(x) should be non-linear and satisfy
the following condition [11]:

if x1 > x2; then f(x1) > f(x2) (2)

As a special case, Sc(oj�) is equal to the standard
likelihood score when the transformation function is of
the type f(x) = x.

2.1. Likelihood normalization

Given a single frame likelihood p(otj�i) from the ith

class model with respect to frame ot, the likelihood is
transformed using the following function:

Sc(otj�) =
p(otj�i)
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b=1 p(otj�b)
(3)

where p(otj�b) are the frame likelihood scores from
background class models given the same frame ot. Dif-
ferent choices of the background class set give di�erent
transformation functions. Note that the above likeli-
hood transformation approximates the likelihood ratio,
but for a single frame.

Given the class model i, we have experimented with
the following background class sets:

� All others - the background class set consists of
all classes, except the class i.

� Cohort - the background class set consists of K
acoustically closest classes to the class i. The
cohort classes are determined on the training data
in advance.

2.2. Weighting models rank (WMR)

The main idea is to transform the frame likelihood
p(oj�) into a weight w which does not depend on the
absolute value of this likelihood, but depends on its rel-
ative position with respect to the likelihoods from all
other classes.

The WMR transformation consists of the following
two steps.

� Step 1. For each test vector ot; t = 1; 2; : : : ; T ,
calculate all likelihoods p(otj�i); i = 1; : : : ; N and
sort them in a decreasing order. Each model is
assigned a rank - r�, which corresponds to the
position of the model in the sorted list and is an
integer ranging from 1 to N . The weight w is
de�ned as a function of r�:

w(r�) = g(r�) (4)

� Step 2. For each model �i, �nd its rank r�i
,

i.e. its place in the N-best list, and instead of the
likelihood p(otj�i) use the corresponding weight
wt(r�i

) as a model's frame score.

Now we can de�ne the WMR type likelihood trans-
formation function as:

Sc(xtj�) = exp(wt(r�)) (5)

Obviously, in this technique, the most important
issue is what types of function g() to use. Previous
study [11] has shown that the following exponential
function is appropriate:

gexp(r�) = exp(A�Br�); r� = 1; : : : ;N (6)

How to choose the parameters A and B is also ex-
plained in [11].

3. RECOGNITION SYSTEM

3.1. Overview

Our speech recognition system is based on continuous
density hidden Markov models. State output pdf con-
sists of mixture of Gaussian components with diagonal
covariance matrices. Each sub-word unit (phoneme in
our experiments) is modeled by a 3 state left-to-right
HMM without state skips.

HMMs are trained using up to 10 iterations of the
standard Baum-Welch algorithm. Initial models are
made by random data sampling.

3.2. Decoding algorithm

Our decoder is a simple one-pass Viterbi decoder. It
can operate in two modes: with and without lan-
guage model. The former mode gives pure acoustic
level utterance likelihood and the output is acoustically
most probable phoneme sequence. In the later mode,
phoneme bigram or �nite state grammar (FSG) can be
used as language model. When the decoder is given an
input frame ot, likelihoods from all states Sj from all



models p(otjSj) are calculated and then Viterbi search
is performed as:

�t(j) = max
i
[�t�1(i) + log aij ] + log p(otjSj) (7)

where �t(j) is the best score along a single path at time
t, which accounts for the �rst t frames and ends in state
j.

A slight modi�cation is needed in this algorithm in
order to incorporate the transformed likelihood scores.
After likelihoods are calculated, the only additional
step is the transformation step. Then the Viterbi
search is done as usual. Therefore, the modi�ed al-
gorithm will be:

�t(j) = max
i
[�t�1(i) + log aij ] + logSc(otjSj) (8)

3.3. Utterance veri�cation

The utterance veri�cation algorithm we adopted is
based on word scores and uses likelihood ratio for mak-
ing decision. An utterance (an isolated word in our
experiments) is accepted if:

L =
L(OjFSG)

L(OjNoGrammar)
(9)

is above some threshold. In this equation, O =
o1; : : : ; oT is the observation sequence, L(OjFSM) and
L(OjNoGrammar) are accumulated likelihood (or
transformed likelihood) scores with and without FSG.
Similar likelihood ratio has been used previously for
key phrase spotting [7].

This utterance veri�cation algorithm requires two
decoding passes: one with grammar and one without
grammar.

4. EXPERIMENTAL RESULTS

4.1. Speech material

The TIMIT corpus was used for phoneme recogni-
tion and veri�cation experiments. Speech data were
converted into 39 dimensional MFCC feature vectors
(power, 12 cepstral coe�cients and their delta and
delta delta) with window of 25 ms. and shift of 10
ms. 48 monophone left-to-right HMMs with 3 states
/ 8 mixtures were trained from the suggested training
data.

The second database which was used for word recog-
nition and veri�cation consists of isolated word record-
ings from 710 speakers uttering several repetitions of
groups of 4255 distinct words. 540 speakers and 6474
utterances were used for training of 26 monophone 3

state / 8 mixture left-to-right HMMs. The test set con-
sisted of 170 speakers and 2030 utterances. Front-end
speech processing was the same as for TIMIT database.

4.2. Phoneme recognition and veri�cation

When implementing the likelihood transformation
technique we have to de�ne the distinct classes. In
our experiments, each HMM state represents a sepa-
rate class.

Since all TIMIT utterances are phonetically la-
beled, in addition to connected phoneme recognition
experiments we were able to run phoneme classi�ca-
tion experiment. The evaluation results are summa-
rized in Table 1 where the third row shows the recogni-
tion rates using phoneme bigram language model. Each
column shows the results for di�erent acoustic score.
\Lik." which stands for likelihood, is our baseline.
Columns \ALL" and \Coh." show the performance
of the transformed likelihood scores using Eq.(3). Col-
umn \WMR" is for likelihood scores transformed us-
ing WMR technique. As can be seen, the new scores

Table 1: 48 phoneme set recognition results.

Scores
Lik. All Coh. WMR

Classi�cation (%) 66.76 66.82 66.84 65.94
Recognition (%) 50.89 51.48 51.57 50.60
+ bigram (%) 61.96 62.27 62.57 61.82

perform not worse than the standard likelihood with
exception of WMR scores. However, the drop in the
recognition rates is negligible. These results are in con-
trast to those reported in [8], where frame likelihood
normalized scores were used for decoding as well, and
signi�cant drop in the performance was observed.

In order to test whether the new scores have led
to increased separability between di�erent phonemes,
we performed phoneme veri�cation experiment, where
decision was taken by comparing phoneme scores with
a threshold. Table 2 shows the veri�cation equal error
rates (EER). Using new scores the EER dropped in
average by 30%.

4.3. Isolated words recognition and veri�cation

The same set of scores was used in these experiments.
Recognition rates were obtained after the �rst decoding
pass using FSG. The second pass was used in order to
calculate the likelihood ratio of Eq.(9).



Table 2: Phoneme veri�cation equal error rates for dif-
ferent scores.

Scores
Lik. All Coh. WMR

EER (%) 41.3 28.9 28.7 28.5

Table 3 shows both the word error rates and the ut-
terance veri�cation EER. In the case of isolated words,
the WMR scores performed best reducing the WER
by 4.3% and the word veri�cation EER by 20%. The
di�erent performance of the WMR scores with respect
to phoneme recognition case can be explained with the
di�erent segment duration over which the WMR scores
are accumulated. Average phoneme duration is several
times shorter than the words duration and the e�ect of
WMR scores is more signi�cant for longer utterances.

Table 3: Isolated word error and utterance veri�cation
equal error rates.

Scores
Lik. All Coh. WMR

WER (%) 6.90 6.80 6.72 6.60
EER (%) 30.33 27.23 27.10 24.24

5. CONCLUSION

We have proposed and evaluated new types of acoustic
match score which are generalization of the standard
likelihood score. The new scores accommodate some
additional information about the non-target classes
which allows for bigger separability between scores dis-
tributions for target and non-target classes.

Evaluation experiments on two databases show
that, in contrast to some other studies, there is no drop
in the recognition performance when using the normal-
ized likelihood for decoding (\All" and \Coh." cases)
and that a signi�cant reduction of the veri�cation er-
ror rates can be achieved using the proposed likelihood
scores.
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