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Abstract

In this paper, we describe several approaches to integra-
tion of the articulatory dynamic parameters along with ar-
ticulatory position data into a HMM/BN model based au-
tomatic speech recognition system. This work is a contin-
uation of our previous study, where we have successfully
combined speech acoustic features in form of MFCC with
articulatory position observations. Articulatory dynamic
parameters are represented by velocity and acceleration
coefficients calculated as first and second derivatives of
the articulatory position data. All these features are in-
tegrated using the HMM/BN acoustic model where each
feature corresponds to different Bayesian Network vari-
able. By changing the BN topology we can change the
way articulatory and acoustic parameters are combined.
The evaluation experiments showed that the effect of the
articulatory dynamic features greatly depends on the BN
structure and that careful data analysis is essential in gain-
ing knowledge about the underlying dependencies be-
tween different information sources. In comparison with
conventional HMM system trained on acoustic data only,
the HMM/BN system achieved significant improvement
of the recognition performance.

1. Introduction

Most of the current state-of-the-art speech recognition
systems are based on speech signal parameterizations
which crudely model the behavior of the human audi-
tory system. However, little or no use is usually made
of knowledge regarding human speech production sys-
tem. Research on speech production mechanisms in ASR
has been largely focused on using prior phonetic and
phonological knowledge and modeling the hidden artic-
ulatory trajectories. In many studies, discrete knowledge
based features are adopted as articulatory parameteriza-
tion [1, 2, 3, 4]. They usually describe articulation, e.g.
voiced, fricative, nasal, etc. and biomechanics - posi-
tions of tongue, lips, jaw and so on. In [1], such ar-
ticulatory features are extracted from the parameterized

speech signal by means of Neural Networks (NN) and
combined with the acoustic features. Knowledge based
features can be used to define the HMM state space, as
in the Articulatory Feature Model (AFM) [2]. Common
disadvantage of such approaches is the quantization of
the continuous articulatory parameters where much of the
dynamics information is lost. In order to model the co-
articulation effect better and to account for the continuous
articulatory movement, the discrete articulatory vectors
can be regarded as ”targets” of trajectory based models.
In [3], Kalman filter is used to smooth target positions and
generate ”realized” articulations which are further trans-
formed into cepstrum vectors by NN. A stochastic target
model is discussed in [5]. In the so called task-dynamic
model, articulatory dynamics is described in terms of
task-variable which represents vocal tract (VT) construc-
tion degrees and locations or VT resonances [6]. Essen-
tial issue in building articulatory models with knowledge
based features or targets is the selection of the feature set
and its size. Too few features may result in very crude
and simplistic model. On the other hand, more features
will allow for greater precision in trajectory generation,
but the complexity of the model and its implementation
cost may become prohibitive in practice.

Relatively few studies involve physically recorded ar-
ticulatory data[7, 8]. Articulatory parameters obtained
from actual measurements describe articulation in more
fine-grained manner. However, direct observations are
usually not available during recognition. Common ap-
proach is to estimate articulatory test data from the acous-
tic signal using NN. In this study, we also make use of
actual articulatory data. Rather than trying to learn the
mapping between acoustic and articulatory features, we
consider them as random variables and model their prob-
abilistic dependency using the hybrid HMM/BN model
[9]. In this model, BN represents the states output
probability distributions and HMM governs the tempo-
ral speech behavior. Articulatory and acoustic parame-
ters are represented by different BN variables. Dependen-
cies are learned from the available training data. During



recognition, however, articulatory variables are assumed
hidden which allows for decoding using acoustic obser-
vations only. First experiments involving only articula-
tors position parameters were reported previously [10].
Now, we have extended those experiments to include ar-
ticulatory velocity and acceleration parameters. Various
BN topologies integrating those parameters were studied
and are described in this paper.

2. The hybrid HMM/BN model

2.1. Brief background

The HMM/BN model is a combination of HMM and
Bayesian Network. Speech temporal characteristics are
modeled by the HMM state transitions while HMM states
probability distributions are represented by the BN. The
HMM/BN block diagram is shown in Fig.1. Details about
the training and recognition with the HMM/BN model are
given in [9, 10].
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Figure 1: The HMM/BN model structure. HMM transi-
tions model speech temporal characteristics and BN rep-
resents states probability distributions.

2.2. Articulatory Dynamic Parameter Integration

In our previous study [10], we combined speech acoustic
and articulatory features using simple BN shown in Fig.2,
where variable Q denotes HMM state, X represents con-
tinuous MFCC vectors1 and A is a discrete articulatory
variable obtained by vector quantization of the continu-
ous articulatory position data. Now, as articulatory dy-
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Figure 2: Simple BN integrating continuous acoustic (X)
and discrete articulatory (A) features.

1These vectors consist of MFCC static, delta and delta-delta coeffi-
cients.

namic features we use velocity and acceleration parame-
ters. The most straightforward approach to their integra-
tion is to concatenate articulatory position feature vector
with velocity and acceleration components, then apply
vector quantization and use the same BN as in Fig.2. As-
suming that articulatory variable is hidden during recog-
nition, the state output likelihood is calculated as:

p(xt|qi) =
K∑

j=1

P (A = aj |Q = qi) ·

·P (X = xt|A = aj , Q = qi) (1)

where K is the size of the articulatory VQ codebook and
xt is the acoustic feature vector. If P (X = xt|A =
aj , Q = qi) is Gaussian function, above equation rep-
resents mixture of Gaussians where conditional proba-
bilities of the articulatory variable given the state index
are the mixture weights. This method, however, does
not make use of the BN flexibility and power in mod-
eling data dependencies. We can reasonably assume that
MFCC delta coefficients (mostly) depend on articulatory
velocity parameters and that MFCC delta-delta coeffi-
cients (mostly) depend on articulatory acceleration pa-
rameters. A BN which expresses these dependencies is
shown in Fig.3 where variables Xs, Xv and Xa corre-
spond to MFCC static, delta and delta-delta components.
Variables As, Av and Aa represent articulatory position,
velocity and acceleration parameters. Vector quantization
can be done independently for each type of articulatory
data using codebooks of different sizes, Ks, Kv and Ka.
According to this BN, acoustic likelihood is calculated
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Figure 3: BN structure modeling corresponding depen-
dencies between MFCC static, delta and delta-delta co-
efficients and articulatory position, velocity and acceler-
ation parameters.

as:

p(xt|qi) =
∏

n∈{s,v,a}

Kn∑

j=1

P (An = an
j |Q = qi) ·

·P (Xn = xn
t |An = an

j , Q = qi)

=
∏

n∈{s,v,a}
P (Xn = xn

t |Q = qi) (2)



Above equation is just a product of the MFCC static xs
t ,

delta xv
t and delta-delta xa

t likelihoods each of which is
computed as Gaussian mixture. This is the same as the
well known case of multi-stream data likelihood calcula-
tion. A drawback of this approach is that the correlation
between MFCC static and dynamic parts is lost. A BN
structure free from this problem is shown in Fig.4, where
concatenated MFCC static, delta and delta-delta coeffi-
cients are represented by X . This BN is similar to the BN
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Figure 4: BN structure explicitly modeling dependencies
between acoustic and articulatory position, velocity and
acceleration parameters.

from Fig.2, but now X depends explicitly on the three ar-
ticulatory variables. In addition, the possible correlation
between articulatory position, velocity and acceleration
is taken into account by making them dependent on each
other. The output likelihood obtained from this BN is fol-
lowing:

p(xt|qi) =
Ks∑

j=1

Kv∑

n=1

Ka∑

m=1

P (As = as
j |Q = qi)· (3)

·P (Av = av
n|As = as

j , Q = qi) ·
·P (Aa = aa

m|Av = av
n, Q = qi) ·

·P (X = xt|As = as
j , Av = av

n, Aa = aa
m, Q = qi)

Closer look at this equation reveals that it is also a mix-
ture of Gaussians equation. Indeed, the first three terms of
the right side are discrete probabilities and their product
is just the weight of the corresponding Gaussian mixture
component P (X = xt|...).

3. Experiments and results

Articulatory data used in this study was collected using
an electromagnetic midsagittal articulographic (EMA)
system [11]. It consists of x- and y-coordinates of
8 points of the vocal tract (4 on the tongue surface
and 1 for each upper and lower lip and maxilla and
mandible incisor) sampled at 125 Hz. Acoustic signal
was recorded simultaneously at 12 KHz. The speech ma-
terial consist of 350 Japanese sentences read by three
male speakers. 300 of them were selected as training
data and the rest were left for evaluation. As acoustic
features we used 16 MFCCs obtained from 20ms long

frames with 8ms shift so they are time synchronous with
the 16 (8x2) dimensional articulatory position samples.
Two baseline acoustic models consisting of 29 mono-
phone HMMs were trained using only acoustic vectors
(MFCC+∆+∆∆) and combined acoustic and articulatory
vectors (MFCC+∆+ArtPos) and will be referred to as
HMM(AC) and HMM(AC+ART) respectively. Articula-
tory velocity and acceleration features were calculated as
the first and second derivative of the articulatory position
data.

Before the HMM/BN training, all the articulatory
data dimension was reduced to 4 with PCA transforma-
tion and then they were quantized using VQ codebooks
of sizes ranging from 4 to 1024. VQ labels served as ar-
ticulatory observations for the BN training. Initial obser-
vations of the state variable Q were obtained by Viterbi
alignment using the HMM(AC) model. All the HMM/BN
acoustic models have the same structure as the baseline
models except the number mixture components. One it-
eration of BN training was performed and the HMM/BN
transition probabilities were kept the same as in the base-
line HMM.

First, we evaluated the performance of the HMM/BN
model with BNs of different topologies presented in the
previous section. For convenience, the BN from Fig.2
will be referred to as BN1 and those from Fig.3 and Fig.4,
as BN2 and BN3. To illustrate the effect of articulatory
dynamic features on the model performance, results of
these experiments are shown in Table 1 along with the
previous results of BN1 trained with articulatory posi-
tion data only. The VQ codebook sizes we chosen such
that all types of models had roughly the same number of
Gaussian mixture components. As the results show, in-
cluding articulatory velocity and acceleration parameters
was effective only with the BN3. The other two showed
degradation of the performance. In the BN1 case where
all three types of articulatory features are concatenated,
the PCA based dimension reduction retains those com-
ponents which have the biggest variance. The data anal-
ysis we did showed that position parameters had lowest
eigenvalues and therefore could be lost in the transforma-

Table 1: HMM/BN phoneme recognition accuracy (%)
obtained with three different BN structures using differ-
ent articulatory feature sets and speaker dependent acous-
tic models.

Position Position, Velocity
data only and Acceleration data

BN1 BN1 BN2 BN3
Speaker 1 86.17 85.75 85.90 86.82
Speaker 2 86.44 85.95 86.20 87.09
Speaker 3 77.69 77.02 77.45 77.85



tion. The reason for the low results of the BN2 is most
probably the fact that acoustic feature vector is split into
static, delta and delta-delta parts. This, usually, leads to
performance degradation which, in this case, may have
diminished the gain provided by the articulatory dynamic
parameters.

Next, we investigated the performance of the BN3 as
a function of the number of model parameters. By vary-
ing the VQ codebooks sizes, we obtained several mod-
els with different number of mixture components. As
a measure for the model complexity we use the aver-
age number of Gaussians per state. Phoneme recognition
rates for a model trained on data from the three speak-
ers are plotted in Fig.5 along with the results obtained
from the two baseline HMM models. The performance
of the HMM/BN3 is always higher than the HMM(AC),
but still not better than HMM(AC+ART). We have to note
that HMM(AC+ART) model is of no practical use, be-
cause it requires articulatory observations during recogni-
tion. Nevertheless, we regard its results as kind of an up-
per bound for the HMM/BN performance. The plot also
shows that the baseline recognition rates start degrading
after mixture component number reaches 12 Gaussians
per state. In contrast, the best HMM/BN3 results were
obtained at roughly two to three times more model pa-
rameters. The probable reason is that the baseline HMMs
have the same mixture number for each state and given
the limited amount of training data, this soon leads to pa-
rameter over-training. In the case of HMM/BN3, how-
ever, there is a better balance between the amount of
training data per state and the number of Gaussians it
has, so the over-training appears at bigger number of mix-
tures.
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Figure 5: Performance of the HMM/BN3 and the two
baseline HMMs as a function of the number of Gaussians
using multi-speaker trained models.

4. Conclusion

In this study, we investigated several ways of articula-
tory dynamic features integration in HMM/BN model
based speech recognition system. Previously, we suc-
cessfully combined the MFCC speech features with ar-
ticulatory position parameters using the same model and
the next step in this direction was to expand the system
to include the articulatory velocity and acceleration co-
efficients. The challenge was to find such BN topology
that best represents underlying dependencies between the
different speech features taking into account their spe-
cific characteristics. Evaluation experiments showed that
articulatory dynamic parameters can improve ASR per-
formance if integrated properly. Overall, our system
achieved much better recognition rates compared to tra-
ditional HMM system trained on acoustic data only.
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