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Abstract
It is difficult to recognize speech distorted by various factors,

especially when an ASR system contains only a single acoustic
model. One solution is to use multiple acoustic models, one model
for each different condition. In this paper, we discuss a parallel
decoding-based ASR system that is robust to the noise type, SNR,
speaker gender and speaking style. Our system consists of two
recognition channels based on MFCC and Differential MFCC (DM-
FCC) features. Each channel has several acoustic models depend-
ing on SNR, speaker gender and speaking style, and each acoustic
model is adapted by fast noise adaptation. From each channel, one
hypothesis is selected based on its likelihood. The final recognition
result is obtained by combining hypotheses from the two channels.
We evaluate the performance of our system by normal and hyper-
articulated test speech data contaminated by various types of noise
at different SNR levels. Experiments demonstrate that the system
could achieve recognition accuracy in excess of 80% for the nor-
mal speaking style data at a SNR of 0 dB. For hyper-articulated
speech data, the recognition accuracy improved from about 10% to
over 45% compared to a system without acoustic models for hyper-
articulated speech.

1. Introduction
In recent years, ASR systems have been used in various applica-
tions like location setting for car navigation systems, speech input
to word processors, etc. However, in order to achieve high recogni-
tion performance, ASR systems are subjected to various constraints
on noise environments and speaking styles. In a real environment,
there is a wide variety of noises such as engine noise from auto-
mobiles, babble noise in convention halls, street traffic noise, etc.
Moreover, natural speech exhibits various speaking styles such as
fast utterance, hyper-articulation and whispering. Therefore, it is
important to have a system that can handle such a wide variety of
noises and speaking styles.

To date, many techniques have been proposed that improve
noise robustness [1]. In the field of speech enhancement and speech
analysis, SS (Spectrum Subtraction) [2] and RASTA processing [3]
have been proposed as acoustic feature extraction techniques robust
to noise. PMC (Parallel Model Combination) [4] and MLLR (Max-
imum Likelihood Linear Regression) [5] have been proposed for
model adaptation to a particular noise environment.

To deal with speaking style variations, there are some tech-
niques for robust recognition of speech distorted by the Lombard
effect [6], for hyper-articulated speech [7], and fast spontaneous
speech [8, 9].

Most of these techniques improve robustness to a specific noise
environment or a specific speaking style only, if a user speaks in a
different environment or style, it is difficult to maintain the recogni-
tion performance as in the matched condition. Furthermore, noise
and speaking styles change with time in the real environment. To

recognize distorted speech, noise and speaking styles have to be
predicted for each utterance in advance. In practice, this is difficult
to do. Recently, however, a parallel decoding using multiple acous-
tic and language models has become popular. A final recognition
result is obtained by combining multiple hypotheses from multiple
decoders using models, trained for different environments. Even
though robustness of each acoustic model is limited, an ASR sys-
tem based on parallel decoding can handle various conditions.

We describe an ASR system based on parallel decoding with
improved robustness to both noise and speaking styles. Our sys-
tem works with multiple acoustic models. Acoustic models are
trained for specific environments (noise type and speaking style)
using different acoustic features, and multiple hypothesis obtained
from these acoustic models are selected and combined by maximum
likelihood criteria and hypothesis combination [11].

In Section 2, we describe the structure of our ASR system and
each technique used. In Section 3, we evaluate our system’s recog-
nition performance evaluation, and conclude in Section 4.

2. System Description
2.1. Differential MFCC

Our previous research showed that some modifications to the
MFCC algorithm can yield better performance in noisy speech con-
ditions [10]. The so-called differential spectrum MFCC is calcu-
lated from the differential power spectrum of speech, which is de-
fined as:

D(i, k) = |Y (i, k) − Y (i, k + 1)|, (1)

where D() is the differential spectrum, Y () is the power spectrum
for the ith frame and k is the spectrum bin index. This simple mod-
ification was efficient for the AURORA2 task [12]. We denote this
type of differential spectrum MFCC feature as DMFCC.

2.2. Fast Noise Adaptation

For fast noise adaptation, we use HMM a composition-based tech-
nique [13]. This technique comprises two steps. In the first step,
an initial noise GMM is trained with prior data containing various
types of noises. Using this GMM and a clean-speech HMM, noise-
dependent HMMs are composed by the PMC technique. In the sec-
ond step, we do MAP adaptation of the mixture weights of the noise
GMM with a small amount of noise test data. Then, one HMM is
composed from the noise-dependent HMMs using estimated GMM
mixture weights. Figure 1 illustrates this procedure. In this figure,
Pλi is the output distribution of the composed HMM and wNi is
the estimated mixture weight for the ith GMM component.

In our system, since PMC technique cannot be applied to the
DMFCC feature, noise-dependent HMMs are trained from data
contaminated by different noises and different SNR levels.
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Figure 1: Generation of noisy speech HMM.

2.3. Acoustic Model for Hyper-articulated Speech

When using an ASR system, if a recognition error occurs, the user
must repeat the last utterance. Okuda et. al. [7] reported that a
short pause is usually inserted after vowels in the repeated utterance,
and to recognize such an utterance robustly, they proposed a new
acoustic model for hyper-articulated speech. The structure of the
acoustic model is illustrated in Figure 2. By using this acoustic
model, it is possible for our system to recognize hyper-articulated
speech such as repeated speech.

2.4. Hypothesis Combination

In our system, we implement the hypothesis combination technique
based on word graph construction [11]. This technique combines
multiple hypotheses obtained from different decoders. If these hy-
potheses are complementary to each other, it is possible that a more
correct result can be obtained.

Figure 3 depicts an example of hypothesis combination. This
technique consists of two steps: in the first step, a word graph is
created from two hypothesis, then in the second step, the best path
through the graph is selected using word’s acoustic and language
model scores.

2.5. ASR based on Parallel Decoding

Figure 4 illustrates the structure of our system. It contains two par-
allel channels, one for each MFCC and DMFCC feature. Parallel
decoding is applied using models for each SNR, gender and speak-
ing style, and there are 24 decoders in each channel, which is the
product of two speaker genders, six SNR levels (0, 5, 10, 20, 30 dB
and clean), under normal and hyper-articulated speech conditions.
Therefore, the total number of decoders used in our system is 48.
All acoustic models are adapted to the test noise environment by
using the HMM composition-based fast noise adaptation technique.
In each channel, one hypothesis is selected based on its score. Then,
the final result is obtained by combining hypotheses from the two
channels [11].

3. Experiments
3.1. Experimental Conditions

Noisy acoustic models were trained using dialog speech from the
ATR travel arrangement task database (5 hours), read speech of
phonetically balanced sentences (25 hours) and 12 types of noise
listed in Table 1. A state-tying structure is generated by using the
ML-SSS technique[14], with 2100 states. Each state has five dis-
tributions. The MFCC feature models are composed for different
SNR levels (0, 5, 10, 20, 30 dB). DMFCC feature models are trained
from data contaminated by different noises and different SNR lev-
els, and hyper-articulated acoustic models are generated from nor-
mal speech acoustic models. Parameters of each distribution are
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Figure 2: The structure of an acoustic model for hyper-articulated
speech.
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Figure 3: Examples of a hypothesis combination.

kept the same except for the HMM topology. Each acoustic model
is gender dependent. Generated acoustic models depend on 5 SNR
levels and clean conditions, 12 types of noises, MFCC and DM-
FCC features, speaker gender and speaking style. Therefore, the
total number of noisy acoustic models is 5× 12× 2× 2× 2 = 480
and the number of clean acoustic models is 8. During recognition,
however, 40 noise-adapted acoustic models are generated from the
480 models by the fast adaptation techniques. MFCC features con-
sists of 12 MFCCs, 12∆MFCCs and a∆C0 extracted with a 10 ms
frame period and 20 ms frame length. DMFCC features also have
12 DMFCCs, 12 ∆DMFCCs and a∆C0.

For testing of normal speech, we used the basic travel expres-
sion corpus (BTEC) testset-01 (510 sentences, four males and six
females, each speaker uttered 51 sentences). For testing on hyper-
articulated speech, we collected 40 syllable-stressed sentences spo-
ken consciously (two males and two females, each speaker uttered
10 sentences). These testing data were contaminated by three types
of noises at five different SNR levels, as shown in Table 1.

Our system uses a word bi-gram and a composite word tri-gram
language models [15]. Each language model is trained from the
spontaneous speech database (SDB), language database (LDB) and
spoken language database (SLDB), with the total number of words
standing at 6.1M words. Lexicon size is 34k words.

3.2. Evaluation for Noisy Speech

We evaluated the recognition performance of our system using
noisy speech data. All acoustic models in our system were adapted
using one-second data from the test environment. First, Figure 5
shows the average word accuracies for each of normal speaking
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Figure 4: Structure of our ASR system implemented by the parallel-type’ method.

Table 1: Noise types used in experiments.

For training

Airport lobby Airbus
Underground city Car driving
Food counter Square
Station yard Platform at station
High-speed railway Boiler room
Rice Paddies Forest

For testing

In front of a station Public bus Construction site

style recognizers and hypothesis selection. It is clear that the per-
formance of the MFCC recognizer is similar to that of the DMFCC
recognizer. Each channel achieved a word accuracy higher than
80%, even though the performances of the clean MFCC acoustic
model and the clean DMFCC acoustic model were about 40% and
about 60%, respectively. Figure 6 shows the word accuracies of the
overall system. The performance was improved further by using the
hypothesis combination.

3.3. Evaluation for Hyper-articulated Speech

We evaluated the recognition performance of our system using
hyper-articulated speech data contaminated by three types of noises.
Figure 7 shows the average word accuracy for the evaluation data.
Even though the word accuracies of the system for normal speak-
ing style only were about 10%, our system could achieve a word
accuracy of about 45%.

4. Conclusion
In this paper, we described an ASR system robust to both noise
and speaking styles. Our system has multiple acoustic models, each
of which depends on the noise, SNR and speaking style. The to-
tal number of acoustic models is 488. The HMM composition-
based noise adaptation technique was used in our system to im-
prove robustness to noise. However, to improve robustness to hyper-
articulated speech, we employed the acoustic model for hyper-
articulated speech. In addition, we used two acoustic features as
different “views” of the speech signal.

Experiments demonstrated that the system could achieve a word
accuracy exceeding 90% for the normal speaking style data and a
SNR of over 10 dB, and in excess of 80% for a SNR of 0 dB. Our
system achieved a word accuracy of over 45% for hyper-articulated
speech.

Future work includes study on the generation method of a set of
acoustic models that efficiently covers a wide variety of noise and
various speaking styles.
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Figure 5: Recognition performance of each channel for noisy speech data.
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