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Abstract
In this paper, we describe an application of the Forward-Back-
wards (F-B) algorithm for maximum likelihood training of hy-
brid HMM/Bayesian Network (BN) acoustic models. Previously,
HMM/BN parameter estimation was based on a Viterbi training
algorithm that requires two passes over the training data: one for
BN learning and one for updating HMM transition probabilities.
In this work, we first analyze the F-B training for a conventional
HMM and show that the state PDF parameter estimation is anal-
ogous to weighted-data classifier training. The gamma variable
of the Forward-Backwards algorithm plays the role of the data
weight. From this perspective, it is straightforward to apply F-
B-based training to the HMM/BN models since the BN learning
algorithm allows training with weighted data. Experiments on ac-
cented speech (American, British and Australian English) show
that F-B training outperforms the previous Viterbi learning ap-
proach and that the HMM/BN model achieved better performance
than the conventional HMM.
Index Terms: forward-backwards algorithm, HMM/BN,
weighted data training, accent modeling.

1. Introduction
In recent years, research activities in speech modeling frameworks
other than HMM have intensified. Dynamic Bayesian Networks
(DBN) [1] have been successfully applied in the automatic speech
recognition (ASR) [2, 3]. Also, our group at ATR has proposed
an HMM/BN model [4] that proved itself to be effective replace-
ment of the HMM [5].The HMM/BN model can be viewed as both
a generalization of HMM and as a DBN with temporal topology
constraints. What distinguishes HMM/BN from HMM is the great
flexibility of state probability modeling that BN offers. On the
other hand, training and implementation of the HMM/BN is much
easier and more tractable than DBN and is very similar to HMM.

Structurally, the HMM/BN model is analogous to the hybrid
HMM/Neural Network model (NN). The difference is that in-
stead of an NN, the HMM is coupled with a BN. Initially, for
the HMM/BN training, we used the same approach as for the
HMM/NN - the Viterbi paradigm. It consists of three alternat-
ing steps: Viterbi alignment, BN training and HMM probabilities
update. HMMs can also be trained using the Viterbi algorithm, but
it is known that forward-backwards training yields better models.
Here, we discuss how to apply the F-B algorithm for HMM/BN
training. First, we analyze the ML parameter estimates for the
standard HMM and show that for each state the F-B training is
equivalent to learning with weighted data where the gamma vari-
able plays the role of the weight. Such weighted-data training is
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in the boosting algorithms that have also been applied for im-
ing HMM- as well as DBN-based systems [6, 7]. Next, we

that since BN learning can be done with weighted data, it is
ghtforward to apply an F-B algorithm to HMM/BN training.

2. Hybrid HMM/BN Model
HMM/BN model is a combination of an HMM and a Bayesian
ork. Temporal speech characteristics are modeled by the

M state transitions while the HMM states’ probability distribu-
s are represented by the BN. A block diagram of the HMM/BN
own in Fig.1.

q q q1 2 3

     Bayesian Network

Figure 1: HMM/BN model structure.

By definition, a Bayesian Network represents a joint proba-
y distribution of a set of random variables Z1, Z2 . . . ZN and
pressed by a directed acyclic graph (DAG), where each node

esponds to a unique variable. Arcs between the nodes show
onditional dependencies of the BN variables. Immediate pre-
ssors of variable Zi are called its parents and are referred to
a(Zi). The BN joint probability distribution function can be
red as [8]

P (Z1, Z2 . . . ZN ) =
NY

i=1

P (Zi|Pa(Zi)). (1)

n all BN variables are observable, i.e., in the fully observable
, the maximum likelihood (ML) approach to parameter esti-
on can be easily applied. In this case, given the training data
2 . . . oT , the log-likelihood function is [3]

L = log

TY

t=1

Pr(ot|G)

=
NX

i=1

TX

t=1

log(Zi|Pa(Zi), ot) (2)
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where G denotes the BN. We can see that this function decomposes
into a series of terms, one per variable. Therefore, the ML training
is essentially a parameter estimation of each node’s conditional
probability density (CPD) given its local data {ot(Zi, Pa(Zi))}.

The BN of the HMM/BN model consists of at least two vari-
ables: state variable Q and observation (speech) variable X con-
nected with a single arc from Q to X. In this case, the HMM/BN
model is equivalent to the conventional HMM. The advantage of
using BN as state probability model is that it is easy to add other
variables representing different speech features or variability fac-
tors. The easiest HMM/BN implementation into an ASR system is
when all variables except X and Q are discrete and assumed hid-
den (for training, however, they can be observable). Then, for an
arbitrary BN having joint pdf P (X, Q,Z1 . . . ZN ), we have the
state output probability

P (X|Q) =

X

z1

· · ·
X

zN

NY

i=1

P (Zi = zi|Pa(Zi))P (X|Pa(X)) (3)

which actually represents a Gaussian mixture where the product
terms

QN

i=1
P (Zi = zi|Pa(Zi)) are the mixture weights and

P (X|Pa(X)) are the Gaussian functions.

3. Forward-Backwards Algorithm
The basic idea of the F-B algorithm is to recursively compute two
variables [9]. The first one, called alpha, is obtained in the for-
ward pass and is the probability of observing input sequence x1:t

and state qi at time t, i.e. αt(i) = P (x1:t, q
t
i). The second vari-

able, beta, is obtained in the backwards pass and is the probabil-
ity of observing input sequence xt+1:T given state qi at time t,
βt(i) = P (xt+1:T |q

t
i). Then, a third variable, gamma, is defined

as γt(i) = P (qt
i |x1:T ) and it is the probability of being in state qi

at time t given the entire input sequence x1:T . This variable can
be expressed in terms of forward and backwards variables as

γt(i) =
αt(i)βt(i)P
j
αt(j)βt(j)

(4)

and it has the following property:
P

i
γt(i) = 1.

Often, HMM parameters are learned by using the Viterbi al-
gorithm which can be viewed as a special case of F-B where γt(i)
is equal to either zero or one.

3.1. F-B-based HMM parameter estimation

The maximum likelihood estimation of the HMM parameters uses
the F-B algorithm’s gamma variable, and the procedure is well
known. Here, we provide only the final equations for the state
PDF parameters.

For discrete HMM, where state PDF is represented by a prob-
ability table, the estimate of probability of observing symbol
Vk, k = 1, 2 . . . K for state qi is

P̂i(Vk) =

PT

t=1
γt(i)δ(xt = Vk)

PT

t=1
γt(i)

(5)

where δ() is one when xt = Vk and zero otherwise.
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When HMM state PDF is modeled by a mixture of Gaussian
tions {cm, N(; μm, Σm)}, m = 1, 2 . . . M , then the estimate
he mixture weights of state qi is

ĉmi
=

PT

t=1
γt(i)p(mi|xt)PT

t=1
γt(i)

(6)

for the means we have:

μ̂mi
=

PT

t=1
γt(i)p(mi|xt)xtPT

t=1
γt(i)p(mi|xt)

(7)

the estimates of the covariance matrices are

Σ̂mi
=

PT

t=1
γt(i)p(mi|xt)(xt − μmi

)(xt − μmi
)′

PT

t=1
γt(i)p(mi|xt)

(8)

re p(mi|xt) is the posterior of the mixture component mi and
lculated as:

p(mi|xt) =
cmi

N(xt; μmi
Σmi

)
PM

k=1
cki

N(xt; μki
Σki

)
(9)

F-B based HMM/BN parameter estimation

lyzing the HMM parameter estimation equations from the pre-
s section, we can see that the gamma variable depends on the
index t and state ID but does not depend on the functional
of the state PDF. Therefore, we can associate each input

xt with a set of gammas, one for each state i, {γt(i), i =
. , S}. Next, let’s assume that each state represents a different

sifier. Accordingly, γt(i) can be interpreted as a weight that
s how important is for classifier i to correctly classify input
xt. Such interpretation makes state parameter learning anal-
s to weighed-data classifier training which is one of the main
epts of boosting algorithms, particularly the AdaBoost algo-

[10]. An essential point in this case is that boosted learning
be applied to any type of classifier as long as its training algo-

allows training with weighted data.
As described in Section 2, in the fully observable case, the
training can be decomposed to ML estimation of each node’s
meters. If the F-B algorithm is applied, this becomes an esti-
on using weighted data. Since the weights (gammas) are dif-
nt for each state ID, for each node j, the PDF learning is done

the node’s local data conditioned by the state variable, i.e.
i), ot(Zj , Pa(Zj)|Q = i)}. Let’s consider, for example, the
ation of discrete node CPD, which is represented by a proba-

y table defined by {θjkli = P (Zj = k|Pa(Zj) = l, Q = i)}.
sequently, the ML estimate from weighted data is

θ̂jkli =

PT

t=1
γt(i)δ(Zj = k, Pa(Zj) = l, Q = i)

PT

t=1
γt(i)

(10)

it is analogous to Eq.(5). For continuous nodes whose CPD
presented by a Gaussian function or Gaussian mixture, pa-

eter estimates are essentially the same as Eqs.(6-8) except that
ad of xt, all summations are done over the node’s local data
itioned on the state ID.

Estimation of the HMM/BN transition probabilities is the
e as for the conventional HMM.



4. Experiments
In our experiments, we used a database of accented English
read speech consisting of utterances from American (US), British
(BRT) and Australian (AUS) speakers. There are 50 male and
50 female speakers per accent (300 in total) and about 300 utter-
ances per speaker. The text material includes phonetically bal-
anced sentences from the TIMIT database and transcripts of travel
related conversations. From each accent group 90 speakers were
selected for training (270 in total). For evaluation, only 100
travel related utterances from each of the remaining 30 speak-
ers (3000 utterances in total) were used. Speech data were pre-
processed in a standard way and 25-dimensional feature vectors
(12MFCC+12ΔMFCC+ΔE) were obtained with 20ms windows
at a 10ms rate.

Both the speaker’s accent and his/her gender are speech vari-
ability factors that can be easily modeled by the BN. A BN topol-
ogy that reflects dependencies between speech X, accent A, gen-
der G and the HMM state Q is shown in Fig. 2.

Figure 2: BN topology used in the experiment. Variable G repre-
sents speaker’s gender and variable A is speaker’s accent.

Since for each utterance the speaker’s accent and gender are
known, the BN is fully observable during the training. During
recognition however, these factors are unknown and thus variables
G and A are considered hidden. In this case, according to Eq.(3),
the state output probability is calculated as follows:

P (xt|qi) =
X

ak

X

gl

P (ak)P (gl)P (xt|ak, gl, qi) (11)

where ak = {US, AUS,BRT} and gl = {M, F}. The P (ak)
and P (gl) are accent and gender prior probabilities respectively.
The conditional probability P (xt|ak, gl, qi) is represented by a
mixture of Gaussian functions.

First, using all of the training data we trained a standard tri-
phone HMM using the MDL-SSS state splitting algorithm [11]
which resulted in an acoustic model with 3275 shared states. This
model, denoted as HMM1, served both as a baseline and as a boot-
strap model for the HMM/BN. Next, from the male and female
parts of the data we built two gender dependent models, denoted
as HMM2, by retraining the HMM1. In this way, all models have
the same state structure. Similarly, three accent dependent acoustic
models, HMM3, were trained using the US, British and Australian
speakers’ data separately. Initially, all models had 6 component
Gaussian mixtures per state (3 for each gender dependent model
and 2 for each accent dependent model, but 6 in total), and subse-
quently the mixture size was increased to 18, 30 and 42.
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re 3: Recognition rates of HMM/BN (18 mix./state) trained
-B and Viterbi algorithms.

The HMM/BN model was initialized using the HMM1 which
ns that they have the same state number and the same state ty-
structure. In order to match the mixture size of the baseline
el, each of the six P (xt|ak, gl, qi) per state was modeled by
, 5 and 7 Gaussian component mixtures. Since the amount
aining data for each condition (gender, accent) is roughly the
e, the estimated accent and gender prior probabilities were
k) ≈ 0.33 and P (gl) ≈ 0.5 respectively. The HMM/BN
meters were estimated as described in Section 3.2. Five itera-
s of F-B training were done for all of the models.
Evaluation experiments were performed using standard bi-

and tri-gram language models (LM) for the decoding and
d lattice rescoring passes, respectively. They were trained on
t 600,000 travel related sentences. The test data perplexity is
for the bi-gram and 19.2 for the tri-gram. Vocabulary consists

bout 35,000 words and there are no out-of-vocabulary words.
lexicon is based on standard American English word pronun-
on with an average 1.2 pronunciation variants per word. De-
r parameters, such as LM scale and beam width were kept
tant in all evaluations.
First, we compared the F-B and Viterbi algorithms and for this
ose, one HMM/BN model with a total of 18 Gaussians per
was learned using Viterbi training. Word recognition rates

ined in this experiment are shown in Fig. 3.
Next, we compared the HMM/BN model with the baseline
the gender and accent dependent HMM models. The recog-
n with multiple models, i.e. with HMM2 and HMM3, was
ormed by parallel decoding, and the final hypothesis was cho-
as that with the highest score among each model’s 1-best hy-
esis. Word recognition accuracies for the entire test set are
ented in Fig. 4.
The best result was obtained from the HMM/BN, but it outper-
ed the HMM only when the mixture size is large. This can be
ained by the fact that in addition to speaker accent and gender,
e are many other speech variability factors that to some ex-
are learned implicitly even by a small-size mixtures, as in the
of HMM. In the HMM/BN case, however, mixtures are con-
ned on both the gender and accent, and when the total number
ixture components is small, there are too few Gaussians per
ition resulting in a poor modeling of the other speech variabil-



Figure 4: Total recognition rates for HMM and HMM/BN.

Figure 5: HMM and HMM/BN (42 mix./state) recognition rates
for different English accents.

ities.
Recognition rates for each English accent are presented in Fig.

5 which shows that both the HMM/BN and HMM models give
better performance for the American accent than for the British
or Australian accents. This is, probably, due to the pronunciation
lexicon which includes only standard American English word pro-
nunciations.

5. Conclusions
In this study, we showed how to apply a Forward-Backward algo-
rithm for maximum likelihood estimation of the HMM/BN model
parameters. We experimented with fully observable BN during
training, but even in the partially observable case, the F-B training
procedure remains the same.

We compared HMM/BN models trained using both F-B and
Viterbi algorithms, and, as expected, F-B training yielded better-
performing models. The experiments also showed, that the
HMM/BN can outperform a conventional HMM having the same
state structure and number of parameters.
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