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Abstract
We propose a new method of incorporating the additional knowl-
edge of accent, gender, and wide-context dependency information
into ASR systems by utilizing the advantages of Bayesian net-
works. First, we only incorporate pentaphone-context dependency
information. After that, accent and gender information are also
integrated. In this method, we can easily extend conventional tri-
phone HMMs to cover various sources of knowledge. The prob-
abilistic dependencies between a triphone context unit and addi-
tional knowledge are learned through a BN. Another advantage
is that during recognition, additional knowledge variables are as-
sumed to be hidden, so that the existing standard triphone-based
decoding system can be used without modification. The perfor-
mance of the proposed model was evaluated on an LVCSR task
using two different types of accented English speech data. Ex-
perimental results show that this proposed method improves word
accuracy with respect to standard triphone models.
Index Terms: acoustic modeling, bayesian network, knowledge
incorporation, wide-context dependency.

1. Introduction
Most current automatic speech recognition (ASR) systems usu-
ally use statistical data-driven approaches based on hidden Markov
models (HMMs). A triphone acoustic unit is commonly used that
includes the immediately preceding and following phonetic con-
texts. Although such statistical models have proven to be efficient
choices, they are still deemed insufficient to handle the sources of
variability that exist in everyday conversational speech. By com-
pletely relying on statistical models, only a limited level of success
can be achieved.

Many researchers have tried to improve acoustic models by
incorporating coarticulation effects of longer spans, such as tetra-
phone, quinphone/pentaphone, or etc. To date, the IBM and AT&T
large-vocabulary continuous speech recognition (LVCSR) systems
have quite successfully used pentaphone models [1, 2]. Various
attempts also exist that integrate more explicitly knowledge-based
and statistical approaches. As an example, research work in [3]
proposed to incorporate acoustic phonetic knowledge sources us-
ing neural networks for rescoring frameworks. Recently, Bayesian
Networks (BN) have also attracted the attention of speech recog-
nition researchers. A BN can model complex joint probability dis-
tributions of many different (discrete and/or continuous) random
variables in well structured and easy to represent ways [4]. An-
other advantage of BNs is that additional features which are diffi-
cult to estimate reliably during recognition may be left hidden, i.e.,
unobservable. In some of the first reports on Dynamic BNs (DBN)
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eech recognition [5, 6], they were regarded as a generaliza-
of HMM, which in addition to speech spectral information
easily incorporate additional knowledge, such as articulatory
res, sub-band correlation, or speaking styles.

The approach we propose in this paper incorporates such addi-
al knowledge as accent, gender, and wide-context dependency
rmation by utilizing the BN advantages, while allowing us
tain the existing: (1) HMM-based triphone acoustic model
logy and (2) standard triphone-based decoding system. This
od is based on a scheme proposed in [7, 8], the so-called hy-
HMM/BN modeling framework, since temporal speech char-

ristics are still governed by standard HMM state transitions,
BN is used underneath to infer the state output likelihood.

this method, we can easily extend conventional triphone
M to cover a wider context where probabilistic dependencies
een the triphone context unit and various knowledge sources

learned through BNs. Our standard triphone-based decoding
em can still be used without modification, since additional

ledge variables are assumed hidden during recognition. In
previous study [9], we have shown that by only incorporating
pentaphone context at the left and right states of the triphone
M, our system achieved up to 10% relative word error rate
R) reduction on an LVCSR task using the Wall Street Journal
erican English) speech corpus [10]. In this paper, we explore
s to extend pentaphone HMM/BN models and investigate their
ormance on more challenging accented English speech data.

In the next section, we briefly describe the acoustic model-
structure, including the HMM/BN background, the proposed
el topology, and the knowledge-based phoneme classes. In
ion 3, we describe training and recognition issues. Details of
riments are presented in Section 4, including results and dis-
ion. A conclusion is drawn in Section 5.

2. Acoustic Model Structure
HMM/BN Background

re 1 shows block diagrams of the conventional mixture of
ssian HMM and the HMM/BN models. In both cases, tem-
l speech characteristics are governed by HMM state transi-
s. But, in contrast to the conventional mixture of Gaussians,
HMM/BN model uses a BN underneath to model HMM state
ability distribution, which allows for very flexible and consis-
models of state probability distribution that can easily inte-

e different speech parameterizations.

This HMM/BN model is described by two sets of probabili-
HMM transition probabilities P (qi|qj) and the joint proba-

y distribution of BN P (Z1, ..., ZK), where Zk, k = 1, ..., K
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are BN variables. The BN joint probability density function (PDF)
can be factorized as:

P (Z1, Z2, ..., ZK) =

KY

k=1

P (Zk|Pa(Zk)), (1)

where Pa(Zk) denotes the parents of variable Zk.
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(a) Conventional HMM Model

(b) HMM/BN Model

Bayesian Network

Figure 1: (a) Conventional mixture of Gaussian HMM model, (b)
HMM/BN model.

Figure 2 shows several different examples of simple BN struc-
tures where variable Q represents the HMM state, X represents
the spectrum observation variable, and both W and Y represent
other additional information, such as pitch, articulatory positions,
speaker gender, context information, etc. Here, Q, W, and Y are
discrete variables denoted by square nodes, and X is a continuous
variable denoted by a circle node. The dependency between two
variables (parent and child nodes) is denoted by an arc and de-
scribed by a conditional probability function. Since it is usually
difficult to automatically learn BN structure, it is designed manu-
ally based on our knowledge of the data. More details about the
HMM/BN approach can be found in [7, 8].
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Figure 2: Three simple examples of different BN structures with
variables Q,W,Y, and X.

2.2. Proposed HMM/BN Model

In our proposed HMM/BN, the HMM at the top level corresponds
to triphone-context acoustic unit /a−, a, a+/. The BN at the bot-
tom level is used to model the probabilistic dependencies between
triphone-context units and various knowledge sources.

First, we only incorporate the pentaphone-context dependency
information. If we extend the conventional triphone HMM with
additional second preceding and succeeding contexts, we have
a pentaphone context like /a−−, a−, a, a+, a++/. Each HMM
state output probability distribution can be represented by a BN
topology, as shown in Figs. 3(a), which has two additional vari-
ables CL for second preceding context /a−−/ and CR for second
succeeding context /a++/. More details about other possibilities
of pentaphone HMM/BN models can be found in [9, 11].

Next, we attempt to extend the pentaphone HMM/BN models
by integrating the accent and gender information. By extending
the pentaphone BN with an additional variable of gender G, BN
topology becomes as shown in Fig. 3(b) and called BN-b. But if
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xtend with an additional variable of accent A, BN topology
mes as shown in Fig. 3(c) and called BN-c. The BN topology
n in Fig. 3(d) was extended with both additional variables of

nt A and gender G, called BN-d.
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re 3: (a) is the BN-a topologies with additional variables CL

CR, (b) is the BN-b topologies with additional variables G,
and CR, (c) is the BN-c topologies with additional variables

L and CR, and (d) is the BN-d topologies with additional
ables A, G, CL and CR.

Knowledge-Based Phoneme Classes

number of parameters for additional variables CL and CR

l the number of phonemes that appear in second preceding
second succeeding contexts, respectively. If we use a 44-
eme set, it denotes that each CL and CR has 44 possible

es (C = c1, c2, ..., c44). Here, we attempt to classify the
eme contexts based on major distinctions in the manner of ar-
ation, in order to reduced the parameter size. Table 1 shows an
ple of knowledge-based phoneme classes adapted from [12]:

e 1: Knowledge-based phoneme classes based on manner of
ulation.

Classes Phonemes
Plosives b, d, g, k, p, t
Nasal m, n, ng
Fricatives ch, dh, f, jh, s, sh, th, v, z, zh
Liquid hh, l, r, w, y
Vowels ih, ix, iy, eh, ey, aa, ae, aw, axr,

ay, er, ao, ow, oy, uh, ah, ax, uw

Vowels classes can be further reduced by classification using
-short vowels, front-central-back vowels, or i-e-a-o-u vowels.

3. Training and Recognition Issues
meter learning of the proposed model can be adopted from
eneral training of the HMM/BN model [7]. It is based on the
ard-backward algorithm where each training consists of BN
ing and HMM transition probabilities updates. BN training
ne using standard statistical methods. Since all variables, in-
ing triphone state Q, accent A, gender G, second preceding
) context, second following (CR) context, and probability dis-
tion X are observable during training, simple ML parameter
ation can be applied. More details can be found in [7, 8]

Recognition in a conventional HMM is obtained by calculat-
the state output probability, where state PDF is usually repre-



sented by Gaussian mixture density:

P (xt|qi) =

MX

m=1

bmN (xt; μm, Σm), (2)

where bm is the mixture weight for the mth mixture in state qi, and
N (.) is a Gaussian function with mean vector μm and covariance
matrix Σm.

In the case of pentaphone HMM/BN using BN-a (see Fig.
3(a)), state PDF is the BN joint probability model expressed as:

P (X, CL, CR, Q)

= P (X|CL, CR, Q)P (CL|Q)P (CR|Q)P (Q), (3)

where it depends on both second preceding context CL and second
following context CR. P (X|CL, CR, Q) is modeled by Gaussian
density, and each P (CL|Q) and P (CR|Q) is represented by CPT.
During recognition, state output probability is obtained from the
BN assuming also that both additional variables CL and CR are
hidden during recognition and take NL and NR values:

P (xt|qi) =

NLX

cl=1

NRX

cr=1

P (cl|qi)P (cr|qi)P (xt|cl, cr, qi), (4)

where for simplicity, we use xt, qi, cl, and cr instead of 〈X = xt〉,
〈Q = qi〉, 〈CL = cl〉, and 〈CR = cr〉, respectively. Here,
we can see that Eq. (4) is equivalent to the state output prob-
ability of the conventional HMM of Eq. (2) if we treat term
P (cl|qi)P (cr|qi) as a mixture weight coefficient for Gaussian
component P (X|cl, cr, qi).

For extended pentaphone HMM/BN models, state output
probability is obtained using the same consideration. For
example, the BN-d joint probability model is expressed as
P (X, CL, CR, Q, A, G) which depends on accent A, gender G,
the second preceding context CL and the second following context
CR. The additional variables A and G can also be represented by
CPT. During recognition, state output probability is obtained from
BN assuming also all additional variables A, G, CL and CR are
hidden during recognition and take NA, NG, NL and NR values:

P (xt|qi) =

NAX

a=1

NGX

g=1

NLX

cl=1

NRX

cr=1

P (a)P (g)P (cl|qi)P (cr|qi)

P (xt|cl, cr, qi, a, g) (5)

where for simplicity, we use xt, qi, a, g, cl, and cr instead of
〈X = xt〉, 〈Q = qi〉, 〈A = a〉, 〈G = g〉, 〈CL = cl〉, and 〈CR =
cr〉, respectively. Here, we can see that Eq. (5) is also equivalent
to the state output probability of the conventional HMM of Eq. (2)
if we treat term P (a)P (g)P (cl|qi)P (cr|qi) as a mixture weight
coefficient for the Gaussian component P (X|cl, cr, qi, a, g).

Using these expressions (Eqs. (4) and (5)), we can perform
recognition using existing triphone HMM based decoders without
modification.

4. Experimental Results and Discussion
The ATR accented English speech corpus, was used in this exper-
iments. The text material was based on basic travel expression
domain. The speech corpus we used consisted of American (US)
and Australian (AUS) English accents, with about 45k utterances
( 44 speech hours) spoken by 100 speakers (50 Males, 50 Females)
for each accent. As training data, we use 90% of the data or about
40k utterances (20k utterances by 40 speakers for each male and
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ale). Then, we randomly selected 200 utterances spoken by 20
rent speakers (10 Males, 10 Females) from the 10% of each
nted test data. We use both bi-gram and tri-gram language
els which were trained on about 150,000 travel-related sen-
es. The available pronunciation dictionary consists of about
words which is based on US accent pronunciation.
A sampling frequency of 16 kHz, a frame length of a 20-ms
ming window, a frame shift of 10 ms, and 25 dimensional
re parameters consisting of 12-order MFCC, Δ MFCC and

og power are used as feature parameters. Three states were
as initial HMM for each phoneme. Then, a shared state HM-

opology was obtained using a successive state splitting (SSS)
ing algorithm. Since the SSS algorithm used here is based

he minimum description length (MDL) optimization criterion,
umber of shared HMM states is determined automatically by
lgorithm. Details about MDL-SSS can be found in [13]. For
logy training, we combined all training data (US+AUS) to get
same topology structure for all accent models. Then, an em-
ed training procedure was done for each accent to get US and
triphone HMM acoustic models. For each model, the total

ber of states is 2,126 with four different versions of Gaussian
ture component number per state: 5, 10, 15, and 20.
Using the same amount of training data, a pentaphone
M/BN model was trained on each accent data labeled with
eme class context variables as described in Section 2. The

M/BN state topology, the total number of states, and the tran-
n probabilities are all identical to the HMM baseline. So in
s of parameter number, they have similar complexity. The
difference is only the probability distribution of states where
Gaussian was explicitly conditioned on CL or CR. In con-

, each Gaussian component in HMM state is learned implic-
by the EM algorithm, without any ”meaningful” interpretation
s mixture index. During training, there were some phoneme
ses context of CL or CR which did not exist due to grammat-
rules or were unseen in the training data, which after training
lted in about 50 Gaussians per states on average. To avoid un-
ble estimated parameters and to compare their performances
the baseline having exactly the same total number of Gaus-

s, we used data-driven clustering technique and reduced the
of the pentaphone HMM/BN model to correspond to a 5, 10,
nd 20 mixture component baseline.

e 2: Accuracy rates (%) for pentaphone model using BN-a
Fig. 3(a)) on accented matched test set with different number
ixture components

US Accent AUS Accent
ixture Triphn Pentaphn Triphn Pentaphn

umber Baseline HMM/BN Baseline HMM/BN
5 Mix 84.30 85.19 82.33 84.24
0 Mix 84.66 85.91 82.21 84.12
5 Mix 84.78 85.55 83.46 84.18
0 Mix 85.25 85.67 82.63 84.60

e 3: Accuracy rates (%) for pentaphone model using BN-a
Fig. 3(a)) on different accented test set with 15 mixture com-
nts

US Accent AUS Accent
ccented Triphn Pentaphn Triphn Pentaphn
est Set Baseline HMM/BN Baseline HMM/BN
S Test 84.78 85.55 75.22 76.96
S Test 64.78 65.43 83.46 84.18

First, the performance of pentaphone HMM/BN using BN-a



(see Fig. 3(a)) was evaluated on accented matched test set, e.g. the
US trained model was only tested on the US test data. The results
obtained by the different mixture component numbers are summa-
rized in Table 2. It can be seen that within the same number of
parameters, the performance of pentaphone HMM/BN models al-
ways performed better than the baseline. The best performance of
the US pentaphone HMM/BN is obtained with 10 Gaussian mix-
tures, which gives about a 8% relative WER reduction, and the best
performance of the AUS pentaphone HMM/BN is obtained with
20 Gaussian mixtures, which gives about a 11% WER reduction.
We also evaluated the performance of this pentaphone HMM/BN
models on different accented test set, e.g. the US trained model
was tested on the AUS test data. The results obtained by 15 mix-
ture components are summarized in Table 3. For easy compar-
ison, the accented matched evaluation with the same number of
mixture components were also included. The results show that the
pentaphone HMM/BN model on accented mismatch condition still
consistently improved performance over the standard HMM based
triphone model.

Figure 4: Comparing recognition word accuracy rates of penta-
phone HMM/BN model using different BN topologies (BN-a, BN-b,
BN-c, BN-d as in Fig. 3), but having the same 5 mixture compo-
nents per state on average.

Next, we evaluated the performance among the pentaphone
HMM/BN models using BN-a, BN-b, BN-c or BN-d as described
in section 2.2. Having the same 5 mixture components per state
on average, the results are shown in Fig. 4. The four bar results
in the figure were obtained from: (1) the pentaphone HMM/BN
models with BN-a which only incorporated CL and CR, so four
pentaphone models of US-male, US-female, AUS-male and AUS-
female, are used in parallel, (2) the pentaphone HMM/BN models
with BN-b which incorporated CL, CR, and gender G (male, fe-
male), so both US and AUS gender-independent pentaphone mod-
els are used in parallel, (3) the pentaphone HMM/BN with BN-c
incorporated CL, CR and accent A (US, AUS), so both male and
female accent-independent pentaphone models are used in par-
allel, and (4) the pentaphone HMM/BN with BN-d incorporated
CL, CR, accent A (US,AUS) and gender G (male,female), so
only one single accented-gender-independent pentaphone model
is used. The performance of gender-dependent model is better
than gender-independent model where gender G is incorporated
into state PDF. This might be due to high variability with respect
to speaker gender, so gender dependent models can learn other
variabilities better, and thus resulting a better performance. The
best performance achieved 85.05% word accuracy with gender-
dependent pentaphone models using BN-c topologies which in-
corporated additional knowledge of accent A, second preceding
context CL and succeeding context CR.
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5. Conclusion
presented the possibility of utilizing the HMM/BN model-
framework to incorporate various knowledge sources. This
od allows for easy integration of additional information into

ting HMM-based triphone acoustic models, where additional
ledge sources are incorporated into the triphone state PDF

means of the BN. Beneficially, we can impose a kind of
ledge-based structure so that the state PDF can be learned

e specifically and precisely. For issues of recognition, if we
appropriate decoding for pentaphone HMM/BN models, we

still use the standard decoding system without modification,
e the additional knowledge sources are then assumed hidden,
the state PDF can be calculated by marginalization over those
joint PDFs. The recognition results indicate that ASR sys-
performance can be improved with the proposed hybrid pen-
one HMM/BN model, even when it has the same number of
ssians as the baseline triphone HMM. The best performance
ng pentaphone HMM/BN models was obtained by the model
incorporated additional knowledge of accent A, second pre-
ng context CL and succeeding context CR. In future plan,

ould like to implement the similar schemes of incorporating
tional knowledge using DBN.
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