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ABSTRACT

In the speaker recognition, when the cepstral coe�cients

are calculated from the LPC analysis parameters, the LPC
residual and pitch are usually ignored. This paper de-

scribes an approach to integrate the pitch and LPC-residual

with the LPC-cepstrum in a GaussianMixture Model based
speaker recognition system. The pitch and LPC-residual

are represented as a logarithm of the F0 and as a MFCC

vector respectively. The second task of this research is to
verify whether the correlation between the di�erent infor-

mation sources is useful for the speaker recognition task.

The results showed that adding the pitch gives signi�cant
improvement only when the correlation between the pitch

and cepstral coe�cients is used. Adding only LPC-residual

also gives signi�cant improvement, but using the correla-
tion with the cepstral coe�cients does not have big e�ect.

The best achieved results are 98.5% speaker identi�cation

rate and 0.21% speaker veri�cation equal error rate com-
pared to 97.0% and 1.07% of the baseline system, respec-

tively.

1. INTRODUCTION

In the last decade, the research has been focused on us-

ing the spectral information, especially the cepstral co-
e�cients, for speaker recognition. There have been sev-

eral studies, for example [1, 2, 3], trying to use both the

pitch and the cepstral coe�cients. The main problem in
such combination, in the case of text-independent speaker

recognition, is that there are voiced and unvoiced parts in

speech. The approach taken in [1], where VQ codebook is
used as a model, is to train two separate models for each

speaker from the voiced and unvoiced parts of the training

data respectively. In [3] the pitch is modeled separately us-
ing mixture model which takes into account the probability

of pitch extraction errors - pitch halving and doubling. The

relative entropy between pitch distributions of the model
and the test utterance is used as a pitch score which is

further combined with scores obtained from conventional

Gaussian Mixture Model (GMM) cepstral system.

In our speaker recognition system, which is based on GMM,

we combine the the cepstral feature vector with the pitch

parameter at the frame level. This prompted as to use
two models per speaker (as in [1]) for voiced and unvoiced

speech segments respectively. Another issue of interest

which to our knowledge has not been addressed yet, is
whether there is a correlation between the pitch and cep-

stral coe�cients and whether it is useful for the speaker

recognition task.

A by-product of the LPC analysis is the prediction error

signal. If the speech could be perfectly modeled by the
all-pole model, the residual signal would be very small.

However, this model is not suitable for nasal and fricative

sounds. Thus, the prediction error essentially carries all
information that has not been captured by the LPC co-

e�cients. In [4, 5] the LPC residual is transformed into

cepstral coe�cients using FFT - much like MFCC for the
speech signal. In [6] the LPC residual is represented in

terms of power di�erence spectrum in subband (PDSS)
which is derived also from the FFT spectrum. In [4, 6]

the LPC cepstral coe�cients and the representation of the

LPC residual are treated as a separate feature streams and
the scores of the respective models are linearly combined.

In contrast, in [5] they are combined at the feature vec-

tor level, furthermore, only voiced segments of the speech
signal are used for feature extraction.

In our speaker recognition system, the LPC residual is

transformed into cepstral coe�cients obtained using mel
frequency �lter bank analysis. We have tried both ap-

proaches to combine the conventional LPC cepstral coe�-

cients with LPC residual MFCC, i.e. by treating them as
separate feature streams and by forming one feature vector

from both types of cepstral coe�cients. In all the cases we

use a GMM for the modelization. Finally, we have exper-
imented with the combination of both the pitch and LPC

residual by adding the pitch parameter to the augmented

cepstral vector and again using two models (voiced and
unvoiced) per speaker.

As a baseline system for comparisons we used a conven-

tionally trained GMM using only LPC derived cepstral
coe�cients. Previously, we have developed and experi-

mented with the frame level likelihood normalization tech-

nique [7, 8], which had a signi�cant e�ect on our baseline
system. Here, we also applied this technique and achieved

further improvements of the system performance.

2. FEATURE PARAMETERS

2.1. LPC Residual Cepstrum

The prediction residual signal, according to the LPCmodel,
is found from:

e(n) = s(n)� ~s(n) = s(n) �

pX

k=1

�ks(n � k) (1)

where �k are the LPC prediction coe�cients, p is the pre-
diction order and s(n) are the samples of the speech signal.

It is evident that e(n) might contain information which has



not been captured by the LPC coe�cients and which can
be useful for the speaker recognition task.

In practice, the LPC residual is obtained by inverse �lter-
ing of the speech signal using its autoregressive parameters

computed by the standard LPC analysis as �lter coe�-

cients. Obtained LPC residual signal is then transformed
into cepstral coe�cients using the standard mel frequency

�lter-bank analysis technique. In more detail, this method

consists of the following steps: a) Framing the LPC resid-
ual with the same rate and length as the original speech

signal. b) Applying a Hamming window. c) Obtaining

the magnitude spectrum with FFT. d) Forming M �lter
banks in the mel scale. e) Computing the log �lter-bank

amplitudes. f) Calculating d cepstral coe�cients from the

�lter-bank amplitudes using DCT.

2.2. Pitch Parameter

The pitch frequency is estimated using an algorithm based

on the normalized short-time autocorrelation function which
does not require the selection of the frame length [9]. For

the minimization of the pitch extraction errors, such as

pitch doubling or pitch halving, a post-processing is ap-
plied as proposed in [10].

Pitch frequency values are extracted from the digitized

speech signal at intervals, corresponding to the cepstral
frames time rate. In other words, the extraction of the

pitch and cepstral coe�cients is synchronized such that for

each cepstral vector there exists a pitch value. The pitch
value is set to zero for the unvoiced parts of the speech

signal. This scheme is particularly useful when deciding

whether the current cepstral vector represents a voiced or
unvoiced speech interval.

2.3. Combined Feature Vectors

In our speaker recognition system, when using the pitch

information, the LPC derived cepstral vector, denoted by

CEP, is augmented with the logarithm of the pitch fre-
quency. For the unvoiced parts of speech where the pitch

value is zero, cepstral vectors are kept unchanged. Note

that the two types of feature vectors have di�erent dimen-
sion: d + 1 for voiced and d for unvoiced vectors.

When using the LPC residual cepstral coe�cients, denoted

byR-CEP, we investigated two approaches. The �rst treats

the R-CEP features as a separate stream and, thus, they

are modeled by a separate GMM. The second approach

is to form one long feature vector consisting of both CEP

and R-CEP coe�cients. Adding the pitch parameter, in

the latter case, again leads to a split of the feature vectors

into voiced and unvoiced sets.

3. DECISION PROCEDURE

3.1. Using pitch

In our system, each speaker is represented by two GMMs

trained on the corresponding collections of the unvoiced

and voiced frames.

After the front-end analysis, the training feature vectors
are divided into two subsets, voiced Xv and unvoiced Xuv,

by checking their dimension. Then from each subset a
GMM is trained using the conventional Maximum Likeli-

hood Estimation (MLE). Using a full covariance matrix,

we can model not only the pitch itself, but its correlation
with the cepstral coe�cients as well.

A given test utterance is �rst divided into voiced and un-

voiced parts in the same manner as the training data.
Then, the log-likelihood of each part with respect to the

corresponding GMM is calculated. However, the whole

test utterance score cannot be obtained by a simple addi-
tion of the two log-likelihoods. This is because the voiced

and unvoiced vectors have di�erent dimension and, there-

fore, their likelihoods will have di�erent dynamic range.
To overcome this problem, we have chosen to take a linear

combination of the likelihoods as follows:

L(X) = �L(Xuvj�uv) + (1� �)L(Xv j�v) (2)

where Xuv and Xv denote the unvoiced and voiced subsets
of the feature vectors respectively and then the L(X) is

used for identi�cation or veri�cation decision.

3.2. Using LPC residual

As mentioned in Section 2.3., the LPC cepstral and LPC

residual features are combined in two ways. When the
R-CEP coe�cients are treated as a separate stream, each

speaker is modeled by two GMMs - one for CEP and one

for R-CEP features. The utterance score in this case is
obtained by a linear combination of the two models scores

in the same way as Eq.(2).

When CEP and R-CEP are combined in one feature vector,
one GMM per speaker is used and the speaker recognition

system structure does not di�er from the conventional one.

If there is any correlation between CEP and R-CEP coe�-
cients, it can be captured and used when the model's prob-

ability density functions are with full covariance matrices

in the same manner as the pitch/CEP correlation.

Adding the pitch parameter to the combined CEP/R-CEP

vector allows to use both the LPC residual and pitch in the

same time. The speaker recognition system in this case is
similar to that explained in Section 3.1..

4. EXPERIMENTS

4.1. Database

For the evaluation experiments we used the NTT database

for speaker recognition which consists of recordings of 35

speakers (22 males and 13 females) collected in 5 sessions
over 10 months in a sound proof room. For training the

models, 10 sentences for each speaker from one session were

used. Five other sentences/session from the other four ses-
sions uttered at normal, fast and slow speeds were used as

test data. 10 mel-cepstrum coe�cients (CEP) were calcu-

lated by the 14th order LPC analysis at every 8 ms with
a window of 21.33 ms. Each session's cepstral data were

also mean normalized (CMN). Regressive (�CEP) coef-



�cients were calculated separately for each of the voiced
and unvoiced data streams giving in the same time �pitch

parameters.

The LPC residual was transformed into 10 MFCC (R-

CEP) using 24 mel-scaled �lter banks. When the R-CEP

coe�cients were used separately, �R-CEP coe�cients were
calculated in the same manner as �CEP coe�cients. When

combined with the CEP coe�cients in one vector, the

�CEP and �R-CEP are also combined.

4.2. Results using pitch

In order to assess the e�ect of using the correlation be-
tween the pitch and the cepstral coe�cients, we made ad-

ditional experiments, where the pitch was modeled as an

independent feature stream and this correlation was not
used. This was done by making the voiced GMM's co-

variance matrices block-diagonal. Table 1 compares the

Table 1: Speaker recognition rates using pitch
CEP CEP + pitch

Mod- Using ML test
del �'s ML W/o With Cohort WMR
type test Cor. Cor. test test

Identi�cation rate (%)

4 no 92.3 93.9 95.3 95.1 96.0

mix. yes 94.1 93.9 95.3 94.4 96.6

8 no 96.1 96.3 97.1 96.9 97.7
mix. yes 97.0 96.8 97.4 97.0 97.6

Veri�cation equal error rate (%)

4 no 2.50 2.46 1.66 1.33 0.84

mix. yes 1.64 2.28 1.45 1.11 0.64

8 no 1.66 1.48 1.21 0.96 0.50
mix. yes 1.18 0.98 0.89 0.80 0.41

recognition rates among the baseline (\CEP"), the inde-
pendent pitch modeling case (\W/o Cor.") and the case

when the correlation between the pitch and the cepstral

coe�cients is used (\With Cor."). In the columns, \ML
test" stands for the Maximum Likelihood test. These re-

sults show, that the pitch/cepstral correlation is e�ective

and that the gain in the performance is bigger than the
case when this correlation is not used.

The columns \Cohort test" and \WMR test" of the Table

1 show the recognition rates when the frame level like-

lihood normalization technique is applied to the system

using pitch/cepstral correlation [8]. The term \Cohort"

means that the background speakers for the frame level

likelihood normalization are chosen to be the most acous-

tically close speakers to the target speaker. It can be seen

that this technique works well improving further the per-
formance.

For the fast and slow speed test utterances, even bigger

improvement was achieved. The baseline fast speed test
best result of 94.0% identi�cation rate was improved to

97.4% with the WMR test. The corresponding rates for

the slow speed test are 93.0%, and 96.5%. The veri�cation

EER also decreased from 1.43% to 0.64% (with WMR) and

from 2.06% to 0.87% (with WMR) for the fast and slow

speed tests, respectively.

4.3. Results using LPC residual

In the �rst evaluation experiments with LPC residual, it
was modeled as a separate feature stream. Each speaker

was modeled by a pair of GMMs corresponding to CEP

and R-CEP features. The overall utterance score was ob-
tained by a linear combination of non-normalized scores

from the two models. In the next experiments, the CEP

Table 2: Speaker identi�cation rates using CEP and R-
CEP features. Maximum Likelihood (ML) test

Mod. Using Combined CEP and R-CEP CEP
type �'s Comb. 20 dim. 14 dim. 10 dim.

4 mix. no 96.0 96.9 96.0 92.3

full yes 96.6 96.4 96.9 94.1

8 mix. no 97.0 96.3 96.4 96.4
full yes 97.0 96.0 97.4 97.0

32 mix. no 95.9 95.6 96.6 94.4
diag. yes 97.7 96.0 97.7 95.9

64 mix. no 96.4 96.1 98.0 94.1
diag. yes 96.1 97.3 98.1 95.9

and R-CEP vectors were combined into one 20 dimensional

feature vector. The results of these experiments are sum-
marized in Table 2 in the column \20 dim.". The poor

performance of the 8 mixture, full covariance matrix GMM

suggests that probably the training data became insu�-
cient when the model dimension became doubled. Thus,

we decided to reduce the R-CEP vectors dimension to 4

using Karuhnen-Loewe (K-L) transformation.

The transformed R-CEP vectors were combined with the

10 dimension CEP vectors resulting in a 14 dimension fea-

ture vectors. The identi�cation results using this new vec-
tor are shown in the \14 dim" column of the Table 2. The

biggest improvement in this case is seen for the models

with diagonal covariances. It is not surprising, because
the K-L transformation also diagonalises the covariance

matrices. Comparing the performance of the all CEP +

R-CEP cases with the baseline, it is clear that using the

R-CEP features gives signi�cant improvement up to 4%,

which shows that the LPC-residual signal carries speaker

speci�c information not presented in the standard CEP

vectors.

Investigating the correlation between CEP and R-CEP co-

e�cients, we ran experiments using models with block-
diagonal covariance matrix (4 mixture GMM) and 20 di-

mension feature vector. Obtained results were 96.3% with-

out the �'s and 96.1% when they were used. The di�erence
from the case of full covariance matrix (Table 2, column

\20 dim.") is small which con�rms the fact that the CEP

and R-CEP coe�cients hold di�erent information and are

almost uncorrelated.

Table 3 shows the speaker identi�cation rates as well as

speaker veri�cation equal error rates when the Cohort and
WMR tests were applied to both the baseline (CEP) and

CEP + R-CEP (CEP+R) cases. Using the Cohort test

did not improve the identi�cation performance of the CEP
+ R-CEP system and the WMR test was better only in

the half of the cases. However, the veri�cation error rates



were improved in both the Cohort and WMR test giving
the smallest EER of 0.21%.

Signi�cant improvement was obtained for the fast and slow
speed test. Thus, the best ML test result for the fast speed

is 97.4% compared to the 94.0% of the baseline. The WMR

test further improved the result to 98.1% which is very
close to the normal speed test results. For the slow speed

test, we achieved 96.4% (with WMR) from the baseline's

93.0%. The best veri�cation EERs (with WMR) are 0.39%
and 0.69% for the fast and slow speeds, respectively.

Table 3: Speaker recognition rates using 14 dimensional
CEP + R-CEP feature vector.

Mod. Using Cohort test WMR test
type �'s CEP+R CEP CEP+R CEP

Identi�cation rate (%)

4 mix. no 95.3 92.4 96.1 92.4
full yes 96.7 94.8 95.7 95.2

8 mix. no 96.3 96.2 97.3 96.6
full yes 97.4 97.0 97.7 97.3

32 mix. no 96.0 95.2 97.0 95.0
diag. yes 97.4 96.3 97.6 95.3

64 mix. no 97.3 94.9 97.9 96.2
diag. yes 97.9 95.9 97.7 95.8

Veri�cation equal error rate (%)

4 mix. no 1.48 2.14 1.04 1.31

full yes 0.90 1.33 0.90 0.84

8 mix. no 0.66 1.38 0.42 0.66
full yes 0.58 0.96 0.45 0.52

32 mix. no 0.81 1.29 0.69 0.91

diag. yes 0.52 1.00 0.48 0.95

64 mix. no 0.57 1.20 0.39 0.72
diag. yes 0.29 0.86 0.21 0.60

4.4. Results using both pitch and LPC

residual

In these experiments, we added the pith parameter to the

best performing CEP + R-CEP 14 dimension vector, thus

increasing the dimension of the voiced vectors to 15. The

experimental set up was the same as explained in Section

4.2.. Table 4 presents the speaker recognition results us-

ing ML, Cohort and WMR tests. Comparing the results

from Table 4 with those from Table 3, we can see that

including the pith parameter further improves the identi-

�cation rate of all the tests. The best results is 98.5% of

the WMR test. However, no improvement was observed in

the speaker veri�cation experiments.

5. CONCLUSIONS

The experimental results showed that using the pitch in-

formation is most e�ective when the correlation between

the pitch and the cepstral coe�cients is used. The com-

bination of the cepstral and LPC residual features is also

e�ective without big di�erence among the combination ap-

proaches. Signi�cant improvement was also obtained for

the fast and slow utterances. Including additionally the

pitch parameter gives further improvements, however, at
the cost of increased system complexity. When the frame

Table 4: Speaker recognition rates using CEP and both
pitch and R-CEP features.
Mod. Using ML Cohort WMR
type �'s Test Test Test

Identi�cation rate (%)

4 mix. no 96.3 96.2 96.4
full yes 95.3 96.2 96.3

8 mix. no 97.5 97.6 97.6
full yes 97.3 97.3 97.9

32 mix. no 98.0 97.9 98.3
diag. yes 96.8 96.9 98.3

64 mix. no 97.9 98.0 98.5
diag. yes 96.7 97.9 98.0

Veri�cation equal error rate (%)

4 mix. no 2.41 2.20 1.65

full yes 1.45 1.19 1.29

8 mix. no 0.90 0.83 0.46
full yes 0.38 0.39 0.50

32 mix. no 0.98 0.78 0.38
diag. yes 0.48 0.47 0.29

64 mix. no 0.74 0.62 0.44
diag. yes 0.38 0.34 0.28

level likelihood normalization technique was applied, in av-
erage, further performance improvements were achieved.
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