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ABSTRACT

In this paper, we present a new discriminative training
method for Gaussian Mixture Models (GMM) and its ap-
plication for the text-independent speaker recognition. The
objective of this method is to maximize the frame level
normalized likelihoods of the training data. That is why
we call it the Maximum Normalized Likelihood Estima-
tion (MNLE). In contrast to other discriminative algo-
rithms, the objective function is optimized using a modi�ed
Expectation-Maximization (EM) algorithm which greatly
simpli�es the training procedure. The evaluation experi-
ments using both clean and telephone speech showed im-
provement of the recognition rates compared to the Maxi-
mum Likelihood Estimation (MLE) trained speaker mod-
els, especially when the mismatch between the training and
testing conditions is signi�cant.

1. INTRODUCTION

In the resect years, the discriminative training methods
have attracted many researchers attention because they
help in improving the performance of the speech recogni-
tion systems. It has been shown that methods, such as
Minimum Classi�cation Error (MCE) and Maximum Mu-
tual Information (MMI), are also e�ective in the GMM
based speaker recognition systems [1, 2]. In general, the
discriminative learning outperforms the standard ML esti-
mation when the parametric distribution function (usually
Gaussian) of the models is inconsistent with the actual
data distribution and when the amount of training data is
limited and does not allow reliable parameter estimation.

MCE method uses classi�cation errors on the training data
directly in its objective function. However, with clean
speech where nearly 100% recognition rate can be achieved
on the training data, its advantage is greatly reduced since
no misclassi�cation occurs. The objective of the MMI
method, in the other hand, is to maximize the class a pos-
teriori probability, which is not directly connected with
the classi�cation accuracy, but with big number of refer-
ence speakers it becomes computationally expensive. In
both methods, usually, the Generalized Probabilistic De-
scent (GPD) algorithm is used for optimization of the ob-
jective function. Although it is complicated and requires
adjustment of several free parameters, its e�ectiveness has
been proven. However, as pointed in [1], when applied for
speaker recognition it has some drawbacks and heuristic
corrections are necessary for achieving good performance.

We have developed a new discriminative training algo-

rithm, which widens the separation between the most com-
petitive classes or, in other words, between acoustically
most close speakers. The objective function to be maxi-
mized uses the likelihood ratio between the target speaker
model and its \cohort" of competing models taken at frame
level [3]. For the optimization, we use the standard Ex-
pectation Maximization (EM) algorithm with some mod-
i�cations. This allowed us to come up with a simple and
tractable re-estimation procedure. Evaluation experiments
using clean speech database showed that this algorithm is
e�ective especially when there is mismatch between the
model, i.e. normal distribution, and data distributions.

2.MNLE ALGORITHM

2.1.MMI and MNLE Objectives

Given N classes (speakers) and training data Xn for each
class, the MMI objective is to maximize the class a poste-
riori probability. Generally, it is given by:

FMMI(�) =

NX

n=1

log
p(Xnj�n)P
N

i=1
p(Xij�i)

(1)

We can also de�ne a frame level MMI objective as:

FMMIf
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NX
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TnX
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log
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(2)

which is used in [2] and optimized via GPD. Both these
objectives require the likelihoods from all speakers to be
known in the learning process.

The objective function of the Maximum Normalized Like-
lihood Estimation (MNLE) algorithm is de�ned as follows:

FMNLE(�) =
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log
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(3)

which is similar to FMMIf
with the di�erence that instead

the a posteriori probability a likelihood normalization is
used. �nb; b = 1; . . . ; B are the normalization background
speaker models for speaker n. The choice of this back-
ground models greatly inuences the performance of the
MNLE. We have all reasons to believe that the target
speaker is most often misclassi�ed with some of its acousti-
cally most close speakers. Therefore, choosing those speak-
ers as background speakers will ensure that maximizing the
objective function will result in better separation between
them and the target speaker.



2.2. Learning Algorithm

Equation (3) can be rewritten as:

FMNLE(�) =

NX

n=1

TnX
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log p(xntj�n) � (4)
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= FMLE(�) �FD(�) (5)

where FMLE(�) is, actually, the objective of the conven-
tional MLE training and FD(�) is a correction term re-
sponsible for the discriminative nature of the algorithm.

The objective function can also be decomposed into an
individual objective functions Fn(�) for each speaker as:

FMNLE(�) =

NX

n=1

Fn(�) (6)

The Q function of the EM algorithm is de�ned as follows:

Q(�j�) =

TX

t=1

X

yt

f(xt; ytj�)

f(xtj�)
log f(xt; ytj�) (7)

where yt is the unobservable data, which speci�es some
pdf and � denotes the new parameter set. Applying this
formula to GMM with M mixtures of Gaussian densities
we have:

Q(�j�) =
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(8)
where !nj speci�es the nth GMM's jth mixture. Now,
based on the normalized likelihood formulation, for f()'s
we have:
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where b() denotes a Gaussian pdf and cnj is the mixture
weight. Inserting the Eqs.(9), (10) and (11) in Eq.(8)
we get the �nal formula for the Q function. In Eq.(11)
the new model parameters of the background speakers are
required. But, they may not be available since the re-
estimation proceeds model by model. However, they can
be approximated by the same parameters obtained in the
previous iteration.

After taking the derivative of the Eq.(8) with respect to
each model's parameter, the following re-estimation equa-
tions can be derived (detailed derivation can be found in

[4]):
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where:
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In all these equations \0" denotes the parameters or train-
ing vectors from those models for which the target model n
has been acting as a background model. It is easy to recog-
nize that the �rst terms in the re-estimation formulas are
the same as in standard MLE re-estimation equations, but
now a similar correction terms are subtracted from them.
For example, the pb

njn0t
(Eq.(17)) can be viewed as a pos-

teriori probability of xn0t with regard to all mixtures from
the background models. It corresponds to the MLE poste-
riori probability pnjt (Eq.(16)). Thus, the Eqs.(12)-(14)
can be expressed in the following generalized form:

�
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MLEi

numer � CORi

numer

MLEi

denom
� CORi

denom

(20)

In practice, when we deal with limited training data, there
is a danger that the Eqs.(12)-(14) may become negative
and, therefore, the correction terms must be scaled down.
Another complication is that because of the denominator
term in Eq.(11), the monotonic increase of the Q function
is no longer guaranteed. Indeed, in our preliminary exper-
iments, the value of the objective function was increasing
with some uctuations. Eq.(4) suggests that maximiza-
tion of the objective function F(�) can be done by �rst
maximizing the FMLE(�), i.e. performing ML estimation,
and then using obtained ML parameters as a starting point
to proceed with the training. Therefore, the re-estimation
can be performed using:

�
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MLE0numer � �
P
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numer
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where � is the scaling parameter which corresponds to the
learning step of the GPD algorithm.

In the standard MLE training, the algorithm converges
when the increase of the objective function (the likelihood
of the training data) is zero or below some small thresh-
old. In the case of MNLE training, the objective function



(see Eq.(6)) will have the maximum when all individual
objective functions Fn(�) are also maximized. As we have
explained in [4], because of the correction terms, the Fn(�)
has the maximum after which it starts to decrease. In order
to prevent this and to have a clear convergence criterion,
the following algorithm is used:

Step 1 Begin with ML trained models. Mark all the models
as to be re-estimated.

Step 2 Compute the new parameters of the models marked
to be re-estimated.

Step 3 Check each speaker individual objective functionFn(�)
and if there a maximum has been achieved mark the
model not to be re-estimated further.

Step 4 Repeat Step 2 and Step 3 until all models are not
marked to be re-estimated.

This approach guarantees the monotonic increase of the
overall objective function. An example is shown in Fig.1
where the value of the FMNLE(�) is plotted with respect
to the iteration number.
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Figure 1: MNLE objective function value vs. iteration
number.

3. EXPERIMENTS

3.1. Databases

For the experiments with clean speech, we used NTT database
consisting of recordings of 22 male and 13 female speak-
ers, collected in 5 sessions over 10 months in a sound proof
room. For training, 5 equal and 5 di�erent sentences ut-
tered at normal speed for each speaker from one session
were used. Five other sentences uttered at normal, fast
and slow speeds from the other four sessions were used as
text-independent test data. The input speech was sampled
at 12 kHz. 10 mel-cepstrum coe�cients were calculated by
the 14th order LPC analysis at every 8 ms with a window
of 21.33 ms. In addition, 10 regressive (�) coe�cients,
were obtained and treated in the experiments as a sepa-
rate feature stream. Each session's data were also mean
normalized (CMN) and silence parts were removed.

The second database we used is NTIMIT corpus. It pro-
vides speech identical to TIMIT database, except that the
speech is degraded through carbon microphones and real
telephone line conditions. In the experiments, only the
test portion (168 speakers) of the database was used. The
training data consist of one SA, �ve SX and two SI sen-
tences. The remaining one SA and one SI sentences are in-
dividually used as tests. Since the noise varies from trans-
mission over di�erent telephone lines, eliminating the si-
lence (�lled with noise) is important for good performance.
This was done using an adaptive voice activity detector
based on the ESPS package [5] which estimates the noise
level at the beginning of each utterance and then extracts
only the speech segments. Then, the speech data were
transformed into 10 mel �lter bank cepstral coe�cients -
MFCC at every 10 ms with window of 30 ms. We used
22 mel-�lters covering only the telephone bandwidth (300-
3400 Hz). Further, 10 (�) coe�cients were calculated and
treated as a separate feature stream. Cepstral mean nor-
malization is not applied because we found that it degrades
the performance as also pointed in [6].

3.2. NTT Database Results

In the evaluation experiments, we used GMM with dif-
ferent number of mixtures and full or diagonal covariance
matrices. The number of background (cohort) speakers
was set to 5. In the MNL training procedure, a �xed
learning step was used. The results presented in Table
1 were obtained using the standard maximum likelihood
decision. Models trained using the conventional ML es-
timation algorithm serve as a baseline for comparison. In
addition, we trained the same GMMs using 20 iterations of
the MCE/GPD algorithm. However, we achieved only mi-
nor improvements with the MCE training for the slow and
fast tests. This shows that the MCE objective is not e�ec-
tive with clean speech where the identi�cation rate with
the training data is 100%, i.e. no misclassi�cation occurs.

Table 1: Speaker identi�cation rates (%).
Num. of Cov. Training alg.
mixtures matrix MNLE MCE/GPD MLE

Normal speed test

4 full 96.0 94.1 94.1
8 full 97.0 97.0 97.0
32 diagonal 96.3 95.9 95.9

64 diagonal 96.0 95.9 95.9
Fast speed test

4 full 93.6 91.0 91.0
8 full 94.4 94.1 94.0

32 diagonal 92.1 91.8 91.7
64 diagonal 92.7 92.6 92.6

Slow speed test

4 full 92.4 90.9 90.9
8 full 93.4 93.0 92.7
32 diagonal 93.0 91.8 91.6

64 diagonal 93.4 92.3 92.0



As shown in the results, the MNL trained models outper-
form both the baseline and MCE trained model in all cases
except one. In this case, 8 mixture GMM and normal speed
test, the maximum identi�cation rate is achieved, which
suggests that this model best matches with the data dis-
tribution and, thus, the e�ect of the discriminative training
is reduced to zero. This is justi�ed by the fact, that the
same model shows an improvement with slow or fast test
data which introduce a signi�cant distribution mismatch.
The bigger improvement achieved for the 4 mixture and
32 mixture models compared to 8 mixture and 64 mixture
models can be explained with the bigger mismatch in these
models.

Table 2 presents the speaker veri�cation equal error rates
for the three training algorithms. Again, the MNLE gives
the best results improving the performance even in the 8
mixture GMM and normal speed test case.

Table 2: Speaker veri�cation equal error rates (%).
Num. of Cov. Training alg.
mixtures matrix MNLE MCE/GPD MLE

Normal speed test
4 full 1.36 1.64 1.64
8 full 1.12 1.23 1.18

32 diagonal 1.15 1.29 1.29
64 diagonal 0.88 1.05 1.07

Fast speed test

4 full 2.03 2.24 2.26
8 full 1.23 1.41 1.43
32 diagonal 2.21 2.80 2.88

64 diagonal 1.84 2.61 2.66
Slow speed test

4 full 2.55 2.92 2.96

8 full 1.76 1.97 2.06
32 diagonal 2.18 2.31 2.36
64 diagonal 1.93 2.49 2.57

3.3. NTIMIT Database Results

In the experiments with NTIMIT database, we trained the
GMMs using both the MLE and MNLE methods. The
number of background speakers for the MNLE training was
set 10. The speaker identi�cation rates using a maximum
likelihood test are shown in Table 3. As we can see, in
all cases, signi�cant improvements were achieved when the
models were trained using MNLE. Although the overall re-
sults are not high, which suggest severe mismatch between
the training and testing conditions, the MNLE training
shows to be e�ective.

Speaker identi�cation on NTIMIT database is a challeng-
ing problem and the few published results are quite di�er-
ent for similar train/test data divisions. Thus, an identi�-
cation rate of 60.7% for all the 630 speakers was reported
in [6] and only 26.7% in [7]. Such variations can be con-
tributed to the di�erent front-ends and features, rather
than to the di�erent modeling approaches.

Table 3: Speaker identi�cation rates (%).
Num. of Cov. Training alg.
mixtures matrix MNLE MLE

4 full 38.1 35.1
8 full 37.5 33.3
32 diagonal 41.7 37.8

64 diagonal 38.7 36.3

4. CONCLUSIONS

We introduced a new discriminative training method for
GMM which, in contrast to other discriminative methods,
is based on the well known EM algorithm. Evaluation
experiments on clean speech database showed that it is
e�ective and outperforms the MCE method. With the
telephone speech, where the mismatch between the model
distribution and actual data distribution is signi�cant, the
MNLE method was also e�ective and showed even bigger
improvements of the system performance.

The future work will be focused on the re�nements of this
algorithm, such as applying variable and/or class depen-
dent learning step.
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