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Abstract—In this paper, we describe the ATR multilingual
speech-to-speech translation (S2ST) system, which is mainly
focused on translation between English and Asian languages
(Japanese and Chinese). There are three main modules of our
S2ST system: large-vocabulary continuous speech recognition,
machine text-to-text (T2T) translation, and text-to-speech syn-
thesis. All of them are multilingual and are designed using
state-of-the-art technologies developed at ATR. A corpus-based
statistical machine learning framework forms the basis of our
system design. We use a parallel multilingual database consisting
of over 600 000 sentences that cover a broad range of travel-related
conversations. Recent evaluation of the overall system showed that
speech-to-speech translation quality is high, being at the level of a
person having a Test of English for International Communication
(TOEIC) score of 750 out of the perfect score of 990.

Index Terms—Example-based machine translation (EBMT),
minimum description length (MDL), multiclass language model,
speech-to-speech translation (S2S), statistical machine transla-
tion (SMT), successive state splitting (SSS), text-to-speech (TTS)
conversion.

I. INTRODUCTION

SPEECH-TO-SPEECH translation (S2ST) is a pipe dream
for human beings that enables communication between

people speaking in different languages. Since our world is
becoming borderless day by day, the importance of S2ST
technology has been increasing. ATR began its S2ST research
in order to overcome the language barrier problem in 1986.
So far, we have been working on speech recognition, machine
translation, speech synthesis, and integration for an S2ST
system. The history of our S2ST research can be divided into
three phrases. The first phase focused on a feasibility study of
S2ST that only allowed limited vocabulary and clear read-style
speech. In the second phase, we extended the technology to
handle “natural” conversations in a limited domain. We are
currently in the third phase, which began in 2000. Its target is
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to develop technologies to make the S2ST system work in real
environments.

The drastic increase in demand for translingual conversa-
tions, triggered by IT technologies such as the Internet and an
expansion of borderless communities as seen in the increase
in the number of EU countries, has boosted research activities
on S2ST technology. Many research projects have addressed
speech-to-speech translation technology, such as VERB-
MOBIL [1], C-STAR,1 NESPOLE!,2 [2], and BABYLON.3

These projects mainly focused on the construction of prototype
systems for several language pairs.

S2ST between Western languages and a non-Western lan-
guage, such as English-from/to-Japanese, or English-from/to-
Chinese, requires technologies to overcome the drastic differ-
ences in linguistic expressions. For example, a translation from
Japanese to English requires 1) a word separation process for
Japanese because Japanese has no explicit spacing information,
and 2) transforming the source sentence into a target sentence
with a drastically different style because their word order and
their coverage of words are completely different, among other
factors.

The other factor for S2ST is that the technology must be
portable for every domain because S2ST systems are often used
for applications in a specific situation, such as supporting a
tourist’s conversations in nonnative languages. Therefore, the
S2ST technique must include (semi-) automatic functions for
adapting to specific situations/domains and specific language
pairs in speech recognition, machine translation, and speech
synthesis [3].

Multilingual speech-to-speech translation devices are vital
for breaking the language barrier, which is one of the most
serious problems inherent in globalization. In S2ST, machine
translation is the core technology for generating natural transla-
tion from original input. Therefore, the performance of S2ST
relies heavily on the performance of the machine translation
system. There are many machine translation systems on the
market. However, most of the currently available ones are hand-
crafted rule-based translation systems designed for written text,
mainly because it is difficult to gather data that exhaustively
cover diverse language phenomena. In rule-based systems, ef-
forts have been made to improve rules that abstract the language

1C-STAR. Consortium for Speech Translation Advanced Research.
http://www.c-star.org.

2NESPOLE! Negotiating Through Spoken Laguage Through E-Commerce.
http://nespole.itc.it.

3BABYLON. http://darpa-babylon.mitre.org/index.html.
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phenomena by using human insight. In taking this type of ap-
proach, however, it is difficult to port a particular system to other
domains, or to upgrade the system to accommodate new ex-
pressions. Portability is one of the most important factors for
S2ST, because S2ST systems are often designed for a specific
domain and situation for various language pairs depending on
their users. Therefore, customization for their domains and sit-
uations and for their language pair is obligatory work for S2ST.

With the increased availability of substantial bilingual cor-
pora by the 1980s, corpus-based machine translation (MT) tech-
nologies such as example-based MT and stochastic MT were
proposed to cope with the limitations of the rule-based systems
that had formerly been the dominant paradigm. Since that time,
we have conducted research on applying corpus-based methods
to speech translation and have developed several technologies.
Our research experience shows us that corpus-based approaches
are suitable for speech translation technology. This is because
corpus-based methods:

1) can be applied to different domains;
2) are easy to adapt to multiple languages;
3) can handle ungrammatical sentences, which are common

in spoken language.
One of our research themes is to develop example-based

translation technologies that can be applied across a wide range
of domains, and to develop stochastic translation technologies
that can be applied to language pairs with completely different
structures, such as English and Japanese. Example-based
methods and stochastic methods each have different advantages
and disadvantages, so we plan to combine them into a single,
more powerful system.

At present, however, corpus-based methods can only be ap-
plied to narrow domains due to the lack of sufficiently large
bilingual spoken language corpora. Therefore, one of our sub-
themes is to establish a methodology for gathering large vol-
umes of data to enable us to translate various expressions at
high quality. For this subtheme, we have started to conduct re-
search on several methods, including paraphrasing, to create
huge bilingual corpora, and on methods for evaluating the cov-
erage of the collected corpora.

A speech recognition system should be robust enough to
recognize speech in noisy environments with various speaking
styles. The machine translation system needs to be domain
portable and to be good at translating a wide variety of topics.
Speech synthesis must realize more natural and expressional
speech quality. In this project, all the researchers—including
speech processing researchers and natural language re-
searchers—are working collaboratively and closely to achieve
the S2ST system. For the S2ST system to be successful, the
speech recognition system should recognize speaker-indepen-
dent, continuous, spontaneous conversational speech. Back
in 1986, the state-of-the-art technology of speech recognition
could only recognize speaker dependent connected words from
a small vocabulary. Thanks to many efforts made so far based
on statistical modeling technologies like hidden Markov models
(HMMs) and N-grams and large amounts of speech and text
corpora, the recognition of speaker-independent, continuous
conversational speech will soon be available. The next point for

consideration in developing speech recognition for the S2ST
system is to make the speech recognition system multilingual.

Corpus-based technologies are undoubtedly a major trend
in contemporary text-to-speech (TTS) systems. In contrast to
the conventional rule-based approach where experts’ linguistic
and acoustic knowledge is manually implemented in TTS sys-
tems, the corpus-based approach makes it possible to extract
the knowledge from corpora and encode it in TTS systems in an
automatic manner. Consequently, corpus-based systems are easy
to build and have higher quality than rule-based systems in gen-
eral. A drawback of the corpus-based systems, if any, is that they
require a large memory size to store corpus data. For this reason,
rule-based systems are often used in embedded applications.

Among corpus-based approaches, waveform concatenation
techniques are widely adopted in commercial and experimental
TTS systems for their natural-sounding output speech. Many
studies have been conducted on these technologies since the
early 1990s [4]–[6]. Among them, ATR, as one of the pioneers
in corpus-based speech synthesis technology, has made major
contributions to the progress of the technology through various
studies, which led us to the development of two TTS systems,

-talk [7] and CHATR [8].
Sagisaka proposed a novel synthesis scheme [9] in which

nonuniform phoneme sequences were used as synthesis units.
A unique point in this scheme was that it was able to make full
use of a large speech corpus, whereas in conventional schemes
a set of syllables, such as CV or VCV syllables (C: Consonant,
V: Vowel), was extracted from a speech corpus and stored in the
system as a unit inventory. The work was the first step toward
the corpus-based speech synthesis. Iwahashi et al. [10] proposed
a segment selection algorithm that searches for an optimal se-
quence of speech segments in terms of an acoustic criterion by
using the dynamic programming algorithm. As a result of sub-
sequent work by Sagisaka and his coworkers, they developed a
TTS system named -talk [7]. Issues left unresolved included 1)
vocoder-like speech quality caused by cepstral parametrization
of speech segments and 2) poor correlation between the acoustic
criteria and perceptual measures.

After -talk, a new TTS system named CHATR was devel-
oped [8]. Although CHATR was originally designed to be a
workbench for speech synthesis research, it later became known
as a TTS system based on waveform concatenation. Another im-
portant feature of CHATR was that it was designed so that it is
easily applied to different languages. Indeed, TTS systems of
several languages, including Japanese, English, German, Chi-
nese, and Korean, were built into the framework of CHATR.
Although CHATR produced very natural speech in limited do-
mains, the quality was unstable for unrestricted domains. The
identified problems included the following:

1) a weakness in text processing;
2) a weakness in prosody modeling;
3) small corpora (the largest corpus available was a 2-h

Japanese corpus, and CHATR was capable of handling
up to a 10-h corpus by design),

4) the cost function for segment selection was purely based
on acoustical distances and it was not perceptually
justified.
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Fig. 1. Block diagram of the ATR S2ST system.

The rest of this paper is organized as follows. Section II in-
troduces briefly the speech-to-speech translation task as a sta-
tistical problem. Section III gives an overview of the ATR S2ST
system. Each of our system modules, i.e., speech recognition,
machine translation, and speech synthesis is described in detail
in Sections IV –VI, respectively. The Basic Travel Expression
Corpus (BTEC) and MT-assisted dialogs (MAD) corpora that
were used to build our system are presented in Section VII. De-
tails about the evaluation experiments and achieved results are
reported in Section VIII. Finally, we draw some conclusions in
Section IX.

II. SPEECH-TO-SPEECH TRANSLATION BACKGROUND

The goal of automatic speech-to-speech translation is to gen-
erate a speech signal in one (target) language that conveys the
linguistic information contained in a given speech signal of an-
other (source) language.

A statistical approach to the speech-to-speech translation task
gives the following formal solution:

(1)

where and are the speech signals in the source and target
languages. As direct evaluation of the conditional probability

is intractable, it can be factorized as

(2)

where and are the text transcriptions of the source and
target speech signals. Then, the maximization of can
be further simplified to

(3)

where and are arguments maximizing the second and
third terms. This equation suggests that the S2S translation
problem can be decomposed into three independent parts:

, which represents speech recognition; ,
which is a text-to-text translation model; and , which
corresponds to speech synthesis.

III. OVERVIEW OF THE S2S TRANSLATION SYSTEM

The overall speech-to-speech translation system is shown
in Fig. 1. The system consists of three major modules, i.e., a
multilingual speech recognition module, a multilingual ma-

Fig. 2. Contextual splitting and temporal splitting.

chine translation module, and a multilingual speech synthesis
module. Those modules are designed to process Japanese,
English, and Chinese using a corpus-based method. The term
“corpus” means a database with linguistic information. Thus,
“A corpus-based method” means a method that uses those cor-
pora. In our case, statistical methods utilizing those corpora are
deployed, such as HMMs and N-grams for speech recognition,
statistical and example-based translation for language transla-
tion, and waveform concatenation for speech synthesis. In the
following sections, those methods are introduced in detail.

IV. MULTILINGUAL SPEECH RECOGNITION

A. Successive State Splitting (SSS)-Based Acoustic Modeling

For acoustic modeling in speech recognition, context-depen-
dent phone models can obtain much better performance than
context-independent phone models. While context-dependent
phone models have many parameters, the most important
problem to solve has been how to efficiently capture contextual
and temporal variations in training speech and properly model
them with fewer parameters.

Phonetic decision tree clustering [11] was proposed as a
method for generating tied-state structures of acoustic models
for speech recognition, while the SSS algorithm was originally
proposed by ATR to create a network of HMM states of speaker-
dependent models [12]. The SSS was subsequently expanded to
the ML-SSS algorithm to create speaker-independent models
[13] by data-driven clustering with contextual information.

However, since these methods are based on the maximum
likelihood (ML) criterion, the likelihood value for training data
increases as the number of parameters increases. To overcome
this problem, we have recently proposed the ML-SSS algorithm
based on the minimum description length (MDL) criterion as the
splitting and stop criteria [14]. This algorithm is referred to as
“the MDL-SSS algorithm.” We will describe the ML-SSS algo-
rithm and the MDL-SSS algorithm in the following sections.

1) ML-SSS Algorithm: The ML-SSS algorithm iteratively
constructs the appropriate context-dependent model topologies
by finding a state that should be split at each iteration. It then
reestimates the parameters of HMMs based on the ML criterion
in the same way as in phonetic decision tree clustering. This al-
gorithm supposes the two types of splitting shown in Fig. 2.
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Fig. 3. Flow chart of MDL-SSS algorithm.

After contextual splitting, the total expected gain is calcu-
lated. For temporal splitting, the ML-SSS algorithm creates one
more state and connects it to the original state. The parameters of
the two distributions are estimated by the forward–backward al-
gorithm, and the total expected gain of temporal splitting is also
calculated for the temporal split states. Since it is computation-
ally expensive to reestimate all of the parameters of a network at
every splitting, approximated likelihood values are used. Next,
the gains of both contextual and temporal splitting are calcu-
lated for all states. Finally, these expected gains are compared
with each other and the split with the best gain among all states
is selected. The total number of states and the maximum tem-
poral length of states for each triphone model are stop criteria
and must be given before splitting begins. Nonetheless, it is diffi-
cult to find the optimal values of these parameters. Accordingly,
a sequence of experiments needs to be done to find the optimal
values by changing parameters heuristically.

2) SSS Algorithm Using MDL Criterion: Fig. 3 shows the
flow of the MDL-SSS algorithm. The differences in the MDL
values for both contextual and temporal splitting are calculated
for each state, and the split with the smallest difference value is
chosen. Splitting is finished when there is no state that can be
split and reduce the criterion by splitting. The total number of
states and the maximum number of states per triphone are not
required as stop criteria.

We define the criteria for contextual splitting and temporal
splitting, and , respectively, as follows:

(4)

(5)

where the order of features is , and the total number of states
is . The first terms, and , in the right-hand sides
are the negative values of the expected gains in the ML-SSS
algorithm, while and are the scaling factors of the second
terms. represents the expected frequency
of the number of samples for all states, whereas is the
value after temporal splitting. Equation (5) compensates the
total number of samples because segments that are shorter
than the lengths of state sequences are discarded. Moreover,

will be decreased to if a temporal split is selected.
The MDL-SSS algorithm selects the state with the smallest

or , and stops splitting when and
for all states.

B. Advanced Language Modeling

1) Multidimensional Word Classes: In the conventional
word class N-gram defined by

(6)

only one-dimensional word classes are used [15]. Both the left-
and right-context Markovian dependencies are used together.
Only words having the same left- and right-context Markovian
dependence belong to the same word class. This word class def-
inition is not adequate for representing the Markovian depen-
dence for words that have only the same left- or right-context
Markovian dependence, such as “a” and “an.” The left context
of “a” and “an” is almost equivalent; however, the right context
is significantly different. The difference between left and right
context is more serious in languages with inflection, such as
French and Japanese. For example, the Japanese inflection form
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Fig. 4. Overview of the machine translation system developed by the C-cube project.

has an influence only on the right context, while the left-context
Markovian dependence can be shared between the same words
with different inflection forms.

We have introduced the idea of multidimensional word
classes to represent left- and right-context Markovian depen-
dence separately [16]. The multidimensional word classes
can assign the same word class to “a” and “an” to represent
the left-context Markovian dependence (left-context class),
and assign them to different word classes to represent the
right-context Markovian dependence (right context class). Each
multidimensional word class is automatically extracted from
the corpus using statistical information, rather than grammatical
information such as part-of-speech (POS).

2) Class N-Grams Based on Multidimensional Word
Class: Applying multidimensional word classification to for-
mula (6), the following formula is obtained:

(7)

where the suffix for class is used to represent position-de-
pendent (left- and right-context) Markovian dependence. Here,

represents the left context class to which the word be-
longs, and represents the right context class to which the
th word belongs. Hereafter, we refer to these class N-grams

based on multidimensional classes as multiclass N-grams.
3) Word Clustering for Multiclass Bi-Grams: For clus-

tering, we adopt vectors to represent left- and right-context
Markovian dependence, i.e., which words will appear in a
left or right context with what probability. These Markovian
dependence vectors are defined as follows:

(8)

(9)

where represents the left context Markovian dependence
vector of . This vector is used for left-context class clustering.

is the value of the probability of the backward bi-gram
from to ( th word in the lexicon), while represents
the right-context Markovian dependence vector of . This vector
is used for right context class clustering. is the value
of the probability of the forward bi-gram from to , and is
the size of the vocabulary.

For clustering, the distance between the word pair’s vectors
is used, since word pairs with similar vectors also have similar
Markovian dependence. We use Euclidean distance as a distance

measure. Word clustering is, thus, performed in the following
manner, called the uni-gram weighted Ward method [17].

4) Use of Frequent Word Successions: Furthermore, multi-
class N-grams are extended to multiclass composite N-grams.
In this model, higher-order word N-grams are partially intro-
duced by regarding frequent variable-length word sequences as
new word succession entries. In this way, for frequent word se-
quences with length , an order word N-gram can be esti-
mated reliably, even if the training corpus size is insufficient
to estimate the N-grams of other words. After the introduction
of higher-order word N-grams, the increase in parameters only
corresponds to a uni-gram of word succession. Therefore, mul-
ticlass composite N-grams can maintain a compact model size
in multiclass N-grams.

V. MULTILINGUAL MACHINE TRANSLATION

Development of a machine translation system requires lots of
time and expenditure. If the development is for a multilanguage
system, the cost is multiplied by for languages.
Therefore, a drastic cost reduction is required. It is well known
that spoken languages are different in many aspects from written
languages; therefore, porting existing systems for written lan-
guage is not promising, but new development does pay. Under
this background of S2ST, we have decided to adopt a corpus-
based approach and have been developing multilingual corpora
and machine-learning approaches by using the corpora.

We named our project “Corpus-Centered Computation
(C-cube).” C-cube places corpora at the center of the tech-
nology. Translation knowledge is extracted from corpora,
translation quality is gauged by referring to corpora, the system
quality is optimized automatically by gauging, and the corpora
themselves are paraphrased or filtered by automated processes.
Fig. 4 shows an overview of our machine translation system
developed in the C-cube project.

There are two main types in corpus-based machine transla-
tion: 1) example-based machine translation (EBMT) [18], [19],
and 2) statistical machine translation (SMT) [20]–[26]. C-cube
is developing both technologies in parallel and blending them.
In this paper, we introduce three different machine translation
systems: D-cube, HPAT, and SAT.

1) D-cube (Sentence-based EBMT): This retrieves the most
similar example of the input and example sentences by dy-
namic programming-based matching, and adjusts the gap
between the input and the retrieved example by using dic-
tionaries [27]. Most EBMTs use translation examples in
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phrase level, while D-cube uses translation examples in
sentence level, thus, D-cube realizes very natural transla-
tion when it finds a good example in the bilingual corpus,
while it suffers from translation coverage.

2) HPAT (Phrase-based EBMT): Based on phrase-aligned
bilingual trees, transfer patterns are generated. According
to the patterns, the source phrase structure is obtained and
converted to generate target sentences [28]. HPAT fea-
tures a feedback cleaning method that evaluates trans-
lation quality automatically and based on that it filters
out bad transfer patterns [29], which improves translation
quality drastically.

3) SAT (Word-based SMT): SAT deals with Japanese and
English on top of a word-based SMT framework. SAT
is a developing series of SMT, which includes phrase-
based translation [30], chunk-based translation [50], and
sentence-based greedy decoding [32].

No single system can achieve complete translation of every
input. The translation quality changes sentence-by-sentence and
system-by-system. Thus, we could obtain a large increase in ac-
curacy if it were possible to select the best one of different trans-
lations for each input sentence. With this idea, a multiengine
machine translation approach has been taken by several research
groups [33], [34]. In contrast to these previous studies, we utilize
language and translation models simultaneously and a multiple
comparison test for checking significance [31].

VI. TEXT-TO-SPEECH CONVERSION

A block diagram of our speech synthesis module, which is
called XIMERA, is shown in Fig. 5. Similar to most concate-
native TTS systems, XIMERA is composed of four major mod-
ules, i.e., a text processing module, a prosodic parameter gen-
eration module, a segment selection module, and a waveform
generation module.

The target languages of XIMERA are Japanese and Chinese.
Language-dependent modules include the text processing
module, acoustic models for prosodic parameter generation,
speech corpora, and the cost function for segment selection.
The search algorithm for segment selection is also related to
the target language via the cost function. XIMERA is currently
focused on a normal reading speech style suitable for news
reading and emotionless dialogs between man and machine.

The prominent features of XIMERA are as follows:
1) its large corpora (a 110-h corpus of a Japanese male, a

60-h corpus of a Japanese female, and a 20-h corpus of a
Chinese female);

2) HMM-based generation of prosodic parameters [35];
3) a cost function for segment selection optimized based on

perceptual experiments [36].

VII. BTEC AND MAD CORPUS DESCRIPTION

ATR has been constructing two different types of corpora
in the travel domain: 1) a large-scale multilingual collection
of basic sentences that covers many domains [37], and 2) a
small-scale bilingual collection of spoken sentences that reflects
the characteristics of the spoken dialogs [38]. The former is used
to train the multilingual translation component, while the latter
is used to link spoken sentences to basic sentences.

Fig. 5. Block diagram of TTS module.

The BTEC was planned to cover large-scale utterances for
every potential subject in travel conversations, together with
their translations. Since it is almost infeasible to collect them
through transcribing actual conversations or simulated dialogs,
we decided to use sentences from the memories of bilingual
travel experts. We started by investigating phrasebooks that con-
tain Japanese/English sentence pairs that those experts consider
useful for tourists traveling abroad. We collected these sentence
pairs and rewrote them to make translations as context-inde-
pendent as possible and to comply with our transcription style.
Sentences outside the travel domain or containing very spe-
cial meanings were removed. Currently, we have about 420 000
Japanese–English sentence (utterance) pairs in the travel do-
main. Parts of them have been translated into Chinese, French,
Italian, Korean, and Spanish by C-Star partners.

The MT-assisted dialogs (MAD) is a small-scale corpus in-
tended for collecting representative utterances that people will
input to S2ST systems. For this purpose, we carried out sim-
ulated (i.e., role play) dialogs between two native speakers of
different mother tongues with a Japanese/English bidirectional
S2ST system, instead of using human interpreters. In order to
concentrate on the effects of MT by circumventing communi-
cation problems caused by speech recognition errors, we re-
placed the speech recognition modules with human typists. The
resulting system is, thus, considered equivalent to using an S2ST
system whose speech recognition part is almost perfect. We em-
ployed a combined version of the example-based machine trans-
lation system developed in our previous project, TDMT [39] and
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D-cube [27] for the MT module (J-to-E and E-to-J) and CHATR
[40] for the speech synthesizer.

This environment is somewhere between the “Wizard-of-Oz”
(WOZ) approach in Verbmobil [1], which replaced the entire
S2ST process with humans, and an approach that relies only on
an S2ST system [2]. We have carried out three sets of simulated
dialogs so far. The first set (MAD1) is to see whether this ap-
proach is feasible with rather simple tasks such as “asking an un-
known foreigner where a bus stop is.” The second set (MAD2)
focused on task achievement with slightly complicated tasks,
such as planning a guided tour with travel agents. The third set
contains carefully recorded speech data (MAD3).

VIII. EVALUATION OF THE S2ST SYSTEM

A. Evaluation Data

For evaluation of the speech recognition and translation
modules of our S2ST system, we randomly selected 510
Japanese–English sentence pairs from the BTEC corpus and
kept them unused for training. These sentences, as well as the
corresponding Chinese sentences, were used to collect acoustic
speech data. For each language, we recorded data from 20 male
and 20 female native speakers. Each speaker’s data consists of
about 300 read style utterances. The text material was designed
in such a way that each of the 510 sentences was read by at
least 10 male and 10 female speakers.

For the overall system evaluation, to assess the translation
performance of the actual dialogs, an additional test corpus com-
prising 502 pairs of Japanese and English sentences was used, in
which the pairs were randomly selected from the MAD Dialogs.

B. Japanese Speech Recognition

1) Acoustic Model: For acoustic model training, we used
the Japanese travel dialogs in “The Travel Arrangement Task”
(TRA) of the ATR spontaneous speech database [41]. This
corpus consists of role-playing pseudodialogs between a hotel
clerk and a customer about room reservations, cancellation,
trouble-shooting, etc. We also used 503 phonetically balanced
sentences (BLA) read by the same 407 speakers of the TRA.
TRA includes about 5 h of speech and BLA includes about
25 h of speech. We do not have actual BTEC speech data for
Japanese, but the TRA corpus includes many similar expres-
sions to the BTEC, and the BLA corpus is helpful for creating
Japanese standard phoneme models.

The speech analysis conditions were as follows: The frame
length was 20 ms and the frame shift was 10 ms; 12-order
MFCC, 12-order , and log power were used as
feature parameters. The cepstrum mean subtraction was applied
to each utterance. Table I shows the phoneme units for our
Japanese ASR. A silence model with three states was built
separately from the phoneme models. Three states were used as
the initial model for each phoneme. The scaling factors ,

were used for the MDL-SSS. After a topology was ob-
tained by each topology training method, mixture components
were increased, and a five Gaussian mixture model was created.

2) Language Model and Decoding: The BTEC corpus and
ITLDB database collected during our previous project [41] were
used to create language models. In total, there are about 6.2 M

TABLE I
PHONEME UNITS FOR JAPANESE ASR

TABLE II
PERPLEXITY FOR JAPANESE BTEC TEST

TABLE III
RECOGNITION PERFORMANCE FOR JAPANESE BTEC TEST

TABLE IV
WORD ACCURACY RATES [PERCENT] BY TWO COMBINATIONS

OF JAPANESE LANGUAGE MODELS

words. A word bi-gram model, a word tri-gram model, and a
multiclass composite bi-gram model were created. The multi-
class composite bi-gram included 4000 classes for each direc-
tion. The size of the lexicon was 54 K words, and the number
of extracted composite words was 24 K words. For recognition,
the gender-dependent acoustic model and the multiclass 2-gram
model were used in the first pass, and the word tri-gram model
was used to rescore word lattices in the second pass.

3) Performance: For the test data, a subset of the Japanese
BTEC test data was used consisting of about 4000 utterances
(100 utterances from 20 males and 20 female speakers).

Table II shows the perplexity for each model. The multiclass
composite bi-gram obtained the middle performance between
the word bi-gram model and the word tri-gram model.

Table III shows the recognition performance represented by
word accuracy rates. The model with 2086 states created by the
MDL-SSS using , obtained almost the same
performance as that with 2100 states created by the ML-SSS.

Table IV shows the word accuracy rates by two combina-
tions of language models. For the first-pass search, one used the
word bi-gram model, and the other used the multiclass com-
posite (MCC) bi-gram model. Furthermore, both of them used
the word tri-gram model for rescoring in the second-pass search.
The acoustic model was the same as the MDL-SSS’ model with

, in Table III. The MCC bi-gram model
obtained a 17.3% error reduction rate compared to the word
bi-gram model, and the combination of the MCC bi-gram model
and the word tri-gram model obtained a 9.25% error reduction
rate compared to the combination of the word bi-gram model
and tri-gram model.
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C. English Speech Recognition

1) Acoustic Model: In contrast to the Japanese language
system, even similar domain acoustic training data were not
available to us at this time. However, as Lefevre et al. demon-
strated in [42], out-of-domain speech training data do not
cause significant degradation of the system performance. In
fact, it was found to be more sensitive to the language model
domain mismatch. Thus, we choose the Wall Street Journal
(WSJ) corpus [43], since we needed a speech database that is
large enough and contains clean speech from many speakers.
About 37 500 utterances recommended for speaker-indepen-
dent training (WSJ-284) were selected as the training set for
our acoustic model. The total number of speakers is 284 (143
male and 141 female). Feature extraction parameters were the
same as for the Japanese language system: 25 dimensional
vectors (12 MFCC + 12 Delta MFCC + Delta pow) extracted
from 20-ms-long windows with 10-ms shift. First, we trained a
model with 1400 states and five mixture components per state
using the ML-SSS algorithm. This was a rather small model
compared to the other models that have been built on the same
data [44], so it was not expected to have high performance.
Nevertheless, we regarded it as a starting point for further model
development and optimization. Next, we trained several models
using the MDL-SSS algorithm where the temporal splitting
constant is set to 20 and the contextual splitting constant
takes values from 2 to 10. In this way, we obtained models with
state numbers ranging from about 1500 to about 7000. Initially,
they all had five mixture components per state. The preliminary
tests showed that the model with 2009 states was the best and
was, therefore, selected for further experiments. Two more
versions of this model—with 10 and 15 mixture components
per state—were trained as well.

2) Language Model: For the language model training, the
BTEC English data was used. Standard bi-gram and tri-gram
models were trained as well as one multi-class composite
word bi-gram model. The number of classes is 8000, while the
number of composite words is about 4000.

3) Pronunciation Dictionary: Although the BTEC task
domain is quite broad, there are many travel-oriented words that
are not included in publicly available pronunciation dictionaries.
Also, there are many specific proper names of sightseeing places,
restaurants, travel-related companies, and brand names. A large
portion of the task word list represents Japanese words including
Japanese first and family names. In total, there were about 2500
such words ( 10% of the 27 K-word dictionary) and to develop
good pronunciation variants for them was quite a challenge for
us. Especially difficult were the Japanese words because there is
no principled way to predict how a native English speaker would
pronounce a given Japanese word. This will depend heavily
on the speaker’s Japanese proficiency with the two extremes
of being fluent in Japanese and speaking just couple of widely
known words. Therefore, we decided to cover at least these two
cases by taking one pronunciation from the Japanese dictionary
and converting it to the English phone labels, and generating one
pronunciation according to the English phonetic rules. The latter
was done by using TTS software “Festival” [45] followed by
a manual correction of some of the pronunciations judged as
“making no sense.”

TABLE V
ENGLISH ACOUSTIC MODEL’S PERFORMANCE COMPARISON

TABLE VI
ENGLISH LANGUAGE MODEL’S PERFORMANCE COMPARISON

TABLE VII
SUBWORD UNITS FOR CHINESE ASR SYSTEM

Our phoneme set consists of 44 phonemes, including silence.
They are the same as those used in the WSJ corpus official evalu-
ations because in this way we could use its dictionary as a source
of pronunciation base-forms. In addition, we could run the WSJ
task tests with our model to compare performance.

4) Performance: In the first series of experiments, we
evaluated the performance of the several acoustic models we
have trained. The test data comprised 1200 utterances from
35 speakers included in the BTEC test set. Small conventional
bi-gram and tri-gram language models covering about 25% of
the entire text training data were used to speed up the evalu-
ation. The recognition results in terms of word accuracy are
given in Table V. As can be seen, the MDL-SSS model with
2009 states and 15 mixture components was the best one; thus,
it was used for the next experiments involving different types
of language models.

Next, we evaluated the language model’s performance. In
these experiments, we used 204 utterances taken randomly
from the larger BTEC test set. The results are summarized in
Table VI.

D. Chinese Speech Recognition

1) Acoustic Model: The basic subword units for the Chinese
speech recognition front-end used are the traditional 21 Initials
and 37 Finals (see Table VII):

The acoustic model was developed using a well-designed
speech database: the ATR Putonghua (ATRPTH) speech data-
base of 2003 [46]. The database has a rich coverage of the
triplet Initial/Finals phonetic context, and sufficient samples for
each triplet with respect to balanced speaker factors including
gender and age.

The phonetically rich sentence set of ATRPTH has 792 sen-
tences. An investigation on the token coverage rates has been
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TABLE VIII
TOKEN COVERAGE RATES OF DIFFERENT CHINESE SUBWORD UNITS

carried out on one month’s total of a daily newspaper for dif-
ferent types of phonetic units. Table VIII shows the results,
where the following hold.

• Unit A: stands for the tonal syllable.
• Unit B: stands for the base syllable without tone discrim-

ination.
• Unit C: stands for the normal Initial/Final triplets.
• Unit D: stands for the context tying Initial/Final triplets,

which are tied based on phonetically articulatory config-
urations. They are assumed to cover the major variants of
each triplet phonetic context [47].

The speakers were chosen to have a balanced coverage of dif-
ferent genders and ages. Each unique triplet has at least 46 to-
kens in the speech database, guaranteeing a sufficient estimation
for each triplet HMM.

During the model estimation, accurate pause segmentation
and context dependent modeling [48] were done iteratively to
guarantee the model’s accuracy and robustness. The HMnet
structure was derived through a phonetic decision tree-based
maximum likelihood state splitting algorithm. The acoustic
feature vector consists of 25 dimensions: 12-dimensional
MFCCs, their first-order deltas, and the delta of frame power.
The baseline gender dependent HMnets have 1200 states, with
five Gaussian mixtures at each state.

2) Language Model: The language model for Chinese ASR
also uses the composite multiclass N-gram model. The basic
lexicon has 19 191 words, while the text BTEC Chinese corpus
contains 200 000 sentences for LM training. After they were
segmented and POS tagged, word clustering was investigated
based on the right- and left-context Markov dependencies. A
normal word-based bi-gram model showed a perplexity of 38.4
for the test set with 1500 sentences. With a clustering of 12 000
word classes, the composite multiclass bigram model showed a
perplexity of 34.8 for the same test data. The bigram language
model was used to generate a word lattice in the first pass, and
a trigram language model with a perplexity of 15.7 was used to
rescore the word lattice.

3) Performance: The evaluation data here is the BTEC
Chinese language-parallel test data. It includes 11.59 h of
speech by 20 females and 20 males. The ages of the speakers
range from 18 to 55 years old. All the speakers spoke Chi-
nese Putonghua, with little dialect accent. Table IX shows the
gender-dependent, Chinese character-based recognition perfor-
mances. The total performance is 95.1% for Chinese character
accuracy with a real-time factor of 26. The performance de-
graded to 93.4% when the searching beam was narrowed to
obtain a real time factor of 6. An urgent task for the near future
is to increase the search speed without harming the recognition
performance.

TABLE IX
CHINESE CHARACTER-BASED RECOGNITION PERFORMANCE

TABLE X
TRANSLATION QUALITY OF FOUR SYSTEMS FOR BTEC

E. Machine Translation Evaluation

Training corpora for machine translation systems is BTEC
explained in Section VII. The target part of test set sentences is
paraphrased into as many as 16 multiple reference translations
for each source sentence, for which we utilized automatic eval-
uation programs.

Translations by four machine translation systems, i.e., SAT,
HPAT, D-cube, and the SELECTOR based on them, were shown
simultaneously to each of multiple Japanese-to-English profes-
sional translators, who were native speakers of English, to keep
the evaluation results as consistent as possible. The evaluation
was done according to ATR’s evaluation standard of four grades,
A, B, C, and D. Each translation was finally assigned to the me-
dian grade from among its grades from multiple evaluators.

Table X shows the translation quality of Japanese-to-English
translations for BTEC. The figures are accumulative percent-
ages of four systems for the quality grade. It is fairly high even
for the difficult language pair of Japanese-to-English. In addi-
tion, we can see in every grade, A, AB, and ABC, the selector
outperforms every single-element machine translation.

The Test of English for International Communication
(TOEIC), which is the test for measuring English proficiency
of nonnative speakers such as Japanese (http://www.ets.org/
toeic/). The total score ranges from 10 (lowest) to 990 (highest).

We proposed a method that estimates the TOEIC score of a
speech translation system [49]. The translation of a Japanese-
to-English speech translation system is compared with that
of a native Japanese speaker whose TOEIC score is known.
A regression analysis using the pair wise comparison results
(wins/loses) shows the translation capability of the speech
translation system.

Our Japanese-to-English translation quality is so high that it
achieves a TOEIC score of 750. This is 100 points higher than
the average score of a Japanese businessperson in the overseas
department of Japanese corporations.

F. Text-To-Speech Evaluation

A perception experiment was conducted in which the natu-
ralness of synthetic speech for XIMERA and ten commercial
TTS systems were evaluated. A set of 100 Japanese sentences
that were evenly taken from ten genres was processed by the



374 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 14, NO. 2, MARCH 2006

Fig. 6. Result of an evaluation experiment for naturalness between several
TTS products.

TABLE XI
TRANSLATION QUALITY OF FOUR SYSTEMS FOR MAD

TABLE XII
TRANSLATION QUALITY OF FOUR SYSTEMS FOR RECOGNITION

RESULTS OF MAD

11 TTS systems to form a set of stimuli comprising 1100 syn-
thetic speech samples. The stimuli were randomized and pre-
sented to 40 listeners through headphones in a quiet meeting
room. The listeners rated the naturalness of each stimulus with
a seven-point scale, namely, 0 (very bad) to 6 (very good).

Fig. 6 shows the result, in which XIMERA outperforms the
other systems. However, the advantage over the second-best
system, which is not a corpus-based system, is not substantial,
although it is statistically significant.

G. Overall System Evaluation

Tables XI and XII show the quality of the Japanese-to-Eng-
lish machine translation results of MAD with/without SR for
four MT systems. The translation quality for MAD is lower than
that of BTEC (e.g., selector (ABC): 83.5% for BTEC, 61.0% for
MAD without SR). This result reflects the large linguistic differ-
ence between BTEC, which is the training corpus for every MT
system, and MAD [38]. Regarding the effect of speech recogni-
tion, the translation quality for MAD with SR is slightly lower
than that for MAD without SR (e.g., selector (ABC): 61.0%
for MAD without SR, 54.0% for MAD with SR). The perfor-
mance of the speech recognition system on MAD data is about
85% word accuracy, which is quite a bit lower than on BTEC
test data (see Table IV). This degradation is due to the different
speaking style of the MAD speech data. To enhance the trans-
lation quality of MAD, we need robust translation techniques

designed for actual conversation style sentences, such as para-
phrasing from conversation style sentences to BTEC style sen-
tences, and automatic rejection of MT output with problematic
translation and/or speech recognition errors.

IX. CONCLUSION

We have developed multilingual corpora and machine-
learning algorithms for speech recognition, translation, and
speech synthesis. The results have convinced us that our
strategy is a viable way to build a high-quality S2ST system.

The current translation system needs improvement in trans-
lating longer sentences often found in natural dialogs; therefore,
we are studying a method to split a longer sentence into shorter
ones and translate them. It is also weak in translating varia-
tions often found in natural dialogs; therefore, we are studying
a method to normalize a variation in dialog into a stereotypical
one found in BTEC by automatic paraphrasing. Finally, a con-
fidence measure for translation is now being pursued and it will
be incorporated to reject erroneous translations.
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