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Abstract—This paper introduces a general framework for incorporating additional sources of knowledge into an HMM-based statistical

acoustic model. Since the knowledge sources are often derived from different domains, it may be difficult to formulate a probabilistic

function of the model without learning the causal dependencies between the sources. We utilized a Bayesian network framework to

solve this problem. The advantages of this graphical model framework are 1) it allows the probabilistic relationship between information

sources to be learned and 2) it facilitates the decomposition of the joint probability density function (PDF) into a linked set of local

conditional PDFs. This way, a simplified form of the model can be constructed and reliably estimated using a limited amount of training

data. We applied this framework to the problem of incorporating wide-phonetic knowledge information, which often suffers from a

sparsity of data and memory constraints. We evaluated how well the proposed method performed on an large-vocabulary continuous

speech recognition (LVCSR) task using English speech data that contained two different types of accents. The experimental results

revealed that it improved the word accuracy with respect to standard HMM, with or without additional sources of knowledge.

Index Terms—Acoustic modeling, knowledge incorporation, Bayesian network, junction tree, wide-context dependency.
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1 INTRODUCTION

THE growth of information technology has been
continuous and is having an ever-larger impact on

many aspects of our daily lives. The matter of commu-
nication through speech between human beings and
information-processing machines such as dialog systems
has also become increasingly important [1]. One of the
fundamental technologies for achieving a speech-oriented
interface is automatic speech recognition (ASR). Many
researchers have worked in the area of ASR for almost
four decades. The goal is to develop an intelligent machine
that can automatically recognize naturally spoken words
uttered by humans. However, extracting the underlying
linguistic message from a complex acoustic signal is not an
easy task due to many sources of variability contained in
the signal [2].

Several approaches have been developed to address the

problem and these approaches to ASR can generally be

classified into two main types, that is, “knowledge-based”

and “corpus-based.” The former is mainly based on the

human ability to interpret spectrograms or other visual

representations of the speech signal using knowledge-based

rules [3], [4], [5]. However, as there are problems in that, it

is difficult to envisage all of the ways in which these rules

are interdependent; some rules inevitably compete with

others to explain the same phenomenon while others are in

direct contradiction [6]. In contrast, the latter approach is
usually based on modeling the speech signal using well-
defined statistical algorithms that can automatically extract
knowledge from the data. This modeling approach has
achieved encouraging results and has outperformed the
previous knowledge-based approach. This is why most
current ASR systems usually use statistical data-driven
methods based on hidden Markov models (HMMs).
Today’s state-of-the-art ASR systems reach very good
performance, under controlled conditions.

Despite significant progress in this field, there are still
many challenges to overcome before ASR systems can reach
their full potential through widespread use in everyday life.
For instance, in the presence of unexpected acoustic
variability, ASR systems often perform much worse than
human listeners [7], [8], [9]. Only a limited level of success
can be achieved by only relying on statistical models and
mostly ignoring additional knowledge that is available. As
many researchers are aware of this problem, various
attempts to integrate knowledge-based and statistical
approaches more explicitly have been made.

To date, Li et al. [10] have proposed research that enables
sources of acoustic phonetic knowledge to be incorporated
using neural networks for rescoring purposes. IBM’s and
AT&T’s large-vocabulary continuous speech recognition
(LVCSR) systems have also successfully improved acoustic
models (AMs) by incorporating the coarticulation effects of
longer spans, such as quinphone/pentaphone models [11],
[12]. Some researchers have recently attempted to utilize
graphical tools such as Bayesian networks (BNs), which can
be regarded as a generalization of HMMs, where, in
addition to speech spectral information, additional knowl-
edge such as articulatory features, subband correlation, or
speaking styles can be easily incorporated [13], [14].
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However, there have often been cases when developing
such complex models and achieving optimal performance
have not been feasible. This is especially true when there are
insufficient resources, that is, the amount of training data
and memory space available, to properly train the model
parameters. As a result, input space resolution may be lost
due to nonrobust estimates and the increased number of
unseen patterns. Moreover, decoding with large models
may also become cumbersome and sometimes even im-
possible. The best we can do is to choose a simplified form
of the model that can be reliably estimated using the
training data available.

In this paper, we propose a method of incorporating
additional sources of knowledge in a unified way. We
utilized a BN framework to easily integrate any additional
knowledge source from any domain. The advantages of this
graphical model framework are 1) it allows the probabilistic
relationship between information sources to be learned and
2) it facilitates the decomposition of the joint probability
density function (PDF) into a linked set of local conditional
PDFs. A simplified form of the model can be constructed
and reliably estimated using a limited amount of training
data in this way.

This framework represents a general approach, meaning
that it can be applied to many existing acoustic modeling
problems with their respective model-based likelihood
functions. Here, we discuss our application of the proposed
framework to the problem of incorporating wide-phonetic
knowledge information that often suffers from a sparsity of
data and memory constraints. We first show how the
additional sources of knowledge are incorporated in the
HMM state distribution. We then show how the additional
sources of knowledge are incorporated in HMM phonetic
modeling. Both approaches are experimentally verified in

an LVCSR task using English speech data that contains two
accents.

We first describe the general framework for incorporat-
ing additional knowledge sources in Section 2. We then
briefly describe the conventional HMM AM in Section 3.
Sections 4 and 5 show how this framework is used to
incorporate additional sources of knowledge at the HMM
state and phonetic-model levels, including application to
the problem of incorporating wide-phonetic context infor-
mation. The details on the experiments are presented in
Section 6, including the results and a discussion. Finally,
conclusions are drawn in Section 7.

2 GENERAL FRAMEWORK FOR INCORPORATING

KNOWLEDGE SOURCES

In the statistical corpus-based approach, given some
observation data D, we train a model M. One key problem
of interest is to compute the likelihood, P ðDjMÞ, which
predicts the data that can be expected given current
knowledge about the model.

We can model the PDF, P ðDjMÞ, in simple cases by
using conditional probability tables (CPT) (if D is discrete)
or continuous functions such as Gaussian densities (if D is
continuous); the output probability for given data d and
model parameter m is then simply calculated as

pðdjmÞ ¼ P ðD ¼ djM ¼ mÞ: ð1Þ

Then, assume that we want to incorporate additional
knowledge sources into the model. The procedure consists
of several steps, as outlined in Fig. 1.

2.1 Defining Causal Relationships between
Information Sources

Let us start from a simple case, where the causal relation-
ship between D and M is described using BN, like the one
outlined in Fig. 2a, where we have assumed that M is a
discrete variable denoted by the square node and D is a
continuous variable denoted by the oval node.

The BN joint probability function can be factorized [15] as

P ðZ1; Z2; . . . ; ZKÞ ¼
YK

k¼1

P ðZkjPaðZkÞÞ; ð2Þ

where PaðZkÞ denotes the parents of BN variable Zk so that
we obtain

P ðD;MÞ ¼ P ðDjMÞP ðMÞ ð3Þ

from Fig. 2a. We thus simply define the conditional
relationship between D, M, and K based on our knowledge
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Fig. 1. General procedure for incorporating additional knowledge

sources.

Fig. 2. (a) A BN topology that describes the conditional relationship

between data D and the model M. (b) A BN topology that describes the

conditional relationship between D, M and an additional knowledge K.



of the data to incorporate additional knowledge K into
P ðD;MÞ and express the joint probability model in a similar
way. The conditional relationship between D, M, and K, for
example, can be described by the BN outlined in Fig. 2b and
the BN joint probability function becomes

P ðD;K;MÞ ¼ P ðDjK;MÞP ðKjMÞP ðMÞ: ð4Þ

Now, let us consider a more detailed example, where we
have assumed that there are K1; K2; . . . ; KN knowledge
sources. Here, we have assumed that they are all con-
ditionally independent. Fig. 3 outlines two examples of
conditional relationship structures between D, M, and
K1; K2; . . . ; KN . Then, the joint PDF becomes

P ðD;K1; . . . ; KN;MÞ
¼ P ðDjK1; . . . ; KN;MÞP ðK1jMÞ . . .P ðKN jMÞP ðMÞ

ð5Þ

for the BN in Fig. 3a, according to (2). If there are some Ki

that receive no causal impact from M, as outlined in Fig. 3b
(see K1 and KN ), then the joint probability function
becomes

P ðD;K1; . . . ; KN;MÞ
¼ P ðDjK1; . . . ; KN;MÞP ðK1ÞP ðK2jMÞ . . .P ðKNÞP ðMÞ:

ð6Þ

As can be seen, different conditional independence
assumptions can lead to different probability function
decompositions (see (5) and (6)).

2.2 Direct Inference on BN

Our primary interest during inference is to calculate the
global conditional probability, P ðDjK1; . . . ; KN;MÞ. If the
form this PDF takes allows direct calculation, the following
two cases can be considered:

1. All variables can be observed. In this case, it can
simply be calculated as in (1)

pðdjk1j ; . . . ; kNj
;mÞ

¼ P ðD ¼ djK1 ¼ k1j ; . . . ; KN ¼ kNj
;M ¼ mÞ:

ð7Þ

2. Some variables, such as the additional knowledge
sources, K1; . . . ; KN , cannot be observed or are
hidden. In this case, the calculation is done using (5)
and by marginalization over all possible Ki :
ki1 ; ki2 ; . . . ; kiM for all Ki:

pðdjmÞ ¼ pðd;mÞ
pðmÞ

¼
PM1

1j¼1 . . .
PMN

Nj¼1 pðd; k1j ; . . . ; kNj
;mÞ

pðmÞ

¼
XM1

1j¼1

. . .
XMN

Nj¼1

pðdjk1j ; . . . ; kNj
;mÞpðk1j jmÞ . . . pðkNj

jmÞ;

ð8Þ

where, for simplicity, we have used d, m, and kij
instead of hD ¼ di, hM ¼ mi, and hKi ¼ kiji.

However, the calculation of global conditional probability

P ðDjK1; . . . ; KN;MÞ is occasionally not trivial due to too

many variables and/or computational complexity. In such

cases, directed graphs need to be decomposed into clusters

of variables on which the relevant computations can be

carried out. This can be done with the junction tree

algorithm [15], which will be briefly described in Section 2.3.

2.3 Junction Tree Decomposition

Let us consider a simple case where we only incorporate

two additional knowledge sources, K1 and K2. The causal

relationship between D, M, K1, and K2 is described by the

BN in Fig. 4a. Here, M, K1, and K2 are discrete variables

denoted by the square nodes and D is a continuous variable

denoted by the oval node.
The following graphical transformations are then ap-

plied to obtain a junction tree [15], [16]:

1. Construct an undirected graph from BN by marry-
ing the parents (adding a link between any pair of
variables with a common child) and dropping the
direction of the links. The resulting graph is called a
moral graph.

2. Selectively add arcs to the moral graph to form a
triangulated graph.

3. Form a subset containing PaðAÞ
S
A, which is called

a cluster/clique, for all variables A with PaðAÞ 6¼ 0
in the triangulated graph.

4. Build a junction tree, starting with clusters/cliques
as nodes, in which each link between two cliques is
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Fig. 3. Several examples of BN topologies that describe the conditional

relationship between data D, model M, and several knowledge sources

K1; K2; . . . ;KN .

Fig. 4. (a) BN topology describing the conditional relationship between

D, M, K1, and K2. (b) Moral and triangulated graph in Fig. 4a.

(c) Equivalent BN topology. (d) Moral and triangulated graph in Fig. 4c.

(e) Junction tree in Fig. 4d.



labeled by using the separator of a nonempty
intersection between these cliques.

Fig. 4b outlines a moral and triangulated version of BN in

Fig. 4a. However, we can only obtain one cluster/clique with

the full set of variables fD;M;K1; K2g from this triangulated

graph and cannot decompose any further. Fortunately, since

K1 and K2 are assumed to be independent, we can obtain an

equivalent graph, as in Fig. 4c, by reversing some arrows.

Fig. 4d outlines the moral and triangulated version of this

graph. We can then identify the clusters/cliques and obtain

the junction tree outlined in Fig. 4e, where the cluster sets are

represented by the oval nodes, and the separator sets are

represented by the square nodes.
The joint probability distribution is then defined as the

product of all cluster potentials divided by the product of

the separator potentials [16] as

P ðUÞ ¼
Q

i �CiQ
j �Si

; ð9Þ

where U is the “universe” representing all the variables in

the graph, �Ci is the cluster potential (the probability over

cluster Ci), and �Si is the separator potential (the probability

over separator Si). Thus, the joint probability function,

P ðD;K1; K2;MÞ, becomes

P ðD;K1; K2;MÞ ¼
P ðD;K1;MÞP ðD;K2;MÞ

P ðD;MÞ ð10Þ

according to Fig. 4e, where P ðD;K1;MÞ and P ðD;K2;MÞ
are the cluster potentials and P ðD;MÞ is the separator

potential.
The equivalent BN topology of the BN outlined in

Fig. 3a can be described as in Fig. 5a based on similar

assumptions and considerations. The corresponding junc-

tion tree is outlined in Fig. 5b, where there are N clusters

of variables ffD;K1;Mg; fD;K2;Mg; . . . fD;KN;Mgg and

N � 1 separators fD;Mg; the joint probability function of

(5) can then be decomposed as

P ðD;K1; . . . ; KN;MÞ

¼
QN

i¼1 P ðD;Ki;MÞQN�1
i¼1 P ðD;MÞ

¼
QN

i¼1 P ðD;Ki;MÞ
P ðD;MÞN�1

:
ð11Þ

This indicates a new way of representing the joint

probability function, P ðD;K1; . . . ; KN;MÞ, as a composi-

tion of several local joint probability functions

P ðD;K1;MÞ; . . . ; P ðD;KN;MÞ, which correspond to the

probability of observational data D given the specific

additional knowledge of K1; K2; . . . ; KN .

2.4 Junction Tree Inference

We obtain

P ðD;Ki;MÞ ¼ P ðDjKi;MÞP ðKijMÞP ðMÞ ð12Þ

for all P ðD;Ki;MÞ using the chain rule so that (11) becomes

P ðD;K1; . . . ; KN;MÞ

¼
QN

i¼1 P ðD;Ki;MÞ
P ðD;MÞN�1

¼
QN

i¼1fP ðDjKi;MÞP ðKijMÞP ðMÞg
fP ðDjMÞP ðMÞgN�1

¼
QN

i¼1 P ðDjKi;MÞ
P ðDjMÞN�1

P ðK1jMÞ . . .P ðKN jMÞP ðMÞ:

ð13Þ

Comparing this with (5), we can see that

P ðDjK1; . . . ; KN;MÞ ¼
QN

i¼1 P ðDjKi;MÞ
P ðDjMÞN�1

; ð14Þ

which indicates that P ðDjK1; . . . ; KN;MÞ can be decom-

posed into separate terms corresponding to the probability

of observing data D given the specific additional knowl-

edge of K1; K2; . . . ; KN .
It will now be much easier to define, estimate, and

calculate several simple P ðDjKi;MÞ than a single but

complex P ðDjK1; . . . ; KN;MÞ.
The output probability during inference for given data d,

model parameter m, and additional knowledge source k1j is

then calculated as

pðdjk1j ; . . . ; kNj
;mÞ ¼

QN
i¼1 P ðD ¼ djKi ¼ kij ;M ¼ mÞ

P ðD ¼ djM ¼ mÞN�1
:

ð15Þ

3 CONVENTIONAL HMM AM

Let us now define some notations related to the conven-

tional HMM. We denote an HMM phonetic model of

triphone context =a�; a; aþ= with � and the HMM state

variable with Q. X is an observation variable and Xs ¼
Xt; . . . ; Xtþm is an observation data segment of length m.

The standard HMM structure is outlined in Fig. 6, where

1. the short-term spectral characteristics are modeled
with a mixture of Gaussians and

2. the temporal speech characteristics are governed by
HMM state transitions.
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Fig. 5. (a) Equivalent BN topology of the BN shown in Fig. 3a.

(b) Corresponding Junction tree.

Fig. 6. The conventional HMM AM with Gaussian mixture density used

to model the triphone =a�; a; aþ=.



The HMM state output probability, pðxtjqiÞ, is usually
calculated from the state PDF, P ðXjQÞ, as

pðxtjqiÞ ¼P ðX ¼ xtjQ ¼ qiÞ

¼
XM

m¼1

bmNðxt;�m;�mÞ;
ð16Þ

where bm is the mixture weight for the mth mixture in state
qi and Nð:Þ is a Gaussian function with mean vector �m and
covariance matrix �m. The HMM segmental likelihood,
P ðXsj�Þ, is then calculated from the joint probability of
observation and the state sequence, taken over all state
sequences (total likelihood) or approximately over just the
most likely state sequence (Viterbi path) [2].

4 INCORPORATING KNOWLEDGE SOURCES AT

HMM STATE LEVEL

4.1 Common Considerations

Model M is currently our triphone HMM state Q and D is
observation variableX. Following the theoretical framework
described in Section 2, we proceed with the next two steps:

1. Defining the causal relationship. The structure of
the topology is similar to the one in Fig. 2a and the
triphone HMM state PDF is now represented by the
BN joint probability function, which is similar to (3):

P ðX;QÞ ¼ P ðXjQÞP ðQÞ: ð17Þ

We can simply follow (5) so that

P ðX;K1; . . . ; KN;QÞ
¼ P ðXjK1; . . . ; KN;QÞP ðK1jQÞ . . .P ðKN jQÞP ðQÞ

ð18Þ

to incorporate additional knowledge sources
K1; K2; . . . ; KN into our HMM state distribution
P ðX;QÞ (assuming that all K1; K2; . . . ; KN are
independent given Q).

2. Inference. Our primary interest is to calculate the
HMM state output probability, P ðXjK1; . . . ; KN;QÞ,
which can easily be modeled with a Gaussian
function. We can thus directly obtain state output.
If all additional knowledge sources K1; . . . ; KN are
assumed to be hidden as described in Section 2.2, the
state output probability is obtained as in (8) by
marginalization over all possible Ki : ki1 ; ki2 ; . . . ; kiM
for all Ki, 1 � i � N :

pðxtjqtÞ ¼
XM1

1j¼1

. . .
XMN

Nj¼1

pðxtjk1j ; . . . ; kNj
; qtÞpðk1j jqtÞ . . . pðkNj

jqtÞ:

ð19Þ

Here, we can see that (19) is also equivalent to the
state output probability of the conventional HMM in
(16) if we treat term pðk1j jqtÞ . . . pðkNj

jqtÞ as a mixture
weight coefficient for the Gaussian component
pðxtjk1j ; . . . ; kNj

; qtÞ. Since expressions such as (19)
represent a mixture of Gaussians, we can undertake

recognition using existing HMM-based decoders

without the need for any modifications. Also, since

BN is only used to infer the state output likelihood,

this allows us to retain our HMM-based triphone

AM topology, where HMM state transitions are still

used to govern temporal speech characteristics. This

approach is also known as the hybrid HMM/BN

modeling framework and is described in [17], [18].

After this, we will also call the model obtained by

incorporating additional knowledge at the state level

the HMM/BN model.

Parameter learning of this model can be adopted from

the general training of the HMM/BN model [17]. This is

based on the forward-backward algorithm, where each

training iteration consists of BN training and HMM

transition probability updates. BN training is done using

standard statistical methods. Maximum likelihood (ML)

parameters estimation is applied if all variables are

observable during training; however, if some are hidden,

the parameters can then be estimated with the standard

expectation maximization (EM) algorithm.

4.2 Incorporation of Wide-Phonetic Context
Information

The most widely used acoustic unit in ASR systems is

currently still the triphone, which includes the immediate

preceding and following phonetic context. Although tri-

phones have proved to be an efficient choice, wider phonetic

contexts seem to be more appropriate for capturing longer

spans of coarticulation effects; however, these often suffer

from the problem of a sparsity of data and memory

constraints. Here, we will explain how to apply our frame-

work, described in the previous section, to the problem of

incorporating wide-phonetic knowledge information.
Assume that we need to extend our conventional

HMM � of triphone context =a�; a; aþ= into a pentaphone

context such as =a; a�; a; aþ; aþþ=. We therefore incorporate

the additional second preceding and succeeding contexts,

CL ð=a=Þ and CR ð=aþþ=Þ, into the triphone state PDF by

inserting two new variables into BN based on our approach.
The conditional relationship between the triphone HMM

state Q, observation data X, and the two additional

variables, CL and CR, is described by the BN topology, as

outlined in Fig. 7. We will call this the BN-C topology.
The HMM state PDF is currently represented by the

BN joint probability, which, according to (18), can be

decomposed as

P ðX;CL;CR;QÞ
¼ P ðXjCL;CR;QÞP ðCLjQÞP ðCRjQÞP ðQÞ;

ð20Þ
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Fig. 7. The BN-C topology for modeling a pentaphone context

=a; a�; a; aþ; aþþ=, where state PDF has additional variables CL and CR

representing the second preceding and following contexts, respectively.



where X depends on both second preceding context CL and
second following context CR. Since X is continuous and CL,
CR, and Q are discrete variables, P ðXjCL;CR;QÞ is modeled

with a Gaussian function and each P ðCLjQÞ or P ðCRjQÞ is
represented by a CPT.

The state output probability can be obtained from

P ðXjCL;CR;QÞ and, assuming that the additional context
variables, CL and CR, cannot be observed (hidden) during

recognition, as in (19),

pðxtjqiÞ ¼
XNL

cl¼1

XNR

cr¼1

pðcljqiÞpðcrjqiÞpðxtjcl; cr; qiÞ; ð21Þ

which is equivalent to the state output probability of the
conventional HMM in (16) if we treat term pðcljqiÞpðcrjqiÞ as
a mixture weight coefficient for the Gaussian component,

pðxjcl; cr; qiÞ. Thus, here, a Gaussian PDF is trained for all
combinations of cl, cr, and qi.

We can also further extend the pentaphone BN with

other additional knowledge variables such as gender or
accent information using this framework. Fig. 8 describes

several examples of conditional relationship structures
between triphone HMM state Q, observation data X, the
two additional variables, CL and CR, and the gender, G, or

accent, A, variables. The BN topology becomes the one
described in Fig. 8a by extending BN-C with an additional

variable of gender G and is called BN-CG. The BN topology
becomes the one in Fig. 8b by extending BN-C with the
additional accent variable A and is called BN-CA. The

BN topology in Fig. 8c is extended with both accent and
gender variables and is called BN-CGA.

The HMM state PDF for the BN-CGA example (see

Fig. 8c) is expressed as

P ðX;CL;CR;Q;A;GÞ
¼ P ðXjCL;CR;Q;A;GÞP ðCLjQÞP ðCRjQÞ

P ðQÞP ðAÞP ðGÞ;
ð22Þ

where X depends on accent A, gender G, the second

preceding context, CL, and the second following context,
CR. The state output probability can also be obtained from
P ðXjCL;CR;Q;A;GÞ in a way similar to that in (21):

pðxtjqiÞ ¼
XNA

a¼1

XNG

g¼1

XNL

cl¼1

XNR

cr¼1

pðaÞpðgÞpðcljqiÞpðcrjqiÞ

pðxtjcl; cr; qi; a; gÞ:
ð23Þ

Here, we also treat the term pðaÞpðgÞpðcljqiÞpðcrjqiÞ as a
mixture weight coefficient for the Gaussian component

pðxjcl; cr; qi; a; gÞ so that each Gaussian PDF is trained for
each combination of cl, cr, qi, a, and g.

Both (21) and (23) represent a mixture of Gaussians as
used in the standard triphone HMM AM. We can thus
undertake recognition using existing triphone HMM-based
decoders without having to modify them. Parameter
learning of the proposed model is done as mentioned in
the previous section. The ML parameter estimation is used
since all variables, including triphone state Q, accent A,
gender G, second preceding ðCLÞ context, second following
ðCRÞ context, and variable X can be observed during
training.

We can reduce the number of parameters with clustering
techniques, such as knowledge-based or data-driven clus-
tering, if there is an insufficient amount of training data to
obtain reliable estimates for all model parameters. For
example, for each value cl=cr of the second preceding/
following phonetic context, CR=CR, there is a corresponding
Gaussian component according to (21) and (23). Fig. 9
outlines the observation space for BN with additional CR
only. If we use a 44-phoneme set (including silence) for
English ASR, this means that the second preceding/
following phonetic context, C, has 44 possible values
ðC ¼ c1; c2; . . . ; c44Þ; thus, the total number of Gaussians
for each state with BN-C topology (see Fig. 7) may become
442 ¼ 1; 936 and even much more for states with BN-CG,
BN-CA, and BN-CGA topologies.

Here, we group the phoneme contexts based on major
distinctions in the manner of articulation to reduce the sizes
of parameters. Table 1 lists examples of knowledge-based
phoneme classes adapted from that in [19].

More details and a discussion on the possibilities of
pentaphones based on HMM/BN approaches can be found
in [20], [21].
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Fig. 8. (a) BN-CG topology with additional variables G, CL, and CR,

(b) BN-CA topology with additional variables A, CL, and CR, and

(c) BN-CGA topology with additional variables A, G, CL, and CR.

Fig. 9. An example of observation space modeling by BN, where a

different value of CR corresponds to a different Gaussian.

TABLE 1
Knowledge-Based Phoneme Classes

Based on Manner of Articulation



5 INCORPORATING SOURCE OF KNOWLEDGE AT

THE PHONETIC MODEL LEVEL

5.1 Common Considerations

Again following the theoretical framework described in

Section 2, model M is our current HMM phonetic model, �,
and D is segment Xs, we proceed with the next two steps:

1. Defining the causal relationship. The structure of
the topology is similar to the one in Fig. 2a and the
probability function of HMM phonetic units is now
represented by the BN joint probability function,
similar to (3)

P ðXs; �Þ ¼ P ðXsj�ÞP ð�Þ: ð24Þ

To incorporate additional knowledge sources

K1; K2; . . . ; KN into our HMM phonetic model,
P ðXs; �Þ (assuming that all K1; K2; . . . ; KN are
independent given �), we can simply follow (5) so

that

P ðXs;K1; . . . ; KN; �Þ
¼ P ðXsjK1; . . . ; KN; �ÞP ðK1j�Þ . . .P ðKN j�ÞP ð�Þ:

ð25Þ

2. Inference. Our primary interest now is to calculate
P ðXsjK1; . . . ; KN; �Þ given input segment Xs. How-
ever, it is difficult to obtain a simple functional
form for this conditional PDF because it involves
an HMM model, �, and a segment, Xs, of variable
duration. Thus, here, we need to decompose
P ðXsjK1; . . . ; KN; �Þ by the junction tree algorithm,
as described in Section 2.3. It can be decomposed as

P ðXsjK1; . . . ; KN; �Þ ¼
QN

i¼1 P ðXsjKi; �Þ
P ðXsj�ÞN�1

; ð26Þ

according to (14), which indicates a new way
of representing HMM phonetic likelihood
P ðXsjK1; . . . ; KN; �Þ through the composition of

several less complex dependencies, that is,
P ðXsjK1; �Þ; . . . ; P ðXsjKN; �Þ, which correspond to
the likelihood of segment observation data Xs given

the respective specific additional knowledge of
K1; K2; . . . , or KN .

5.2 Incorporation of Wide-Phonetic Context
Information

Let us apply the approach described in the previous section

to the same task of incorporating wide-phonetic knowledge
information, where we extend triphone context =a�; a; aþ=
into a pentaphone =a; a�; a; aþ; aþþ=. Structurally, the

conventional HMM of a triphone-context unit model can
be described as in Fig. 10a and that of a pentaphone-context
unit models can be described as in Fig. 10b.

We incorporate the additional second preceding CL of
=a= and succeeding contexts CR of =aþþ= into probability
function P ðXsj�Þ. The conditional relationship between Xs,

�, and CL and CR is described by BN similar to the one in
Fig. 4a. The final junction tree decomposition is also similar

to the one in Fig. 4e, where M is our current HMM phonetic

model, �, and D is segment Xs. The conditional probability

function is then defined as

P ðXsjCL;CR; �Þ ¼
P ðXsjCL; �ÞP ðXsjCR; �Þ

P ðXsj�Þ
; ð27Þ

according to (26). Since � is associated with the triphone

=a�; a; aþ=, the second preceding CL with =a= and the

second succeeding CR with =aþþ=, we can write

P ðXsjCL;CR; �Þ
¼ P ðXsja; aþþ; ½a�; a; aþ�Þ
¼ P ðXsj½a; a�; a; aþ; aþþ�Þ

ð28Þ

and (28) becomes

P ðXsj½a; a�; a; aþ; aþþ�Þ

¼ P ðXsja; ½a�; a; aþ�ÞP ðXsjaþþ; ½a�; a; aþ�Þ
P ðXsj½a�; a; aþ�Þ

¼ P ðXsj½a; a�; a; aþ�ÞP ðXsj½a�; a; aþ; aþþ�Þ
P ðXsj½a�; a; aþ�Þ

:

ð29Þ

This indicates that a pentaphone model can be

composed of pðXsj½a; a�; a; aþ�Þ, pðXsj½a�; a; aþ; aþþ�Þ,
and pðXsj½a�; a; aþ�Þ, which correspond to the likelihood

of segment Xs given the left/preceding-tetraphone-context,

right/following-tetraphone-context, and the center-tri-

phone-context units. However, developing tetraphone

models for ½a; a�; a; aþ� and ½a�; a; aþ; aþþ� may also be

difficult due to the sparsity of data.
Instead, let us use (28) and adjust � to represent a

monophone, =a=, and the second preceding and succeeding

contexts, CL and CR, to respectively represent =a; a�= and

=aþ; aþþ=. Then,
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Fig. 10. (a) The conventional triphone model, (b) the conventional

pentaphone model, and (c) the Bayesian pentaphone model composi-

tion C1L3R3, consisting of the preceding/following triphone-context unit

and center-monophone unit.



P ðXsj½a; a�; a; aþ; aþþ�Þ

¼ P ðXsj½a; a��; aÞP ðXsj½aþ; aþþ�; aÞ
P ðXsj½a�Þ

¼ P ðXsj½a; a�; a�ÞP ðXsj½a; aþ; aþþ�Þ
P ðXsj½a�Þ

;

ð30Þ

which indicates that the pentaphone-context,
=a; a�; a; aþ; aþþ=, is composed of pðXsj½a; a�; a�Þ,
pðXsj½a; aþ; aþþ�Þ, and pðXsj½a�Þ, which correspond to the
likelihood of observation Xs given the left/preceding-
triphone-context unit (L3), the right/following-triphone-
context unit (R3), and the monophone unit (C1). We call this
composition C1L3R3 and it is shown structurally in Fig. 10c.

As can be seen, the number of context units to be
estimated is reduced from N5 to ð2N3 þNÞ, without loss of
context coverage, where N is the number of phones. If we
use a 44-phoneme set for English ASR, the total number of
different contexts that need to be estimated in the
pentaphone model is 445 ¼� 165; 000; 000 context units. A
composition with triphone-context units reduces the com-
plexity to about 170,000 context units.

Analyzing (29) and (30), we can see that (27) can be used
as a starting point for deriving other compositions of the
HMM phonetic model as well. In the case where we assume
that � is monophone unit =a=, and CL and CR are the ones
preceding and following context unit =a�= and =aþ=,
respectively, we can obtain the same factorization as one
that has been proposed [22], [23] and that is known as the
Bayesian triphone:

P ðXsj½a�; a; aþ�Þ ¼
P ðXsj½a�; a�ÞP ðXsj½a; aþ�Þ

P ðXsj½a�Þ
; ð31Þ

where the triphone model is constructed from monophone
and biphone models. After this, any models composed in
this way will also be called Bayesian models.

The extended version of the Bayesian triphone, the so-
called Bayesian wide-phonetic context model, can also be
found in our previous study [24], [25]. This approach allows
us to model a wide range of phonetic contexts from less
context-dependent models simply based on Bayes’ rule.
However, difficulties arise when different types of knowl-
edge sources need to be incorporated.

In contrast, the current unified framework gives us a
more appropriate means of incorporating various kinds of
knowledge sources. For example, we can easily further
extend C1L3R3 with other additional knowledge variables
such as gender or accent information. We can extend
C1L3R3 with gender information only (C1L3R3-G), with
accent information only (C1L3R3-A), or with both (C1L3R3-
AG). For the case of C1L3R3-AG, the BN topology, when

the moral and triangulated graph, and also its correspond-

ing junction tree become as that shown in Fig. 11, then the

conditional probability function is obtained as

P ðXsjCL;CR; �;A;GÞ

¼ P ðXsj�;A;GÞ
P ðXsjCL; �Þ
P ðXsj�Þ

P ðXsjCR; �Þ
P ðXsj�Þ

¼ P ðXsj�;A;GÞP ðXsjCL; �Þ
P ðXsj�Þ

P ðXsj�;A;GÞP ðXsjCR; �Þ
P ðXsj�Þ

� 1

P ðXsj�;A;GÞ

¼ P ðXsjCL; �;A;GÞP ðXsjCR�;A;GÞ
P ðXsj�;A;GÞ

:

ð32Þ

Thus, following the same setting as C1L3R3 for �, CL, and

CR, the pentaphone likelihood of C1L3R3-AG becomes

P ðXsj½a; a�; a; aþ; aþþ�; A;GÞ

¼ P ðXsj½a; a�; a�; A;GÞP ðXsj½a; aþ; aþþ�; A;GÞ
P ðXsj½a�; A;GÞ

;
ð33Þ

which indicates that P ðXsj½a; a�; a; aþ; aþþ�; A;GÞ can

be simplified by factorizing it into P ðXsj½a�; A;GÞ,
P ðXsj½a; a�; a�; A;GÞ, and P ðXsj½a; aþ; aþþ�; A;GÞ.

The implementation of the proposed pentaphone models

into an ASR system requires a special decoder that can

work with several models. This can be avoided if the

proposed pentaphone models are applied by rescoring the

N-best list generated by a standard triphone-based HMM

system. There is a block diagram of such a rescoring

procedure in Fig. 12.
Word-level N-best recognition is carried out using a

conventional HMM AM and standard Viterbi decoding for

all utterances in the test data. All N-best hypotheses include

an acoustic score, a language model (LM) score, and a

Viterbi segmentation of all phonemes. Every phoneme

segment in each hypothesis is then rescored using the

proposed pentaphone models, as seen in Fig. 13.
There might be some phonetic contexts that have not

appeared during training. For such contexts, the proposed

pentaphone context model is not able to produce any

output probability during recognition. We simply assign a

small numeric value as an output probability to handle this

problem. Flooring is applied to all component models since

this rescoring involves the output probability from the

preceding, the following, and the center models.
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Fig. 11. (a) BN topology describing the conditional relationship between

Xs, �, CL, CR, A, and G. (b) Moral and triangulated graph of that in

Fig. 11a. (c) The corresponding Junction tree.

Fig. 12. The rescoring procedure with Bayesian pentaphone models.



The estimates of parameters even for the proposed
pentaphone model may become unreliable if there is an
insufficient amount of training data, as may occur with the
state output. We used deleted interpolation to improve the
reliability of the model, which allows us to fall back to a more
reliable model when the supposedly more precise model is, in
fact, unreliable [26]. The concept involves interpolating two
separately trained models, one of which is more reliably
trained than the other. However, instead of interpolating two
models, we applied this approach to interpolating two
phonetic likelihoods, where the phonetic likelihood of the
proposed Bayesian pentaphone model, P ðXsj�bayPentaÞ, is the
precise one, whereas the triphone likelihood, P ðXsj�triphnÞ, is
the more reliable one; therefore, the interpolation phonetic
likelihood, P ðXsj�Þ, is obtained as

P ðXsj�Þ ¼ �P ðXsj�bayPentaÞ þ ð1� �ÞP ðXsj�triphnÞ; ð34Þ

where � represents the weight of the HMM phonetic
likelihood of the proposed pentaphone model and ð1� �Þ
represents the weight of the HMM phonetic likelihood of
the triphone model. If there is a sufficiently large amount of
training data, P ðXsj�bayPentaÞ becomes more reliable and � is
expected to tend toward 1.0. However, if there is not, � will
tend toward 0.0 so as to fall back to the more reliable model,
P ðXsj�triphnÞ.

All left/right contexts will be filled by silence at the
beginning/end utterances. Since we assumed that there
would be no long silences between adjacent words, the last
phonetic context from the previous word will also affect the
beginning phonetic context of the current word. This
rescoring mechanism thus behaves the same way for all
segments within and in-between words (crossword model).
The new scores are then combined with the LM score for the
current hypothesis. The hypothesis achieving the highest
total utterance score from the N-best is selected as the new
recognition output.

6 EXPERIMENTS

The accented English speech corpus of the Advanced
Telecommunication Research (ATR) Institute International
(Japan) was used in these experiments. The text material was
based on the basic domain of expressions used in travel. The
speech database consisted of American (US) and Australian
(AUS) English accents with about 45,000 utterances
(� 44 speech hours) spoken by 100 speakers (50 males and

50 females) for each accent. We used 90 percent of the data or
about 40,000 utterances (20,000 utterances by 40 speakers for
each male and female) as the training data. We randomly
selected 200 utterances for evaluation, spoken by 20 dif-
ferent speakers (10 males and 10 females) from the
remaining 10 percent of mixed accented data (US and
AUS). Bigram and trigram language models were trained
on about 150,000 travel-related sentences. The available
pronunciation dictionary consisted of about 37,000 words
and was based on US pronunciations.

A sampling frequency of 16 kHz, a frame length of 20 ms,
a frame shift of 10 ms, and 25-dimensional feature
parameters consisting of 12-order MFCC, � MFCC, and
� log power were used as the feature parameters. Three
states were used as the initial HMM for all phonemes. A
triphone AM with a shared-state HMnet topology was then
obtained using a successive state splitting (SSS) training
algorithm. The number of shared states was determined
automatically by the algorithm since the SSS algorithm used
here was based on the minimum description length (MDL)
optimization criterion. Details on the MDL-SSS can be found
elsewhere [27]. The SSS topology training was done using all
training data. The number of states was 2,126 in total and
models with four different versions of Gaussian mixture
components per state, that is, 5, 10, 15, and 20, were obtained.

It is also possible to incorporate additional knowledge
such as gender and accent in the conventional triphone AM
by training gender and/or accent dependent AMs. Only a
procedure of embedded training was conducted with a
specific accent or gender training data to ensure the same
structure for the topology for all models. Thus, in total, we
obtained one single triphone AM (without any additional
knowledge), two accent-dependent triphone AMs (for both
US and AUS), two gender-dependent triphone AMs (for
both males and females), and four accent-gender-depen-
dent triphone AMs (for US males and females and AUS
males and females).

How well these baseline models performed with five
mixture components per state is plotted in the graph in
Fig. 14. The triphone baseline without any additional
knowledge achieved a word accuracy of 83.60 percent.
However, only gender-dependent models could improve
performance slightly. The performance of the other models
only decreased. This especially decreased to a word accuracy
of 82.11 percent for the accent-gender-dependent models.
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Fig. 13. The N-best rescoring mechanism.
Fig. 14. Comparing recognition word accuracy rates of the triphone

baseline models having the same five mixture components per state on

the average.



This might be due to the amount of training data, which was
much smaller compared to the other baseline models.

6.1 Performance When Incorporating Knowledge
Sources at HMM State Level

The proposed pentaphone models were trained using the
same amount of training data on all accent data labeled
with phoneme-class context variables, as described in
Section 4.2. The model state topology, the total number of
states, and the transition probabilities were all identical to
the triphone HMM baseline. Therefore, they all had similar
complexity in terms of the number of parameters. The main
difference was only in the probability distribution of states,
where each Gaussian was explicitly conditioned on CL or
CR. All Gaussian components in the HMM baseline, in
contrast, were learned implicitly by the EM algorithm,
without any “meaningful” interpretation of the mixture
index. There were some phoneme context classes of CL or
CR which did not exist due to grammatical rules or did not
appear in the training data, which, after training, resulted in
about 50 Gaussians per state on the average. We used a
data-driven clustering technique and reduced the size of the
pentaphone models to correspond to 5, 10, 15, and
20 mixture components per state to avoid unreliably
estimated parameters and to be able to compare the
performance with the baseline system by having exactly
the same total number of Gaussians.

We first evaluated how well the pentaphone models BN-C,
BN-CG, BN-CA, or BN-CGA performed, using the same test
data as for the baseline. The results for all four models having
the same five mixture components per state on the average
are plotted in Fig. 15. As can be seen, we obtained improved
recognition using all types of BNs by only changing the
probability distribution of states to incorporate various type
of knowledge sources. However, the incorporation of gender
and accent variables did not improve the recognition rate of
the proposed models any further. This problem may again be
related to the limited amount of training data for each accent
or gender dependent model. That is why the best perfor-
mance was obtained using BN-C achieving a word accuracy
of 85.03 percent.

We evaluated it on a test set of matching accents, where
the test data were 200 randomly selected utterances from
each accent (US and AUS) to investigate what effect using

BN-C had in more detail. The results obtained with models
with different numbers of mixture components are sum-
marized in Table 2.

It can be seen that the proposed pentaphone models
always performed better than the baseline within the same
number of parameters. The best performance for the
US pentaphone HMM/BN was obtained with 10 Gaussian
mixtures, which resulted in a relative reduction in WER of
about 8 percent, and the best performance for the AUS
pentaphone was obtained with 20 Gaussian mixtures,
which resulted in a relative reduction in WER of about
11 percent. We also evaluated the performance of these
pentaphone models on a test set of mismatching accents, for
example, the US speech trained model was tested on the
AUS speech test data and vice versa. The results obtained
using the models with 15 mixture components are
summarized in Table 3. The results from evaluating
matching accents have also been included to enable easy
comparison. We can see that the pentaphone model on
mismatching accents still consistently outperforms the
standard HMM triphone model.

6.2 Performance When Incorporating Knowledge
Sources at HMM Phonetic Model Level

We investigated [24], [25] several different ways of
decomposing pentaphone models and found that the best
was C1L3R3 composition. Here, we describe additional
experiments only using the C1L3R3 model.

All components of all accented pentaphone models were
trained separately using the same amount of training data
and the same SSS training algorithm. There were a total of
3,660 states (sum of C1: 132 states, L3: 1,746 states, and R3:
1,782 states) with four different versions of Gaussian
mixture component numbers per state, that is, 5, 10, 15,
and 20. An embedded training procedure was then carried
out for pentaphones C1L3R3-A, C1L3R3-G, and C1L3R3-
AG with specific accent or gender training data.
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Fig. 15. Comparing recognition word accuracy rates of the pentaphone

HMM/BN models using different BN topologies (BN-C, BN-CG, BN-CA,

and BN-CGA, as shown in Figs. 7 and Figs. 8a, 8b, and 8c respectively),

but having the same five mixture components per state on the average.

TABLE 2
Recognition Accuracy Rates (%) for the Proposed Pentaphone

HMM/BN Model Using BN-C (See Fig. 7) on a
Test Set of Matching Accents with Different Number

of Mixture Components

TABLE 3
Recognition Accuracy Rates (%) for the Proposed Pentaphone

HMM/BN Model Using BN-C (See Fig. 7) on a
Test Set of Mismatching Accents with 15 Mixture Components



We first evaluated what effect incorporating additional

knowledge sources would have on multiaccented test data.

The results for the proposed pentaphones C1L3R3, C1L3R3-

A, C1L3R3-G, and C1L3R3-AG having five mixture compo-

nents are summarized in Fig. 16. The rescoring was done

using a 10-best list and a 0.3 weight parameter, �, for

deleted interpolation. As can be seen, the more knowledge

sources we incorporated, the better the performance. The

proposed pentaphone C1L3R3 model improved perfor-

mance relative to the baseline and the best performance that

was achieved was a word accuracy of 84.38 percent with

C1L3R3-AG, which incorporated additional knowledge of

accent A, gender G, second preceding context CL, and

succeeding context CR. Performance did not decrease when

gender and accent were incorporated, as was the case for

pentaphone HMM/BN, which is probably due to the use of

deleted interpolation.
We next investigated how well C1L3R3-AG performed

on all accented test data in more detail, with the N-best

ðN ¼ 10Þ list. The weight parameter, �, for deleted inter-

polation was the same (0.3). Here, we measured both the

relative improvement (Rel-Imp) and the relative improve-

ment to rescoring (Rel-Resc-Imp) as used in [10]:

RelRescImp ¼ RescoringResult�Baseline
NbestListUpperBound�Baseline ; ð35Þ

where the N-best list upper bound is the N-best recognition
result.

The results obtained with models with different numbers
of mixture components are summarized in Table 4. As can
be seen, the proposed pentaphone model consistently
improved the performance of the ASR system. The largest
Rel-Resc-Imp was achieved with 15 mixture models for
both US and AUS accents (37.92 percent for the US model
and 38.04 percent for the AUS model).

We also evaluated how well the proposed pentaphone
C1L3R3-AG model performed on a test set of mismatching
accents. The results obtained using a model with 15 mixture
components are summarized in Table 5. The results from
evaluating matching accents have also been included to
enable easy comparison. We can see that the pentaphone
C1L3R3-AG model we propose also consistently outper-
forms the standard triphone model with mismatching
accents.

6.3 Comparison of Different Models

Last, we conducted additional experiments with a conven-
tional pentaphone HMM model with 2,202 states, which
was trained from scratch using MDL-SSS, to investigate
whether the superior performance of our proposed models
is mainly due only to the wide-phonetic context. Penta-
phone models that were dependent on accent and gender
were also obtained using a procedure of embedded training
with specific accent or gender training data. They were
implemented by rescoring the N-best list, as was the case
for the Bayesian pentaphone.

The results for all models with five mixture components
per state are plotted in Fig. 17. As can be seen, the proposed
pentaphone C1L3R3 model improved performance relative
to the baseline and this was better than just rescoring with
the conventional pentaphone HMM. This might be because,
given the amount of training data, the training of the
conventional pentaphone model using the MDL-SSS algo-
rithm resulted in a model with 2,202 total states, which is
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Fig. 16. Comparing recognition accuracy rates of different Bayesian

pentaphone models, C1L3R3, C1L3R3-A, C1L3R3-G, and C1L3R3-AG,

having the same five mixture components per state.

TABLE 4
Recognition Accuracy Rates (%) for the Proposed Bayesian Pentaphone C1L3R3-AG (See (33))

on a Test Set of Matching Accents with Different Number of Mixture Components

TABLE 5
Recognition Accuracy Rates (%) for the Proposed Bayesian Pentaphone C1L3R3-AG Model (See (33))

on a Test Set of Mismatching Accents with 15 Mixture Components



not that different from the total number of states in the
triphone HMM. The resolution of context was reduced as
there seemed to be too many different pentaphone contexts
sharing the same Gaussian components. Thus, approximat-
ing a pentaphone model using the composition of several
less context-dependent models could help to increase the
resolution of context and improve performance. The best
performance that was achieved was a word accuracy of
85.03 percent with BN-C.

7 CONCLUSION

We presented a general framework for incorporating
additional knowledge sources into HMM-based statistical
acoustic models. We also demonstrated the implementation
of this framework by incorporating wide-phonetic context
information into a triphone HMM. This was first done at
HMM state level by means of BN. If the additional
knowledge sources are assumed to be hidden during
recognition, our approach allows the use of the standard
decoding system without modification. Second, we incor-
porated the wide-phonetic context acoustic modeling at the
HMM phonetic model level by constructing a model from
several other models that had narrower contexts. As this
technique of composition led to a reduction in the number
of context units to be estimated, the resolution of contexts
could be considerably improved since only less context-
dependent models needed to be estimated. We applied
these wide-context-model compositions at the postproces-
sing stage with N-best rescoring. The experimental results
revealed that the wide-phonetic context models developed
with the proposed framework improved word accuracy
with respect to standard triphone models. Additional
knowledge of the second preceding context, CL, and the
succeeding context, CR, was appropriate to incorporate at
HMM state level, whereas additional knowledge of
accent A and gender G, was more appropriate to incorpo-
rate at the HMM phonetic model level.
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