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Abstract—The use of a psychoacoustic roughness model as a
predictor of creaky voice is reported. We found that the rough-
ness temporal profile of vocalic segments can predict the presence
of creakiness in speech. Using a simple bi-directional Recurrent
Neural Network (rnn), we were able to predict the presence of
creakiness in vocalic segments from only roughness traces with
an accuracy similar to that obtained with rnns trained on at least
12-dimensional input data (including amplitude difference between
the first two harmonics, residual peak prominence, etc.). Training
rnns with the combination of roughness and multidimensional
input data improved the performance of the predictor, but not
significantly. Likewise, augmenting the dataset by time derivatives
of the input features did not improve the predictor’s performance.
The proposed roughness-based predictor eases interpretation and
comparison of creakiness among corpora and suggests that rough-
ness prediction models could be successfully used for classification
of creaky intervals in speech.

Index Terms—Creakiness, Psychoacoustic Roughness,
Recurrent Neural Networks, Phonation, Tone Classification.

I. INTRODUCTION

CREAKY voice, vocal or glottal fry, creak, creakiness,
laryngealization, pulse register phonation, and other terms

are used in different disciplines to describe a kind of phonation
often characterized by irregular pulses of the glottis at low
frequencies (≤70 Hz) [1], [2].

Creakiness has been observed in patients with pathologies
such as spasmodic dysphonia [3] and Parkinson’s disease [4]. It
also plays different roles in several languages: It is used in Jalapa
Mazatec as a means of main contrast between tones [5]. In other
languages such as Mandarin, it has a supportive or secondary role
accompanying acoustic features such as fundamental frequency
(F0) [6], and it is used in Finnish for marking turn transitions [7].
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Moreover, in other languages creakiness has been associated
with marking parenthetical information [8], conforming with a
specific demographic group’s way of speaking [9], etc. The focus
of this research is primarily on the phonemic role of creakiness,
i.e., on how it is used for distinguishing words.

From a physiological perspective, there seems to be a variety
of ways to produce this phonation, and some authors have
suggested that rather than a single phenomenon, creakiness is
a set of differently produced phenomena [10]. Speakers who
routinely use creaky speech may differ in the way they produce
it, but ultimately, they are capable of successfully modifying
their production in such a way that their interlocutors are able to
distinguish creaky from non-creaky speech. Blomgren et al. [11]
reported that listeners were capable of classifying modal and
creaky (fry) utterances with accuracy ≥95.5% (1100 responses
for each kind of phonation). Additional evidence supporting the
idea that listeners can distinguish between modal and creaky
phonation regardless of how it is produced is provided by
Gerratt and Kreiman [12]. Thus, perceptual attributes of speech,
as opposed to unprocessed acoustic attributes or physiological
correlates, could be good predictors of creakiness.

Among perceptual attributes of sound in general, psychoa-
coustic roughness seems to be related to the perception of creak-
iness. In the literature, both terms have been used to describe the
other. For example, Titze posed that “creaky voice seems to be
perceived as some combination of low pitch and roughness”
[13]. Conversely, when describing the relationship between
roughness and the number of audible beats, Helmholtz [14,
p. 171] mentioned that “slow beats give a coarse kind of
roughness which can be described as rattling or jarring.” In
alternative translations of the German word ‘knarrend,’ the term
‘creaking’ has been used instead of ‘jarring’ [15]. Additionally,
De Bruijn and Whiteside found that roughness and creakiness are
strongly correlated when used for voice quality evaluation. This
correlation was observed in ratings of language therapists and
seems unaffected by differences in their years of experience [16].

Despite these commonalities, note that psychoacoustic rough-
ness is a prothetic sensation (i.e., a percept on a continuum) [17],
whereas creakiness is a metathetic sensation (i.e., a categorical
percept) [12], so the two perceptual attributes are different, and
in this study the former was used to predict the latter.

Also note that in the framework of the Consensus Auditory-
Perceptual Evaluation of Voice (CAPE-V) [18], the term ‘rough-
ness’ was used as one of six voice quality features, and it
was defined as “perceived irregularity in the voicing source.”
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In this article, however, we use ‘roughness’ to refer to the
psychoacoustic feature exclusively.

Recently, roughness has been linked to the perception of
dysphonic voice [19]. The authors of that study found that
psychoacoustic roughness models used to predict roughness of
sinusoids, narrowband noise, etc., could also model reported
roughness of dysphonic voice. In this study we investigated the
possible role of psychoacoustic roughness in the perception of
creakiness. To the extent of the authors’ knowledge, this is the
first study relating these phenomena.

Concretely, the purpose of this research is two-fold: 1) to
investigate the feasibility of psychoacoustic roughness models to
predict creaky intervals in speech, and 2) to compare roughness-
based predictions with those made by state-of-the-art predictors.
An automatic predictor of creakiness based on psychoacoustic
roughness could provide a better understanding of the use of
phonation as a means of contrast in some languages since it
focuses on the reception/feedback end of the speech chain [20],
rather than on the production side. Furthermore, it could also
help to improve current detection methods of non-modal phona-
tion, for the same reasons.

The rest of the article is organized as follows: Section II
discusses the current understanding of creaky phonation and
psychoacoustic roughness, as well as some of their prediction
models. Section III describes the corpus used in our research
and discusses the feasibility and accuracy of roughness as a
creaky predictor. In Section IV, the results of our experiments
are discussed along with future work. Section V concludes the
manuscript with a summary of our main findings.

II. BACKGROUND

A. Creakiness

Creaky phonation has been considered in some accounts
as a point along a continuum between a fully open glottis
(breathiness/voicelessness) and a fully closed glottis (glottal
stop/closure) [21]–[24]. In this school of thought, such phona-
tion is produced when the vocal folds have weak longitudinal
tension while greatly adducted (i.e., arytenoid cartilages pressed
together), thereby reducing the overall glottal opening and con-
tributing to a slow and sometimes irregular vibration of the vocal
folds [25]. Compared to modal voice, this glottal constriction
is also reflected in a lower rate of airflow and Open Quotient
(OQ)—the ratio of the open phase to a complete cycle of vocal
fold vibration [26].

In a different view, creakiness has been regarded not as a
region on a continuum between a fully open and closed glottis,
but as the combined effect of different glottal mechanisms
to control airflow through the throat [27]. These mechanisms
are selectively used by speakers to modulate their phonation;
for example, creakiness is presumably produced by vocal fold
adduction and abduction, and upward and forward sphincteric
compression of the arytenoids. By additionally engaging ven-
tricular incursion, harsh speech may be produced.

Different articulation settings translate into different acoustic
features. E.g., for low OQ (when vocal folds remain closed longer
than in modal phonation), the amplitude ofF0 relative to the next

harmonic decreases. As a consequence, various metrics have
been used to derive the presence of creakiness from acoustic
signals including spectral tilt, F0, F0 jitter, and Harmonic-to-
Noise Ratio (HNR).

Among spectral tilt measurements, the aforementioned ampli-
tude difference between F0 (the first harmonic) and the second
harmonic is known as H1–H2, and its formant-corrected ver-
sion as H1∗–H2∗. These differences have commonly been used
to predict creakiness, and the latter has seemed to yield better
correlations with observed creakiness across different language
corpora [10], [28]–[30]. Other differences such as H2–H4,
H1–A1, (A1 being the tallest harmonic amplitude within the first
formant), or peaks in higher formants (An) have been explored,
but they did not outperform H1∗–H2∗ in general, even after
compensating for the influence of formant energies [31].

Computing a linear regression between quefrency and cesp-
stral magnitude has revealed larger deviations (prominences)
from this line for periodic signals compared to those observed
on aperiodic signals [32]. Low Cepstral Peak Prominence (CPP)
compared to that of modal phonation has also been associated
with the presence of creakiness, arguably because of irregulari-
ties in the vibration of the vocal folds [33]. These irregularities
have also manifested in high F0 jitter, low HNR, and high
SHR—Sub-harmonic to Harmonic Ratio (the ratio between the
magnitude of harmonics below the fundamental frequency and
those above it) [34].

Different articulation settings are the basis for sub-
classifications of creakiness. Depending upon the predomi-
nant articulation within a group of people, the performance of
acoustic features as predictors of creaky segments varies. This
variation in performance has hindered study and comparison
of creakiness in speech since researchers have often chosen
different acoustic features to discuss their findings.

Recently, tools merging different acoustic features and heuris-
tics have been developed for automatic prediction of creakiness.
These tools are, in general, more robust than predictions made
by individual acoustic features, and some of them are discussed
in following.

B. Creakiness Prediction Models

High speed video [35], electroglottographic recordings [36],
and other methods have been proposed to detect creakiness,
but audio recordings are perhaps the most popular source for
creakiness detection. A brief selection of the methods to estimate
creakiness from audio recordings is presented here.

1) Vishnubhotla’s Method: Vishnubhotla and Espy-Wilson
[37] proposed an extension to an aperiodicity, periodicity, and
pitch detector. This extension was capable of detecting creaki-
ness in running speech with no prior information about vocalic
segments in the speech signal. To achieve that, the signal is
split into frequency channels via a filter-bank, and periodic
structures are sought in each channel. With this information,
vocalic segments are determined, and creakiness within a vocalic
segment is detected through a characterization of each frame
based on a number of features. The authors claimed an 87%
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TABLE I
BASIC FEATURES USED IN COVAREP TO PREDICT CREAKINESS

correct recognition rate of creakiness on continuous running
speech.

2) Ishi’s Method: Creakiness introduces long fundamental
periods, longer than the window-size commonly used in F0
analyses, yielding them ineffective. Ishi et al. [38] tackled this
problem by performing a pulse-synchronized analysis of the
signal. Additionally, they proposed to filter the signal between
0.1–1.5 kHz, select possible creaky frames considering local
power peaks, and determine frame creakiness based on intra-
frame periodicity and inter-pulse similarity. They reported a 74%
correct detection of creakiness with this method.

3) Kane’s Method: More recently, an automatic detection of
creakiness based on the presence of secondary excitation peaks
in the residual signal of a linear prediction filter and residual peak
prominence was proposed by Kane et al. [39]. In this method,
both features are used as input of a decision tree classifier. They
also used a routine to improve creakiness detection by excluding
unvoiced and non-speech intervals, and by considering the dura-
tion of the creaky segments, etc. The authors reported that their
method achieved significant improvements on the classification
accuracy of creaky segments in clean recordings (measured as
F-score) relative to that obtained with Ishi’s derived methods.

4) Covarep Classifier: In addition to the acoustic features
discussed by Kane et al. [39], the same authors acknowledged
in [40] the importance of speech features such as H1–H2 in the
characterization of creaky voice. They included these features
along with those proposed by Ishi et al. [38] in an automatic
detector of creaky voice. An implementation of this method
is included in Covarep (v. 1.4.2) [41], a Matlab [42] library
comprising several routines for speech analysis.

In Covarep’s implementation, an Artificial Neural Network
(ANN) is used for the creakiness decision. This ANN is fed with
36 features: 12 basic features summarized in Table I, along
with their first- and second-order time derivatives. F0 and F0
mean are computed with a method based on the Summation of
Residual Harmonics (SRH).

5) Mori’s Method: Mori et al. [43] analyzed spontaneous
Japanese speech. Vowels were marked as ‘creaky,’ ‘breathy,’
or ‘modal’ by two experts. They considered 15 basic features
(intensity, F0, F1, F2, F3, F0 jitter, HNR, H1–H2, H1–A1,
among others). Additionally, a 364-feature vector was extracted
with openSMILE [44]. These features were fed to two machine

learning algorithms: Random Forest—RF and Support Vector
Machine—SVM. Using the mix of basic and extra features, they
obtained an Area Under the Receiver Operating Characteristic
Curve AUC = .903 for breathy voice, and an AUC = .872 for
creaky voice with the RF algorithm. Although the AUC was high,
the F-score was 0.62 for breathy and 0.59 for creaky voice,
indicating that the RF performance was not as good as that
achieved by experts.

C. Interim Discussion

From the surveyed literature, it seems that the Covarep clas-
sifier is the most popular (see for example, [45]–[47]). This
classifier outputs creakiness probability and binary decision per
frame, every 10 ms. However, there is no consensus on how to
determine the creakiness of a segment based upon the creakiness
of its constituent frames. First of all, the threshold used in
Covarep on the binary decision of a frame’s creakiness seems to
be corpus-dependent [48]. Hence, gauging the creakiness of a
segment becomes problematic. Kuang [49] used the mean of
frame binary decisions to determine a segment’s creakiness,
while other alternatives exist, such as computing the log of
creaky probability for each segment and computing their mean,
etc. [50].

Furthermore, many languages are known to have creaky
phonation focused at specific times in vocalic segments. For
example in Burmese, it has been reported that creakiness usually
appears only in the second half of a creaky tone [68]. Thus,
means taken from the entire vocalic segment may not be appro-
priate in these cases.

D. Psychoacoustic Roughness

Roughness is a psychoacoustic attribute of a sound (not only
speech) comparable to pitch, loudness, sharpness, etc. In the
same way that any sound has some degree of loudness or pitch, it
also has some degree of roughness. Roughness produces contin-
uous and quantitative changes associated with rapid amplitude
modulations (between 15–300 Hz). Perceived roughness reaches
a maximum for modulation frequencies around 70 Hz [51].

One asper (the unit of roughness) is defined as the roughness
elicited by a 100% Amplitude-Modulated (AM) 1 kHz sinusoid
at a modulation frequency of 70 Hz, presented at 60 dB (SPL)
[52]. By manipulating the modulation index of this AM sinusoid,
the absolute threshold of roughness perception was found to be
0.07 aspers, and its just noticeable difference ΔR/R = 17%.
I.e., in order to perceive a change of roughness ΔR, it must be
at least 17% of its current value R [51].

Apart from the modulation index and modulation frequency
in AM sinusoids, roughness is influenced by the Sound Pres-
sure Level (SPL), frequency deviation (in frequency modulated
sinusoids), etc. [52]. Roughness is not exclusive of periodic
amplitude modulations. Random modulations (like those found
in narrowband noise) yield high values of roughness as well.

Important contributions to the understanding of roughness
came originally from Helmholtz [14], who observed that mu-
sical consonance could be explained in terms of the roughness
produced by the interactions between frequency components of
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Fig. 1. Roughness dependencies: discrepancy between the temporal masking
depth ΔL and the crest-trough difference h appears for rapid modulation
frequencies. This difference varies with modulation period τmod, the inverse
of the modulation frequency fmod.

simultaneous complex waves. Later, Terhardt [51] found that rel-
ative amplitude fluctuation almost exclusively explained rough-
ness of amplitude- and frequency-modulated sounds, while
Plomp and Levelt [53] linked the maximum roughness elicitation
to a separation of ∼25% of a critical bandwidth (in terms of
critical bands as reported by Zwicker et al. [54]). More recently,
Pressnitzer and McAdams [55] found that phase and temporal
asymmetries of a sound wave also contribute to the perception
of roughness. Roughness seems to play a major role in sensory
pleasantness [56], sound quality [57], musical dissonance [58],
[59], psychoacoustic annoyance [52], and speech intelligibil-
ity [60].

E. Roughness Prediction Models

Roughness prediction models can be categorized according
to two views: spectral approaches, which are based exclusively
on the spectral segregation made by the basilar membrane [61],
and temporal approaches, which also take into account temporal
aspects of the signal such as the phase-lock of nerve cells to
the period of the stimuli [62], [63]. Among the former group,
some of the most important models correspond to those of
Helmholtz [14], Plomp and Levelt [53], Sethares [64], and
Vassilakis [65]. In domains where the beating of harmonics is
supposed to be the most important source of roughness (e.g.,
musical dissonance), spectral approaches have been widely
adopted. Temporal approaches have more commonly been used
in other applications such as measurement or prediction of
auditory annoyance, etc.

Creaky speech features temporal envelope modulations of
around 20–70 Hz. Hence, in this study we opted for using a
temporal model to predict roughness. In this kind of model, the
roughness R is considered to be dependent chiefly on frequency
and temporal resolution of the hearing system [52]. This is
approximated as

R ∼ fmodΔL (1)

where fmod is the frequency of amplitude modulation andΔL is
the temporal masking depth, as illustrated in Fig. 1.ΔL accounts
for the fact that rapid changes in the amplitude envelope of a
signal are not accurately perceived, i.e., ΔL < h, the true crest–
trough difference of the modulation.

More precise prediction models of roughness compute the
temporal masking depth through different auditory channels

R = 0.3
fmod

kHz

∫ 24Bark

0

ΔLE(z)dz

dB/Bark
, (2)

and different models vary upon the computation of ΔLE , the
temporal masking depth of a given auditory channel.

Von Aures [66] estimated global roughness R by computing
specific roughness in 24 disjoint auditory channels correspond-
ing to the bands of the Bark scale, as shown in Eq. (2). He
used cross-correlation between adjacent bands to diminish the
effect of random-like noise on the reported values of roughness.
Daniel and Weber [15] optimized von Aures’ model mainly by
increasing (and overlapping) the number of auditory channels.

F. Roughness Prediction Model Used in This Study

In the current study, we measured objective roughness using a
Matlab implementation of Daniel and Weber’s model [67]. This
implementation was found to closely match empirical results
reported by von Aures [66] on the roughness of AM sinusoids at
different modulation frequencies and different frequency bands
(Pearson’s product-moment correlation r = .971, p <.001).

For the computation of roughness temporal profiles, we used
frames that were 50 ms long, Blackman-windowed, and 80%
overlapped (i.e., a 10 ms hop between adjacent analysis frames).
These frames were divided into 47 auditory channels (one bark
width with a half-a-bark overlap between channels), covering the
audible spectrum from 20 Hz to 15.5 kHz. Specific roughness
for each channel was computed and total roughness of each
frame was obtained as a weighted sum of each channel’s specific
roughness.

III. METHODS

In this section, prediction of creakiness by roughness is de-
tailed. First, we describe the nature of the Burmese language
corpus used here. Next, we compare roughness, spectral tilt, and
Covarep prediction temporal profiles, to illustrate the feasibility
of roughness as a predictor. Finally, we present a series of
experiments with Recurrent artificial Neural Networks (RNNs).

A. Materials

1) Burmese: Burmese has four contrastive tones that are
associated with vowels: Creaky, checked, high, and low. Every
vowel has one of these four tones with the exception of vowels in
minor syllables, not discussed here. Tone is contrastive, meaning
that it is important in distinguishing words from one another.
Table II illustrates this with four words that differ only in their
tone.

Tone in languages is commonly associated with the con-
trastive use of different F0 contours; however, in Burmese, not
only F0, but also duration, intensity, and phonation are involved
in the four-way tone contrast, as shown in Table II.

Creaky tone involves a short-duration vowel with a high
falling F0 contour characterized by gradually increasing creak-
iness, especially in the latter part of the vowel. Checked tone
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TABLE II
EXAMPLES OF BURMESE WORDS VARYING THEIR MEANING WITH TONE

differs from creaky tone in that it has an even shorter duration
and a more abrupt final laryngeal constriction (a glottal stop
coda), usually accompanied with some creak. In fact, checked
tones are often viewed as a distinct syllable type, rather than
a tone due to this final glottal stop. While checked tones are
all spoken with glottal stop codas, the Burmese writing system
encodes for obstruent codas with different places of articulation.
Historically, these codas could vary in place of articulation, but
this distinction has reportedly been neutralized in the modern
spoken language [68].

High tone is described as having a long duration and some-
times as breathy. Low tone is described as having a similarly
long duration but with modal phonation. While low tone has a
low F0 throughout its duration, high tone has a relatively higher
peak F0 with a contour that varies depending on its context;
in citation form, it has a falling contour. High tone has a more
moderateF0 relative to creaky and checked tones, i.e., it is closer
to a mid tone and the use of ‘high’ is to contrast it with the low
tone. Regarding intensity, checked tone has the highest intensity,
followed in order by creaky, high, and low tone.

Previous acoustic studies of phonation in Burmese tones have
met with varying levels of success. Spectral tilt (measured as
H1∗–H2∗ or similar spectral differences) showed a poor ability
to predict creakiness [69]. Gruber noted that this result may have
partly been due to the fact that creakiness is located towards the
latter part of the vowel in Burmese, and may not be detectable at
the midpoint, where these previous studies attempted to measure
it [68]. He also found that measuring spectral tilt closer to the
endpoint of the vowel yields a higher correlation with creaky
tone status.

2) Corpus: The corpus used in our experiments comprised
single words uttered by twelve native speakers (six of each gen-
der) of mostly Yangon Burmese. One of the speakers (BRM510)
was from Magway, Myanmar. Gruber [68] found that the phona-
tion contrast in Burmese is neutralized in carrier sentences and
is only seen in citation form (i.e., words read in isolation). We
elicited the same word list in citation and carrier sentences,
verifying Gruber’s finding that creakiness is only produced in
citation form. Thus, we focused only on the citation form for
this study.

All recordings were made in a quiet room where speakers
wore a head-mounted unidirectional microphone (Shure WD30)

connected to a solid-state recorder (Marantz PMD661 MKII)
which stored the audio at a sampling rate of 44.1 kHz.

78 monosyllabic Burmese words repeated five times were
produced in isolation by each speaker, resulting in a corpus of
4,679 tokens (one token was discarded). The word list was nearly
balanced across the four language tones: 18 words had either
creaky, low, or high tone, and 24 words had a checked tone.
Examples of these tones uttered by the same female speaker
are presented in Fig. 2; additional multimedia examples can be
found at http://onkyo.u-aizu.ac.jp/software/creakbyr.

In addition, the word list was balanced for coda type (no coda
vs. nasal coda) and vowel quality ([i], [u], and [a]). We varied the
orthographic obstruent coda, just in case this did have an effect
on the spoken forms. Onset consonants were mostly alveolar
(62 words) with some velars (15 words) and a single word with
a palatal onset. Most words had obstruent onsets (59 words),
19 words had sonorant onsets (eleven with liquid [l] and eight
with nasal onsets). Bilabial onsets were not used.

The vocalic segments of the audio files (one per token) were
manually labeled in Praat [70]. Onset of regular glottal pulses
was used to mark the beginning of each vocalic segment. The
offset of the vocalic segments was placed at the end of the final
glottal pulse. Finally, all boundaries were moved to the nearest
zero-crossing.

3) Validation: To assess whether the pronunciation of our
speakers was similar to that described by the dictionary, we ran-
domly selected a number of utterances per tone and speaker for
manual verification. This review was independently performed
by three of the authors, and we considered the spectrogram,
waveform, and audio of each utterance to determine whether
it was creaky or not. In total, the judges reviewed 492 utter-
ances (about 11% of the corpus). The sample size for each
combination of speaker and tone was ten, except in the case of
checked tone (the most numerous among the four tones) where
it was eleven. With this sample size, the margin of error was
m = ±3 [t(9) = 2.262] with a confidence interval CI = 95%,
a finite population correction of 0.889, and assuming a standard
deviation SD = 0.05.

Fleiss’ Kappa index κ was computed to assess the inter-rater
agreement with the library irr [71] in R [72]. It was found that
there was very good agreement between the three judges, κ =
.94 [z = 36.1, p <.001]. Fig. 3 presents the results of the manual
verification: Percentages were computed from the ratio of the
number of utterances rated as creaky by the judges and the total
number of ratings per speaker and tone. The best agreements
between dictionary entries and expert judgements were obtained
for non-creaky tones (i.e., high and low), with a discrepancy of
2.3%, while for creaky tones (i.e., checked and creaky), these
discrepancies amounted to 8.3%.

Discrepancies between dictionary entries and expert judge-
ments were more abundant for speakers BRM509 and BRM510.
Besides their creakiness opinions, judges were also asked to
comment on each utterance. From these comments, it seems
that speaker BRM509 was some times exaggerating her pro-
nunciation to the point where it was difficult to determine which
tone was being used. On the other hand, BRM510 did not
always use creakiness as expected: For checked and creaky
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Fig. 2. Examples of the vocalic segments for the four Burmese words presented in Table II produced by a female speaker (BRM506). Spectrograms on top,
waveforms and roughness temporal profiles on bottom. Creaky frames, as determined by the roughness-based prediction, are indicated by filled squares.

tones, he used short vocalic segments with a sharp fall of
F0, but without creakiness in many cases. This speaker came
from a different region than the rest of the speakers, so it is
possible that dialectal variation could explain his pronuncia-
tion. In all cases, the discrepancies found between dictionary
entries and expert judgements could be considered normal in
the context of inter-speaker or dialectal variation. We decided to
preserve all utterances, which makes our corpus consequently
noisy.

B. Comparison of the Temporal Profiles of Several Predictors

We compared two common alternatives to estimate creakiness
with a roughness-based prediction on the vocalic segments of
the Burmese corpus as a way to assess the feasibility of the latter.
These alternatives were spectral tilt and the method implemented
in Covarep (creakiness probability and binary decision).

1) Alternative Methods: Spectral tilt was measured as H1∗–
H2∗. For each utterance in our corpus, spectral tilt was mea-
sured every 10 ms with Voicesauce (v. 1.36) [73]. Covarep

measurements were computed at the same rate with no mod-
ifications to the algorithm. We registered the probability of
creakiness and binary decisions for creakiness as output by the
program.

2) Creakiness Prediction Based on Objective Roughness:
For the roughness-based prediction of creakiness, we used the
roughness implementation described above in Section II-F. Ad-
ditionally, the following adjustments were made: Monophonic
audio recordings were resampled at 16 kHz to minimize the
effect of high frequency roughness. Note that similar resampling
is performed in Covarep and other methods, arguably to reduce
computational load. Recordings were also DC-filtered, and am-
plitude peak-normalized to be 0 dB (re. Full Scale—FS). Since
the actual pressure level at which each utterance was produced
is unknown, it was assumed that each audio frame was produced
at a sound pressure level of 80 dB, effectively eliminating SPL

differences between frames.
With these settings, preliminary visual inspection of rough-

ness temporal profiles suggested that the vocalic segment of
creaky tokens displayed frames with either large values of
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Fig. 3. Percentage of utterances rated ‘creaky’ by three experts for each tone
in a sample of words randomly selected from our corpus. Top and bottom rows
correspond to female and male speakers, respectively.

roughness or extreme roughness changes from frame to frame. In
light of this, we arbitrarily set an absolute roughness threshold of
4.0 aspers, above which a given frame was considered creaky. In
similar fashion, a frame was considered creaky if it was 1 asper
higher than any of those in a 5-frame vicinity (frames were 50 ms
long, overlapped 80%). This was implemented via a Hankel-like
matrix with five columns and as many rows as needed depending
on the length of the vocalic segment. Roughness traces with
estimated creaky frames in the vocalic segments of the words
presented in Table II, as uttered by a female speaker, are shown
in Fig. 2.

3) Results: Vocalic segment traces corresponding to the
same tone, speaker, and feature (Covarep’s probability and
binary decision; spectral tilt; and roughness binary decision)
were first time-normalized (i.e., setting the time to zero at the
beginning of each vocalic segment, and dividing each frame time
within it by the length of the vocalic segment) and then used to
compute smooth conditional means. The smoothing was done
with a generalized additive model using cubic splines and a span
factor of 0.1% via the function ‘geom_smooth’ [74] in R. 95%
confidence intervals were also computed and are shown in gray
around the smooth lines in Fig. 4.

As shown in Fig. 4(a) and 4(b), predictions made with Co-
varep were not always accurate, regardless of the output used
(probability or binary). For our corpus, the two Covarep outputs
produced very similar results: High and low tones yielded greater
creaky frame probabilities (or number of creaky frames for the
binary decision) than checked and creaky tones for some speak-
ers (e.g., BRM505, BRM508). In other instances, differences
between the traces were minimal (e.g., for speakers BRM503,
BRM506, and BRM509). In fewer instances, Covarep results
were in agreement with the tones (e.g., for speakers BRM501,
BRM512).

The results obtained with spectral tilt measurements were
somewhat better: Creaky tones had a lower spectral tilt than
high and low tones. These differences were not always clear
throughout the time course of each vocalic segment, making
creakiness judgement time-dependent, as shown in Fig. 4(c) (see
speakers BRM504, BRM507, and BRM510, for example).

Except in the case of speaker BRM510, roughness-based
classifications consistently yielded a number of creaky frames
for checked and creaky tones that was higher than that of high
and low tones. This was especially clear in the second half of
the vocalic segment. As mentioned before, a manual revision of
BRM510’s production revealed that this speaker did not always
produce creaky and checked tones with creaky phonation.

In agreement with [68], the roughness-based detector shows
that Burmese creaky and checked tones have late creakiness
in words in isolation. Finally, this experiment confirmed the
feasibility of a roughness-based predictor of creakiness, details
of which are provided in the following section.

C. Classification Based on Recurrent Neural Networks

As discussed in Section III-B, there was clear evidence that
roughness contours could be good predictors of creakiness. In
that section, the criteria for determining the binary creakiness of
a frame was based on visual inspection of roughness contours.
It is very likely that we missed some patterns in the profiles that
could improve the creakiness prediction made with psychoa-
coustic roughness. For that reason, we decided to experiment
with Recurrent Neural Networks (RNNs) as a binary creaky
segment classifier. The task given to the classifier was simply
to decide whether a given vocalic segment is creaky or not. As
previously mentioned, the length of the vocalic segment is in
general different for each utterance. The roughness contour is
a sequence of values (in aspers), one for each speech frame,
and RNNs are especially well suited for modeling such kinds of
temporal data series.

The dataset for this experiment consisted of voiced segments
from all 12 speakers’ utterances. In order to get speaker inde-
pendent results, we used the leave-one-speaker-out strategy, or
12-fold cross validation where the test data for each fold came
from different speakers. The data from the remaining 11 speakers
were randomly split into training and validation sets with a 10:1
ratio. Validation sets were used to tune some of the RNN hyper-
parameters, such as batch size, optimizer, learning rate, etc.

1) RNN Trained Exclusively on Roughness: We experi-
mented with various RNN structures and hyper-parameter com-
binations, but a simple bi-directional RNN with a few layers and
several dozens of Gated Recurrent Units (GRUs) turned out to be
the most suitable. The RNN input is a one-dimensional roughness
contour and the output is also a one-dimensional sigmoid node
for binary prediction. The results given in all of the following
tables are obtained with batch size bs = 10, Adam optimizer
with learning rate lr = 0.001, Binary Cross-Entropy (BCE) loss
function, and a maximum of 50 training epochs. The validation
data loss was monitored during training and the model of the
epoch with the smallest loss was saved for evaluation with the
test data.
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Fig. 4. Smooth conditional means and their corresponding 95% confidence intervals (in gray), computed for Covarep outputs, spectral tilt (i.e., H1∗–H2∗), and
roughness-based prediction. Normalized time is used to account for the length differences between utterances. In each panel, top and bottom rows respectively
correspond to female and male speakers.

In Table III, we summarize classification accuracy, precision,
and recall results in terms of mean and standard deviation (SD)
of the 12 folds. The best accuracy result of 94.5% ± 3.2% was
achieved with a 2-layer RNN and 32 GRU nodes per layer.

2) RNN Trained on Covarep Features: As mentioned earlier,
the Covarep toolkit can predict the probability of creakiness of
a single frame from the 12 features shown in Table I and their
first- and second-order time derivatives. To obtain segment-level
decisions using Covarep predictions, we used majority rule
voting or accumulated log probability score. Unfortunately,
in both cases the classification results were close to random,

i.e. about 50%. Apparently, the reason is that the Multi-Layer
Perceptron (MLP) used in the toolkit had been trained on quite
different data. To perform a fair comparison between Covarep
and our approach, we trained a similar RNN using the same 12
features calculated from our data for the same voiced segments.
The results we obtained are shown in Table IV. As can be
seen, training an RNN with Covarep features yielded slightly
better results than those obtained with only roughness contours.
However, there are two main differences to take into account: i)
roughness contours are unidimensional features (computed from
several channels), while Covarep uses 12 disparate features, i.e.,
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TABLE III
RNN PERFORMANCE IN TERMS OF ACCURACY, PRECISION, AND RECALL

(MEAN AND SD) USING 1-DIMENSIONAL ROUGHNESS DATA

TABLE IV
RNN PERFORMANCE IN TERMS OF ACCURACY, PRECISION, AND RECALL

(MEAN AND SD) USING 12-DIMENSIONAL COVAREP DATA

a 12-dimensional feature vector; ii) the standard deviation of the
accuracy, precision, and recall are noticeably lower in the case
of the RNN trained with roughness contours. Since the standard
deviation is sensitive to outliers, skewness, etc. [75], this finding
suggests that the RNN trained with roughness contours is more
robust against speaker variability.

3) RNN Trained on Roughness and Covarep Features: Since
the roughness contour and the Covarep features differ in their
meaning and extraction methods, there was a possibility that they
could convey somewhat different information. If this assump-
tion were true, then when used together, they could improve
classification accuracy. To confirm this hypothesis, we trained an
RNN with concatenated roughness and Covarep features resulting
in a 13-dimensional network input. All the other experimental
parameters were the same as in the previous experiments. The
results are presented in Table V. Indeed, the classification ac-
curacy of the RNN trained with the combined data improved to
95.6%, but the standard deviation deteriorated with respect to
the previous experiments (SD = 5.3% cf. 3.2% and 4.8% for
the roughness- and Covarep-trained RNNs, respectively).

Additionally, we trained RNNs, where inputs were augmented
by the first- and second-order time derivatives of the corre-
sponding features, i.e. roughness contour, 12 Covarep features,

TABLE V
RNN PERFORMANCE IN TERMS OF ACCURACY, PRECISION, AND RECALL

(MEAN AND SD) USING 13-DIMENSIONAL DATA (CONCATENATING

ROUGHNESS AND COVAREP DATA)

and their combination, resulting in 3-, 36-, and 39-dimensional
vectors. Since RNNs are very good at modeling temporal depen-
dencies, as we expected, there was no noticeable change in the
performance with respect to the cases without derivatives.

IV. DISCUSSION

The combined results of the experiments discussed in
Sections III-B and III-C suggest that models used to predict
psychoacoustic roughness could also be used as predictors
of creaky episodes in speech. Contrasting with the results of
a roughness-based classifier, the creakiness detection routine
implemented in Covarep failed in several cases to distinguish
between creaky and non-creaky tones in our corpus, as shown in
Fig. 4. These results persisted regardless of the Covarep’s output
used.

When using RNNs, the performance of the roughness-based
classifier was very similar to that achieved by using the same
input as the Covarep predictor. However, we believe that our
approach has several advantages with respect to other methods:
1) it uses 1-dimensional data for the prediction, as opposed to
multi-dimensional data; 2) having a unique well-defined unit
(i.e., asper) eases the comparison of creakiness among different
studies, corpora, voices, etc.; perhaps more importantly, 3) psy-
choacoustic roughness is a perceptual feature, and we argue that
it is more related to the phonemic classification made by listeners
than other acoustic features: There seems to be several ways in
which speakers can produce creaky voice. These articulation
variations correlate differently with different acoustic features,
such as H1–H2, CPP, etc. Regardless of how it is produced,
creakiness is perceived, nonetheless, under a seemingly single
category [12]. Therefore, focusing on later stages in the speech
chain (i.e., in the auditory process) may be appropriate to de-
scribe and study phonation and phonemic contrast.

We hypothesize that the psychoacoustic roughness prediction
of creakiness works best when creakiness in speech is mani-
fested as amplitude modulation (damped pulses, etc.) in vocalic
segments, since that is what the psychoacoustic roughness model
uses for its predictions. These modulations need not be periodic,
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so a roughness-based predictor should perform similarly for both
creaky and rough speech, the latter as understood in the context
of the CAPE-V framework—that is, “perceived irregularity in the
voicing source.”

Having a single dimension, a creakiness predictor based on
psychoacoustic roughness, needs no ablation studies since all
the output variance can be attributed to its single feature. For
multi-dimensional predictors, on the other hand, ablation studies
become indispensable to gain insights on the impact or relative
weight that a single feature or set of features may have on the
output.

Psychoacoustic roughness increases with pressure level, so
that “for an increase in sound pressure level by 40 dB roughness
increases by a factor of about 3” [52, p. 260]. In our case,
we assumed that each frame in the analysis was produced at
80 dB (SPL). Setting the frame SPL to a different value (or
making it relative to the maximum amplitude of the signal)
would produce changes in the roughness traces as well. For
roughness-based classifications not using RNNs, it would be
necessary to adjust the thresholds to determine the creakiness of
a frame; for RNN implementations, retraining the network would
also be necessary. Note that perturbations on phonation such as
F0-jitter, amplitude shimmer, etc., tend to increase when speech
is produced at lower sound pressure levels [76]. Equalizing
the frame intensities increases the measured roughness at quiet
frames, such as those found towards the end of the vocalic part
of our corpus (see Figs. 2(a) and 2(b)).

The roughness model used in this research could predict with
fair accuracy the presence of creakiness in speech. This model
however, has been amended since originally proposed to account
for the size of the auditory filters, i.e., replacing the Bark scale
with narrower Equivalent Rectangular Bands—ERBs [77]; the
effect of phase (such as those observed by the elicited roughness
of a reverse saw-tooth signal) [55]; etc. We would expect that
more sophisticated roughness prediction models yield more
accurate classifications of creaky voice.

Throughout our research, we relied upon classifications of
creaky tokens from dictionary entries of the Burmese language.
We manually inspected a sample of words and found that their
actual production was, in general, the intended one. Performing
an exhaustive review of all tokens and including other corpora
may help to improve the accuracy achieved by the proposed
classifier. Confirming the robustness of our roughness-based
predictor is an ongoing project, including releasing freely avail-
able routines for creakiness prediction based on psychoacoustic
roughness.

V. CONCLUSION

It was possible to adequately predict creaky episodes in
vocalic segments of speech using a psychoacoustic roughness
model. A predictive model based on a Recurrent Neural Network
using only psychoacoustic roughness yielded results comparable
to those obtained with RNNs trained with higher dimensional
data. However, the roughness-based approach yielded lower
standard deviation, suggesting robustness to speaker variation.

Additionally, no apparent advantage of augmenting the train-
ing data by time derivative features was found, and likewise,
including roughness along with the acoustic features used in the
multidimensional RNN did not improve prediction performance
significantly.
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