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SUMMARY This paper presents the ATR speech recogni-
tion system designed for the DARPA SPINE2 evaluation task.
The system is capable of dealing with speech from highly vari-
able, real-world noisy conditions and communication channels. A
number of robust techniques are implemented, such as differential
spectrum mel-scale cepstrum features, on-line MLLR adaptation,
and word-level hypothesis combination, which led to a significant
reduction in the word error rate.
key words: noise robustness, online adaptation, hypothesis

combination, robust features

1. Introduction

The second “Speech in Noisy Environments” (SPINE2)
evaluation was conducted by the Naval Research Lab-
oratories (NRL) in October 2001. The purpose of the
evaluation was to provide a continuing forum for assess-
ing the state-of-the-art practices in speech recognition
technology for noisy military environments and for ex-
changing information on innovative speech recognition
technology in the context of fully implemented systems
that perform realistic tasks.

The task consisted of recognizing speech recorded
during battleship games with realistic military noises
playing in the background. The main feature of the
evaluation is the variety of background noises and com-
munication channels.

ATR took part in this evaluation to objectively test
the performance of our speech recognition system in
noisy environments on a common evaluation basis. Our
system is based on several robust techniques including
robust feature extraction, on-line acoustic model adap-
tation, and combining word hypotheses produced by
two parallel recognition systems using different feature
parameters. We assume that different features repre-
sent different “views” of the speech signal and thus
contain complementary information. Through various
experiments, we investigated the proper set of feature
parameters as well as the effectiveness of on-line adap-
tation and hypothesis combination.

In the following sections, we describe the SPINE2
data, the ATR system and the experimental results. In
Section 5, we discuss the problems arising in automatic
speech detection of conversational speech. In Sect. 6,
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we present our conclusions.

2. SPINE2 Data

The SPINE2 data [1] is organized in conversations be-
tween two speakers collaborating in a task of seek-
ing and shooting at targets. They speak freely, but
the total vocabulary is fairly limited. Each speaker is
seated in a different sound chamber in which previously
recorded military background noise as the environment
is accurately reproduced. The participants use a micro-
phone and handset that carefully simulate the particu-
lar environment. The communication channel between
speakers includes vocoders that degrade the speech
quality. The speech data is recorded both directly from
the microphones and through the vocoders. Thus, two
sets of speech data - non-vocoded and vocoded are
available. However, for the evaluation using vocoded
data, simulated vocoded data is used instead of data
from the real (hardware) vocoders. These data are pro-
duced by passing the non-vocoded speech through soft-
ware versions of three vocoder types: CELP, MELP
and LPC.

Training data consists of 324 dialogs involving 20
speakers (10 male and 10 female). There are about
28000 utterances with an average length of 4 seconds.
Total duration of speech data for training is about 15
hours. There are 11 types of noisy environments in-
cluding quiet, office, aircraft carrier, street, car, he-
licopter, tank, fighter jet and others. Some of these
noises are highly variable in both acoustic level and
spectral characteristics. There are sounds of whistles,
rings, additional tones, background speech and so on.
Furthermore, some segments of the recordings exhibit
dropouts, where short segments of speech within an ut-
terance are deleted. The signal-to-noise ratio (SNR)
varies from 5 dB to 20 dB.

As test data, we used 32 conversations between
2 male and 2 female talkers, who were not among
the training speakers, in the following four noise en-
vironments: quiet, office, helo (helicopter) and bradley
(tank). Total speech duration is about 1.5 hours and
the total number of utterances is about 2,900.
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Fig. 1 ATR system block diagram.

3. System Description

A block diagram of the ATR SPINE2 system is shown
in Figure 1. The system has two recognition channels
(or subsystems) that recognize input speech parame-
terized with different feature parameters. Recognition
hypotheses from each channel are combined to produce
the system’s final output. The two channels share the
same decoder module but have specific acoustic models
corresponding to the particular feature type. For each
channel, recognition is done by passing data through
the decoder two times. After the first pass, two it-
erations of MLLR adaptation are performed, and up-
dated acoustic models are used for the second recogni-
tion pass. Finally, the hypothesis combination module
combines hypotheses from the two recognition channels
to produce the final result.

Using this system, we investigated the proper set of
feature parameters as well as the effectiveness of on-line
adaptation and hypothesis combination. In the follow-
ing sections, each module of the system is described
in greater detail and the results of some development
experiments are also provided.

3.1 Feature extraction

For feature extraction, we compared four feature ex-
traction methods. The first one is the standard mel-
scale cepstrum (MFCC).

Our previous research showed that some modifi-
cations of the MFCC algorithm can yield better per-
formance in noisy speech conditions [2]. The so-called
differential spectrum MFCC is calculated from the dif-
ferential power spectrum of speech, which is defined as:

D(i, k) = Y (i, k) − Y (i, k + 1) (1)

where D() is the differential spectrum, Y () is the power
spectrum for the ith frame and k is the spectrum bin
index. This simple modification was efficient for the
AURORA2 task [2] and as described in Section 4 was
effective for the SPINE2 evaluation as well. We de-
note this type of differential spectrum MFCC feature
as MFCC DS.

Another type of MFCC-like feature we tried is
based on the spectral subtraction idea, where the noise

spectrum estimate is given by:

N̂(f) =
1

N

N
∑

j=1

Y (j, f) (2)

where N is the number of frames for a given utterance
and Y (j, f) is the power spectrum of the jth frame [2].
The motivation for this is that under the assumption
that the noise is stationary, the long-term spectrum
average should follow the noise spectrum. We refer to
this type of feature as MFCC LTR.

The last feature extraction method we experi-
mented with is the standard PLP-RASTA approach in
the belief that this type of feature would be more robust
for channel distortions [3].

All speech data were sampled at 16 kHz, and a
frame size of 20 ms and a frame shift of 10 ms were
common for all feature extraction methods. For MFCC,
MFCC DS and MFCC LTR, a cepstral mean normal-
ization (CMN) was also applied. For each utterance,
the cepstral mean was subtracted to cancel the effect
of the transmission channel.

3.2 Acoustic model

Cross-word triphones are usually used for context mod-
eling in current speech recognition systems. They are
commonly developed through a flat-start training pro-
cedure evolving from monophone HMMs, such as the
one presented in the HTK book [4]. However, since the
variability here in the training data is much more than
that in normal clean speech, it is questionable whether
this approach will work well. Consequently, we com-
pared the performances of the following context model-
ing methods in experiments with a small non-vocoded
data set of two dialogs which include 184 utterances.
The channel conditions include pairs of quiet and of-
fice noise environments. The language model is word
bigram.

• AM01: crossword triphone HMMs
• AM02: crossword right context-dependent diphone

HMMs
• AM03: crossword left context-dependent diphone

HMMs
• AM04: intraword triphone HMMs
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Fig. 2 Relationship between word error rate (WER) and un-
seen unit rate (UUR) for different methods of context modeling.
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Fig. 3 Overview of the baseline HMMs.

Figure 2 shows the word error rate for each con-
text modeling method. All of the acoustic models are
decision-tree-based state-tying HMMs having a similar
number of roughly 2000 states, with 16 Gaussian mix-
tures in each state. We can see that the intraword tri-
phone HMMs, AM04, achieved the lowest WER, while
the crossword triphone HMMs; AM01, got the highest
WER. We attributed the reason partially to the highest
unseen unit rate (UUR) for the triphone models. The
UUR is defined as the ratio of unseen units desired by
the testing data but do not appearing in the training
data to all units desired by the testing data.

Figure 2 also shows the results for two kinds of
diphone modeling. They have worse UURs than intra-
word triphones but much better ones than crossword
triphones. Their capability to model crossword context
still led that of AM03, the left context dependent di-
phone HMMs, and achieved comparable performance
to AM04. We finally chose it as our context model-
ing method for one other advantage: a much smaller
number of allophones (1.8 k) compared to intraword
triphones (8.1 k).

Another important issue we addressed during the
baseline model development is how to model inter-word
pauses. A tee model sp with one skip-able state HMM
is usually used to model them. However, we questioned
its capability to model the extremely variable noisy
pauses in the environments we studied. After collect-
ing timing information from segmented data, we found

that the sp segments have a mean duration longer than
40 ms. From the viewpoint of coarticulation, a long
pause may block the coarticulation effects between the
two crossword segments. So we finally adopted two
additional symbols, ps and np, to explicitly model the
long quiet and noisy interword pause segments. They
are modeled by a 3-state left-to-right HMM as the “sil”
symbol is. Including these additional symbols led to an
error reduction of absolute 4%, as illustrated by model
AM03 ps in Figure 3, when compared to the AM03.
The AM03 reduced by absolute 6.5% errors compared
to the primary crossword triphones developed by the
standard flat-start procedure.

This left context-dependent diphone model AM03 ps
served as the baseline model for further adaptations in
the later stages.

3.3 Language model

The language model training data and task vocabulary
were provided by the CMU and were common for all
sites participating in this evaluation. The vocabulary
consisted of about 5700 words. Using 43 phonemes to
define word pronunciations based on this vocabulary we
created a pronunciation lexicon of about 12000 entries.

Using the provided language model’s training data,
we trained both word and phrase bigram language mod-
els.

3.4 Parallel hypothesis combination

We investigated two approaches to combining hypothe-
ses from the parallel recognition channels. Both of them
are based on a word graph constructed from the two
word hypotheses and finding the best path through the
graph. However, their word graphs and scores on the
paths are different.

3.4.1 Combination using likelihoods

Initially, each word in each of the hypotheses is repre-
sented by an arc in the graph. The acoustic likelihood
score of that word is associated with the arc. In the next
step, all arcs representing identical words hypothesized
between the same time instants are collapsed into a sin-
gle arc. Finally, nodes are formed between all arc pairs
where the word-end time of one arc and the word-start
time of the next arc are within 30 ms of each other.
Figure 4 illustrates the formation of the word graph.

After the word graph is constructed in this manner,
acoustic likelihood and language model probability for
each word were combined to form the word (or arc)
score. Finally, DP search is performed to find the best
scoring path through the graph. A similar approach for
hypothesis combination was presented in [5].
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Fig. 5 Segment of word lattice for one node.

3.4.2 Combination using confidence measure

In this approach, each word in each of the hypotheses
is assigned a confidence score. The confidence score is
calculated by using acoustic likelihood, language model
probability, and lattice path density. An example is
shown schematically in Fig 5 for a given node in the
lattice.

The three words (arcs) coming to this node have
confidence scores of Ci, Cj and Ck, respectively. For
the words (arcs) coming out of the node and having
combined acoustic and language model scores Sn and
Sm, confidence scores Cn and Cm are found from the
following expressions:

{

Cn + Cm = Ci + Cj + Ck

Cn : Cm = Sn : Sm
(3)

Further, words from the two hypotheses are
aligned by a DP algorithm. Note that in contrast to
the previous approach, during alignment no informa-
tion about the word-start or word-end time is used. A
word graph is made from the aligned word sequences
by making nodes at the alignment boundaries as shown
in Fig. 6. The final combined hypothesis is composed
from those arcs that have the highest accumulated con-
fidence scores. Confidence-score-based techniques for
hypothesis combination are also used in some spoken
dialog systems, for example [6].

4. Recognition Results

In this section we provide the experimental results ob-

tained with the test data. Our baseline system consists
of only one decoding pass without model adaptation or
hypothesis combination.

In all experiments presented here we used speech
utterances as input to the system. That is, speech por-
tions of the dialogs are extracted in advance according
to their actual time instances. Automatic recognition
of whole dialogs implies another problem apart from
the difficulty of recognizing speech in the presence of
noise. That is a speech detection problem, which ex-
ceeds the scope of this task. Our approach to speech
detection and several evaluative experiments are dis-
cussed in Section 5.

4.1 Non-vocoded data results

The baseline system word error rates (WER) for each
kind of feature parameters are shown in Table 1. Each
row shows the result for a particular noise environment,
and the last row shows the average WER.

For relatively noise free environments (Quiet and
Office), MFCC and MFCC-like features perform quite
well, but for the heavy noise cases (Helo and Bradley),
the WER nearly doubles. The best performing feature
is MFCC DS. MFCC LTR is even worse than the stan-
dard MFCC, probably because the noise stationarity
assumption is not proper for this data. PLP RASTA
features performed the worst.

Tables 2 and 3 show the WER at the first and
second iterations of MLLR adaptation, respectively. As
can be seen, the first MLLR iteration decreased WER
dramatically and the second one improved the results
only a little.

Results from the hypothesis combination experi-
ments are presented in Table 4. Although the number
of all possible combinations out of the four different fea-
tures is six, we show only four of them since the other
combinations did not perform better. The two columns
of the table show the WER for the two techniques for
hypothesis combination described in sections 3.4.1 and
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Table 1 Baseline WER (%)

Noise Feature type
Type mfcc mfcc ds mfcc ltr plp rasta

Quiet 29.1 26.9 30.1 39.5
Office 26.4 26.7 27.7 33.2
Helo 52.1 51.8 54.6 71.5
Bradley 57.2 56.8 56.4 69.6

Total 40.3 39.4 41.2 51.9

Table 2 WER (%) at the first MLLR iteration

Noise Feature type
Type mfcc mfcc ds mfcc ltr plp rasta

Quiet 24.6 24.1 28.2 34.0
Office 23.6 22.8 25.3 30.5
Helo 42.1 42.2 43.9 55.3
Bradley 39.8 40.8 43.8 56.2

Total 31.7 31.6 34.6 43.1

Table 3 WER (%) at the second MLLR iteration

Noise Feature type
Type mfcc mfcc ds mfcc ltr plp rasta

Quiet 24.5 23.5 27.6 34.3
Office 23.4 22.2 25.1 30.3
Helo 41.7 42.1 43.6 54.9
Bradley 38.9 39.3 43.4 53.7

Total 31.3 30.9 32.2 42.3

3.4.2, respectively. For comparison, the first row shows
the WER when a single MFCC feature is used, and
the following rows show the results of combining the
MFCC feature with the other three kinds: MFCC DS,
MFCC LTR and PLP RASTA. The hypothesis combi-
nation based on likelihoods proved best for this task,
improving the WER in all cases; however, the other hy-
pothesis combination techniques showed improvement
only when combining MFCC and MFCC DS features,
which alone provide similar performance. The lower
performance of the confidence based hypothesis combi-
nation can be explained with the fact that in this case
(as opposed to likelihoods based hypothesis combina-

Table 4 WER (%) for different hypothesis combination ap-
proaches

Feature Hypothesis combination
Type Likelihood Confidence

mfcc 31.3 31.3
mfcc+mfcc ds 28.3 30.5
mfcc+mfcc ltr 30.1 32.6
mfcc+plp rasta 30.8 37.5

Table 5 Baseline WER (%) for vocoded data

Vocoder Feature type
Type mfcc mfcc ds mfcc ltr plp rasta

CELP 49.1 47.9 53.5 57.4
MELP 51.2 49.6 54.7 60.1
LPC 56.3 55.1 59.9 66.5

Total 52.2 50.9 56.0 61.3

Table 6 WER (%) at the second MLLR iteration for vocoded
data

Vocoder Feature type
Type mfcc mfcc ds mfcc ltr plp rasta

CELP 43.6 41.9 48.5 52.4
MELP 46.4 44.7 47.7 54.2
LPC 52.3 50.8 54.9 61.5

Total 47.4 45.8 50.3 56.0

tion) word graph is build using DP matching where
word end timings are not considered and words with
significant duration differences could reside at parallel
branches of the graph.

4.2 Vocoded data results

Here we present experimental results for vocoded test
data using models build with vocoded variant of the
training data. Tables 5 and 6 show the WER before and
after two iterations of MLLR adaptation. The CELP
and MELP vocoders do not differ much in their channel
characteristics and thus recognition results. However,
the LPC vocoder distorts speech signals more and the



502
IEICE TRANS. INF. & SYST., VOL.E86–D, NO.3 MARCH 2003

WER is lower by 5-6%. Compared to the non-vocoded
speech, vocoded speech WER are roughly 1.5 times
higher. Surprisingly, PLP RASTA features did not per-
form well even in this case. Hypothesis combination
based on likelihoods between MFCC and MFCC DS
features slightly improved WER to 45.0%. As in the
case of non-vocoded data, MLLR adaptation proved
most effective.

5. Speech detection problem

The heavy, dynamic and unpredictable noises in
SPINE2 make speech detection a challenging task. We
experimented with the following three algorithms:

EPD : an energy- and energy-derivation-based ap-
proach

SPD : an algorithm using Gaussian mixture mod-
els (GMMs) to make a frame-wise speech — non-
speech decision

combination : EPD for basic speech area selection
and SPD for block-wise confirmation

5.1 EPD

The EPD algorithm is the baseline speech detection
system, which showed fair but sub-optimal success.
EPD detects speech area start points by compar-
ing an energy-based and a context-smoothed energy-
derivation-based metric with manually pre-set thresh-
olds. The endpoint is detected when the energy-
derivation-based measure falls below a certain thresh-
old. Such an approach is described for example in [7].

For the EPD-only method, the thresholds for EPD
were set for each target so that there would be as few
misfires as possible, even at the price of losing an occa-
sional very quiet utterance.

5.2 SPD

This approach is based on two GMMs, one trained on
speech data and the other on noise segments. Training
data were the manually segmented parts of the SPINE2
training data. GMMs for vocoded and unprocessed
tasks were trained separately.

For each frame, the log likelihoods of speech and
noise GMMs are calculated. The classification step it-
self is a comparison of the differences of those log like-
lihoods from a threshold [5][8].

5.3 Combination method

EPD occasionally misfires and classifies a noise area
as speech. Some of these mistakes can be detected by
their short length. The combination of EPD and SPD
targets these misfired segments. After EPD has pro-
vided a basic speech — non-speech segmentation, each

frame in a segment is classified with SPD. If a majority
of all frames are speech frames, the whole segment is
accepted; if there are fewer speech frames than noise
frames, the whole segment is discarded.

5.4 Evaluation and Comparison

The approaches were evaluated with the baseline sys-
tem by using a subset of the data consisting of 6 dialogs
representing all types of the non-vocoded testing data
noise environments: Quiet, Office, Bradley (tank) and
Helo (helicopter).

Figure 7 shows the performance of the SPD ap-
proach for various threshold settings. Each of the
GMMs (for speech and noise) has 64 Gaussian distri-
butions. The best threshold is different for each noise
type: for clean conditions, a low threshold is important,
for Bradley noise a high threshold performs better. An
acceptable threshold for Helo noise could not be found.

Figure 8 gives word accuracies for the various seg-
mentation approaches depending on noise type. SPD
performs best in a silent condition. For moderate noise,
all algorithms show similar performance. SPD com-
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Fig. 7 SPD performance (word accuracy) depending on
threshold setting.
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Fig. 8 Word accuracy archived with various segmentation
methods for (from left) clean condition, office, bradley and helo
noise. The rightmost bars show the average performance. “trans”
means manual segmentation.
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Table 7 Word accuracy for the baseline separation by tran-
scription, EPD, and combination method

EPD SPD Combination Transcription
56.0 50.3 56.2 67.1

pletely fails for Helo noise. This is probably because of
the acoustical difference between Helo and the other
noise types. Even single noise GMM trained on all
noises was not adequate for Helo noise.

Table 7 lists the word accuracy rates for each of
the approaches. In average, the combination method
performs better than the automatic segmentations and
achieves a word accuracy of 56.2%, which is fair con-
sidering the strong noise conditions. However, this is
more than 10% below the rate of manual segmentation.

6. Conclusions

We presented the ATR speech recognition system de-
veloped for the DARPA SPINE2 evaluation task. Our
main goal was high robustness with respect to real-
world variable military noises.

In our system, we implemented several robust tech-
niques in feature and model domains as well as combi-
nations of multiple recognition outputs, which yielded
significant reductions in word error rates. Our baseline
system result of 39.4% was reduced by more than 10%
absolute to 28.3% WER.
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