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SUMMARY This paper presents a study on modeling inter-
word pauses to improve the robustness of acoustic models for
recognizing noisy conversational speech. When precise contextual
modeling is used for pauses, the frequent appearances and varying
acoustics of pauses in noisy conversational speech make it a prob-
lem to automatically generate an accurate phonetic transcription
of the training data for developing robust acoustic models. This
paper presents a proposal to exploit the reliable phonetic heuris-
tics of pauses in speech to aid the detection of varying pauses.
Based on it, a stepwise approach to optimize pause HMMs was
applied to the data of the DARPA SPINE2 project, and more
correct phonetic transcription was achieved. The cross-word tri-
phone HMMs developed using this method got an absolute 9.2%
word error reduction when compared to the conventional method
with only context free modeling of pauses. For the same pause
modeling method, the use of the optimized phonetic segmenta-
tion brought about an absolute 5.2% improvements.
key words: Conversational speech recognition, noisy speech,

Hidden Markov Model, inter-word pause, context dependent

HMMs, duration analysis, prosodic phrase boundary.

1. Introduction

Normal speech flow usually includes a number of silent
periods [1], including silences at utterance-ends, inter-
word pauses, and intra-segmental pauses like the voice
onset time of a stop consonant. The existence of si-
lences and intra-segmental pauses is relatively more
stable than that of inter-word pauses, as they can
be reliably inferred from word transcripts of speech
data, while the inter-word pauses (hereinafter pauses
only) have very flexible appearances. Previous studies
showed that appropriate modeling of the pauses might
improve recognition performance. In [2], the authors
proposed to use the length information of pauses to
develop phonetic decision tree based tied-state cross-
word triphone HMMs and achieved about a 5% rela-
tive error reduction compared with those ignoring the
pauses. In [3], three types of different word-end pauses
were adopted as pronunciation variations for each dic-
tionary entry and the approach successfully led to more
than 1% absolute error reduction in a number of tests.

These studies have one common point in that the
speech data is almost clean, where pauses have rather
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different stationary acoustics from the normal speech
segments and can be automatically segmented out via
iterated forced alignments with the evolved acoustic
models. However, speech data from realistic applica-
tions may have varying background noises, thus the
pauses are contaminated with varying acoustics. This
will make it difficult to generate the correct phonetic
transcriptions for the pauses, because an initial sim-
ple pause HMM won’t be able to segment out those
varying pauses, and these miss-segmentations will re-
sult in a poor estimation of the pause HMM in a later
training stage. Then the poorly estimated pause HMM
will furthe miss-segment those varying pauses in a later
iteration of forced alignment. This kind of circle will
finally result in incorrect phonetic transcriptions and
poorly estimated acoustic models.

Furthermore, if the speech data is of conversational
speaking style, there will be very frequent pauses due to
a heavy load of planning speech for speakers and cog-
nition for hearers in conversations [1], [5]. The problem
of miss-segmentations of the pauses may lead to sig-
nificant influences on the acoustic models. Therefore,
studies must be made on the problem of how to model
and segment varying pauses when developing acoustic
models to recognize conversational speech in varying
noisy environments.

Instead of integrating the phonetic segmentation
process into the development of acoustic models, as is
done in conventional approaches, we took the segmen-
tation as a separate stage. This enables us to adopt
different modeling for the varying pauses in the seg-
mentation stage from the one used for training the final
acoustic models. We propose that the phonetic heuris-
tics of pauses, including coarticulation and prosody ef-
fects, can be exploited to robustly initialize the pause
HMMs. Such initialized HMMs lead to better phonetic
segmentations and reestimated HMMs. After the opti-
mized transcription becomes available, it can be used
to train a set of more robust acoustic models.

Studies have been made on the data of the second
”Speech in Noisy Environments Evaluation ” (SPINE2)
task [6], which are conversations in real military varying
noises. The segmentation approach, which exploits the
pauses’ heuristics, is realized as a stepwise optimiza-
tion approach for the pause HMMs and the phonetic
transcriptions. Experimental results showed that the
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approach effectively detected an increasing number of
noisy pauses, and that the final cross-word triphone
HMMs based on the optimized phonetic transcription
achieved significantly less word errors than the baseline
HMMs.

The paper is arranged as follows: Section 2 de-
scribes the precise contextual modeling of pauses and
its implementation problem when applied to noisy
speech recognition. Section 3 introduces the proposal
to exploit phonetic heuristics about pauses for collect-
ing initialization samples for pause HMMs. Section 4
introduces the SPINE2 data and experimental set-up.
Section 5 presents the experimental results and discus-
sions. Finally, section 6 gives a conclusion.

2. Precise Contextual Modeling of Pauses And

Its Implementation Problem

Context dependent (CD) hidden Markov models
(HMMs) have been widely used in current large-
vocabulary continuous speech recognition (LVCSR)
systems. Although the contextual modeling of normal
phones is generally the same for representative LVCSR
systems such as HTK [4] and JULIUS [7], that of pauses
may be specific to a particular system. For example,
the standard HTK system treats cross-pause coarticu-
lation as always possible when cross-word triphone de-
pendency is used. On the contrary, the JULIUS system
uses a context independent pause model, which always
shows contextual blocking effects. However, we regard
this kind of particular contextual modeling of pauses as
insufficient, as phonetic studies have revealed that com-
plex contextual effects might be associated with pauses
on the neighboring word boundary phones [8], [10], [12].

2.1 Complex Contextual Effects of Pauses

The first kind of contextual effect of pauses is to block
the coarticulation of the two word boundary phones ad-
jacent to it. When a pause is long or significant enough,
like one appearing as a boundary between two prosodic
phrases, the phone preceding (succeeding) the pause
may have special independent articulation patterns[8],
[10], showing no or little coarticulation with the phone
succeeding (preceding) the pause.

The second kind of contextual effect of pauses is
no-influence on the coarticulation of the two neighbour-
ing phones. When a pause is relatively short or when
the articulators involved for the two phones have slow
damping characteristics[13], the pause may have no or
little influence on the coarticulation.

The third kind of contextual effect is that the cross-
pause coordination of the articulators is variable [10].
Given the same length of pauses, gestures with articula-
tors of slow damping speed show stronger coarticulation
transition trajectories than those with fast articulators.
Therefore, the cross-pause coarticulation may be gra-
dient rather than categorically yes or no.

2.2 Accurate Cross-word Triphone Model Training
Based on Contextual Free and Influential Pauses

The above phonetic review suggests that the contextual
effects of pauses should be cautiously considered in or-
der to train more accurate and more robust cross-word
triphone acoustic models. One practical way to do this
is to use several pause HMMs with different contextual
effects to precisely model the specific coarticulation of
a pause [11]. Here, the following two kinds of pauses
are adopted.

• Context Free: the pauses do not or slightly af-
fect the coarticulation across it. The context free
pauses are modeled by the ”sp” HMM as in [4]. In
the means of triphone modeling, the sp won’t affect
the context expansion of its neighboring triphones.
As an example, given a training speech of phone
sequence ”A B pause C D”, the triphone expan-
sion for ”B pause C” would become as: ”A-B+C

sp B-C+D”, if the pause is regarded as context
free.

• Context Influential: the pauses approximately or
completely block the coarticulation across them.
Such a pause appears in the context of its neigh-
boring triphones to indicate its context influential
effects. When using a ”sil” HMM for these pauses,
the triphones for the ”B pause C” in the above
example would become as ”A-B+sil sil sil-C+D”.

Therefore, an accurate phonetic labeling of the
training data, including correct location of pauses and
specification of their contextual effects, is important
for trainning robust acoustic models. Since it is too
expensive and time consuming to manually label the
training data, a conventional way for identifying pro-
nunciation variations, referred to as force alignment in
[4], can be used to identify the pauses and their con-
textual effects in the training data for training the final
acoustic models. First, a set of HMMs can be trained
using a phonetic labeling with abitrary pauses. Then an
HMM network like in Fig. 1 can be constructed for the
example utterance ”A B pause C D”. Acoustic decod-
ing finds the path with the maximum likelihood, which
specifies simultaneously both the existence of pauses

A+B A-B+sil sil sil-C+D C-D

A-B+C sp B-C+D

A-B+C B-C+D

A+B A-B+sil sil sil-C+D C-D

A-B+C sp B-C+D

A-B+C B-C+D

Fig. 1 An example HMM network for decoding during force
alignment.
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and their contextual effects. Then the renewed pho-
netic segmentation can be used to estimate the HMMs
again. The above processes of model training and force
alignment can be realized in a number of iterations in
order to get increasingly improved HMMs and phonetic
segmentations.

2.3 Pause Identification Problem for Noisy Conversa-
tional Speech

The pause HMMs are usually initialized using the si-
lences at utterance starts and ends at the beginning of
force alignment. When the training data has a station-
ary background environment, inter-word pauses have
the same acoustics as the silences. The pause HMMs
initialized in this way can reliably detect out the op-
tional pauses.

However, when the training data is realistic con-
versation speech with varying background noises, the
pause HMMs initialized from silence data may make
it difficult to identify those pauses that have different
acoustics from silences. When the pauses are not de-
tected out, their acoustics cannot be learned by the
HMMs trained in a later iteration. Then the renewed
HMMs still cannot identify those pauses as they donot
have their statistics. Any further iterations of model es-
timation and force alignment cannot solve this problem
of inherent miss-identification, and will finally affect the
HMMs developed.

The reason can be explained with the aid of Fig.
1. If the pause and its contextual effects are miss-
identified, then the utterance will be wrongly assigned
to estimate the HMMs of not only a different pause but
also two other different neighboring triphones. Since
conversational speech inherently owns a large number
of pauses, and if such miss-identifications are rather
frequent due to severe varying noises, then the portion
of trainning data wrongly assigned may be significant
enough to result in a set of badly estimated HMMs.

3. Phonetic-Heuristics-Originated Pause Mod-

eling

The pause identification problem can be ascribed to
the poor initialization of pause HMMs at the begin-
ning of force alignment. There they are estimated us-
ing only silences at utterance starts and ends. If we can
get enough samples of noisy pauses for initializing the
pause HMMs, the iterative model estimation and force
alignment may lead to better HMMs and phonetic seg-
mentations. For this purpose, we propose to exploit two
reliable phonetic heuristics of pauses to find sufficient
initialization samples for pause HMMs.

3.1 Reliable Phonetic Characteristics of Pauses

The first important characteristic of pauses exploited

is the relations between the length of a pause and the
phone coarticulation across it [9], [12]. Although the re-
lations are rather complex, depending on not only the
length of the pause but also the articulatory configura-
tions of the phones and other factors, [12] showed that
a pause longer than 60ms promotes the preservation
of distinctive features of consonants at the boundary.
This suggests that 50-70ms be a reasonable length limit
to assume the context effect of a pause as either context

free or context influential in the initialization stage.
The second characteristic of pauses helpful for their

detection is their important relations to the prosodic
phrasing boundaries. This is because higher-level
phrase boundaries are also known to give rise to longer
articulatory durations to the last phones before them,
i.e., the phrase-final lengthening, and less influence on
the durations of the following phones. This suggests
that a pause would probably appear after or before an
extra-ordinarily long phone at a word boundary.

3.2 Reliable Initialization of Pause HMMs

Based on these two characteristics, we propose the fol-
lowing methods to find initialization samples for pause
HMMs.

1. Initial phonetic transcription generation: use the
conventional iterated forced alignments to get a
phonetic transcription S for the training data.

2. Pause length based contextual effect specification:

the pauses longer than 50ms in the transcription
S are deliberately assigned as context influential,
and those shorter than 50ms as context free.

3. Phrase boundary pause insertion: extra context in-

fluential pauses can be inserted to the transcription
S at places where prosody phrase boundaries are
assumed to exist, based on statistical phone dura-
tion analysis. The method is:

• First, compute the duration mean µi and de-
viation σi of each monophone Pi in S.

• Second, if a word boundary phone Pi was not
followed or preceded by a context influential

pause, and its duration is extraordinarily long
(> µi + (2 ∼ 3) × σi), a context influential

pause label would be inserted for a possibly
miss-located pause.

4. SPINE2 Data and Experimental Set-up

The above proposals have been applied to train acous-
tic models for the SPINE2 evaluations [11], [14], which
consists of spontaneous conversations between pairs of
talkers working on a collaborative, battleship-like task.
Each person is seated in a sound chamber in which a
previously recorded military background noise environ-
ment is accurately reproduced. The participants use
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the microphone and headset that are resident to the
particular environment. There are 11 types of military
noisy environments, including quiet, office, HMMWV,
aircraft carrier, AWACS, MCE, Bradley tank, car, F16,
helo (helicopter) and street. The noises may also be
played at varying amplitudes. Part of the data was
recorded in a push-to-talk method, resulting in approx-
imately simultaneous appearances of speech and noise
signals [15]. Contray to the complexities of background
environments, the total vocabulary used is fairly lim-
ited.

Pauses are noted to appear very frequently in the
data, possibly due to the fact that most of the conver-
sations are series of short military commands, each as-
sociated with an intonation phrase boundary. They are
contaminated by noises with varying types and varying
amplitudes. Furthermore, in the data of push-to-talk
recorded, pauses are varying noises while the silences
at utterance-ends are clean.

4.1 Training and Testing Data

Training data [14] consists of 628 channels (dialog sides)
of 324 dialogs involving 20 speakers (10 males and 10
females). There are about 28,000 utterances with aver-
age length of 4 seconds. The total duration of speech
data for training is about 15 hours. The signal-to-noise
ratio (SNR) varies from 5 dB to 20 dB in the noisy
channels [15]. All data have only transcripts at word
level, with no phonetic segmentation information.

As test data, we used 8 channels of 4 conversations
from the development data, between 2 male and 2 fe-
male talkers who are different from the training speak-
ers, with the following four noise environments: quiet,
office, helo (helicopter) and Bradley (tank), 2 channels
each. The total number of utterances is 361. The chan-
nel based average SNRs range from 7.6dB of Helo to
23.9dB of quiet ones.

Table 1 and Table 2 summarize the noisy envi-
ronments in the training data and testing data respec-
tively. One thing to be noted is that although the four
kinds of noisy environments, i.e., quiet, office, Bradley
and the helo, shared balanced proportions of the test-
ing data, they have different amounts of training data.
The Bradley and the helo environments each have only
16 channels of the training data, far less than those of
the quiet and the office ones. So the task is a seriously
mismatched testing.

4.2 Experimental Set-up

The acoustic feature used in this study is the standard
mel-scale cepstrum (MFCC), as specified in Table 3.
The basic lexicon consists of about 5.7k unique words
with a total of about 11k entries for pronunciation vari-
ations. The basic phone set has 43 American phones,
an sp for short pauses and a sil for pauses and silences

Table 1 A summary of the noisy environments in the training
data. Each dialogue lasts from 3 to 5 minutes, and is recorded
into two channels. The ”Percentage” column indicates the pro-
portion of the respective noisy data to the whole training data.

Noise type # of channels Percentage (%)

Quiet 176 27.2

Office 136 21.0
HMMWV (vehicle) 100 15.4
Aircraft carrier 76 11.7
AWACS plane 40 6.2
MCE field shelter 40 6.2
Bradley tank 16 2.5
F16 jet fighter 16 2.5
Car 16 2.5
Helo (helicopter) 16 2.5
Street 16 2.5

Table 2 The noisy environments in the testing data used in
this study.

Noise type # of channels SNR Percentage (%)

Quiet 2 23.9 25
Office 2 20.8 25
Bradley tank 2 15.8 25
Helo (helicopter) 2 7.6 25

Table 3 Specification of the acoustic feature extraction.

Parameter Value

Sampling rate 16000 Hz
Frame shift 10ms
Frame length 20ms
Pre-emphasis coef. 0.97
Parameters 12 MFCC + 1 log energy + 13 1st

order and 13 2nd order derivatives

at utterance-ends. All the phone HMMs have 3 left-to-
right states, except that the sp has only one skippable
state. The language model used here is a word bi-gram
model trained from the transcripts of both training and
development data. During the recognition experiments,
the language model scale was fixed to the same value
in order to clarify the effects from different acoustic
models.

5. Experiments

Due to the rather complex variations in the SPINE
data, a stepwise procedure based on the previous pro-
posals was used to optimize the initialization and train-
ning of the pause HMMs, and achieve better pho-
netic segmentation, after a preliminary investigation to
choose a robust kind of context dependent (CD) HMMs
for segmentation.

5.1 Choose Robust HMMs for Segmentation

Four sets of different CD HMMs were developed, each
having about 2,000 phonetic decision tree based tied
states and 16 mixtures of Gaussians per state.
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Fig. 2 Word error rates (WER) and average training samples
per allophone (ASP) of different context modeling.

• XW tri: cross-word CD tri-phones.
• IW tri: intra-word CD tri-phones.
• XW ldi: cross-word left CD di-phones.
• XW rdi: cross-word right CD di-phones.

The four models used the sp for pauses and the sil

for silences at utterance-ends, as in [4]. Fig. 2 illus-
trates the recognition performance in word error rates
(WER). Observations about the results suggest:

1. Although cross-word CD tri-phone modeling is as-
sumed to be the most powerful among the four
kinds of HMMs, it nearly got the highest word er-
ror rate, with even more errors than the intra-word
CD tri-phones. This is different from usually re-
ported results [4], [16].

2. The best performance was achieved by the model
XW ldi, the cross-word left CD di-phone HMMs,
with the highest robustness here.

3. The reason for these results might be attributed
to the poor modeling of pauses. As only contex-
tual free sp HMM is used, inappropriate triphone
labels may be assigned to those phones adjacent
to pauses. In such a case, a context modeling
with higher ASP (average training samples per al-
lophone) should have higher robustness. There-
fore, XW ldi has better robustness than those with
lower ASP values.

4. The better performance of XW ldi than XW rdi

may reflect the fact that carryover coarticulations
are more significant than the anticipations in nat-
ural speech.

Therefore, cross-word left CD diphone modeling
was chosen to be used in the later steps to optimize
phonetic segmentations. The model XW ldi generated
a phonetic transcription SXW ldi.

5.2 Stepwise Optimization of Pause Modeling and
Phonetic Segmentation

Next, the following optimization steps were realized.

• Step 1: Incorporate a ps HMM for pauses to model
the phenomenon that pauses may be varying from

silences. The ps HMM is context influential, and
its initialization samples took those sp segments in
SXW ldi whose durations were longer than 50ms.
Through the iterations of model estimations and
forced alignments, we developed a new set of cross-
word left CD diphone HMMs XW ldi ps and got a
new phonetic transcription SXW ldi ps.

• Step 2: Insert ps labels into SXW ldi ps accord-
ing to the method of phrase boundary pause inser-

tion in order to generate initialization samples for
those pauses with high-level noises. Then, through
the same iterations as Step 1, we got new HMMs
XW ldi dur and transcription SXW ldi dur.

• Step 3: Incorporate another np HMM as a more
detailed noisy pause model. The np HMM is
also context influential, and its initialization sam-
ples took those ps in utterances from noisy chan-
nels based on SXW ldi dur. Similarly, we got the
model XW ldi np and the phonetic transcription
SXW ldi np.

In each step, speech recognition experiments were car-
ried out based on the developed HMMs in order to show
their efficiency.

5.3 Developing Final Acoustic Models

The phonetic transcription SXW ldi np is assumed to
contain a rather correct segmentation of pauses. Then
we replace all the labels of ps and np in SXW ldi np by
sil and get the final transcription Ssil. The reason for
this is that the sil HMM can also model the context in-

fluential effects of pauses as ps and np do, and the use
of one context influential pause HMM can lead to more
robust estimations than the use of three HMMs given
the same amount of training data. The final acoustic
model was trained based on the fixed phonetic tran-
scription Ssil:

• XW tri sil3: Cross-word CD triphone HMMs with
the sil for both context influential pauses and
utterance-end silences.

As comparisons, the following cross-word triphone
models were also developed.

• XW tri sil1: Cross-word CD triphone HMMs with
the same pause modeling as XW tri sil3. But the
phonetic transcription was achieved by replacing
all the ps in the SXW ldi ps by sil.

• XW tri sil2: Cross-word CD triphone HMMs with
the same pause modeling as XW tri sil3. But the
phonetic transcription was achieved by replacing
all the ps in the SXW ldi dur by sil.

• XW tri silon: Cross-word CD triphone HMMs
with the same pause modeling as XW tri sil3, but
the phonetic transcriptions were generated from it-
erated forced alignments based on evolved HMMs,
i.e., the sil HMM is initialized from the silences
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Fig. 3 Recognition results in word error rates for different acoustic models, with the
second y-axis denoting the number of detected context influential pauses.

at utterance starts and ends, and it is iteratively
trained by assuming it can appear between words
with contextual influential effect. This model
serves as the baseline system.

5.4 Discussion

Fig. 3 gives the recognition performance for all the
acoustic models developed in the previous steps, to-
gether with the number of context influential pauses de-
tected for training the respective acoustic models. The
results suggest:

1. The final triphone HMMs XW tri sil3 achieved the
lowest WER among all the acoustic models devel-
oped. It got an absolute 5.2% fewer errors than
the baseline HMMs XW tri silon. Since the differ-
ence between these two sets of HMMs only lies in
the use of different phonetic transcriptions of the
training data, the results prove the importance of
a correct transcription of pauses on the robustness
of acoustic models.

2. Comparison of the three sets of HMMs: XW tri sil1,
XW tri sil2 and XW tri sil3, clearly shows the
positive relation between the number of identified
contextual influential pauses and the model’s ro-
bustness. The increased performance also proved
the effectiveness of our proposals to identify pauses
and their contextual effects in the approaches of
XW ldi ps, XW ldi dur and XW ldi np.

3. The cross-word triphone HMMs XW tri only uses
the short pause sp HMM to model pauses, and
this is the usual way for read speech recognition
systems. The absolute 9.2% more errors than the
XW tri sil suggests how significant the effect is of
modeling varying pauses for recognizing conversa-
tions in noisy environments.

Table 4 gives the environment-based recognition
performance for the three representative HMMs devel-
oped. Analyses of the results suggest:

Table 4 Noisy environment based Word Error Rates (WER
in %) for the three kinds of cross-word triphone HMMs: XW tri

XW tri silon and XW tri sil3.

Env. SNR XW tri XW tri silon XW tri sil3

quiet 23.9 dB 30.0 25.4 23.5

office 20.8 dB 41.0 29.5 28.0
Bradley 15.8 dB 68.6 72.0 57.1
helo 7.6 dB 86.8 84.8 83.3

1. The SNR has a strong correlation to the WERs,
with the lowest SNR to the highest WER.

2. For the environments of quiet and stationary office
noises, the model XW tri silon achieved similar
improvement to the XW tri sil3 when compared
to the XW tri which used sp HMM to model only
the Context Free effect of pauses. This comparison
indicates the significance of modeling the Contex-

tual Influential effect.
3. The XW tri sil3 got fewer errors than the

XW tri silon under all four conditions, with the
most significant 14.9% error reduction for the
Bradley noise. It seems that the proposed method
showed most effectiveness under this medium level
of SNR.

4. Both XW tri silon and XW tri sil3 only got slight
gains for the Helo environment compared to
XW tri , indicating that they are not able to ef-
ficiently deal with speech of low SNR .

5.5 Pause Statistics

Figure 4 illustrates the frequency histogram for the
pauses and the top-10 most frequent phones in the
training data, collected from the phonetic segmentation
aligned based on the model XW tri sil3.

• ps0 stands for a silence at the beginning of an ut-
terance.

• ps1 stands for an inter-word silent pause whose du-
ration is longer than 10ms but shorter than 50ms.

• ps2 stands for an inter-word silent pause whose du-
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Fig. 4 Histogram for the pauses and top-10 most frequent phones in the training data.

ration is longer than 50ms.
• ps3 stands for a silence at the end of an utterance.

This shows not only that pauses are very frequent
but also that the long inter-word pauses (ps2) are the
most frequent ones in the data. When they are contam-
inated by various kinds of background noises, and are
not correctly identified in the phonetic segmentation,
they will surely hurt the robustness of the developed
acoustic models.

6. Conclusions

This paper discussed the influences of varying pauses
on building robust acoustic models, and presented an
approach to exploit the phonetic heuristics of pauses
to achieve more correct phonetic segmentation of the
training data. The significantly improved recognition
performance proved the efficiency of the proposed ap-
proach. The background philosophy is that if acoustic
models are accuratedly and robustly developed from
the trainning data, then they will have certain robust-
ness against the variations from noises. Since the ap-
proach is developed based on only reliable phonetic
heuristics, it is suggested to have wide applicability,
such as to segmenting speech with background music
and etc..
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