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SUMMARY The most widely used acoustic unit in current automatic
speech recognition systems is the triphone, which includes the immedi-
ate preceding and following phonetic contexts. Although triphones have
proved to be an efficient choice, it is believed that they are insufficient in
capturing all of the coarticulation effects. A wider phonetic context seems
to be more appropriate, but often suffers from the data sparsity problem
and memory constraints. Therefore, an efficient modeling of wider con-
texts needs to be addressed to achieve a realistic application for an auto-
matic speech recognition system. This paper presents a new method of
modeling pentaphone-context units using the hybrid HMM/BN acoustic
modeling framework. Rather than modeling pentaphones explicitly, in this
approach the probabilistic dependencies between the triphone context unit
and the second preceding/following contexts are incorporated into the tri-
phone state output distributions by means of the BN. The advantages of
this approach are that we are able to extend the modeled phonetic context
within the triphone framework, and we can use a standard decoding system
by assuming the next preceding/following context variables hidden during
the recognition. To handle the increased parameter number, tying using
knowledge-based phoneme classes and a data-driven clustering method is
applied. The evaluation experiments indicate that the proposed model out-
performs the standard HMM based triphone model, achieving a 9–10%
relative word error rate (WER) reduction.
key words: wide phonetic context model, pentaphone, HMM/BN acoustic
model

1. Introduction

Today’s state-of-the-art automatic speech recognition
(ASR) systems achieve very good performance in controlled
conditions. There are, however, still many challenges to
overcome before ASR systems can reach their full poten-
tial through widespread use in everyday life. For the best
systems, reported results on the 1999 DARPA Broadcast
News Benchmark tests showed that error rates on the spon-
taneous speech portion of the test set were nearly double
those of the planned, studio-recorded conditions [1]. There
are many factors such as channel effects, speaking style,
careless pronunciation, etc., which can cause performance
degradation. Experimental results in [2] demonstrated that
the style of speech (acoustic variation) is the dominant factor
in the recognition error rate. The existing acoustic models
(AM) still have a limited capability to handle the coarticula-
tion effects that exist in everyday conversational speech.

Coarticulation is an acoustic and articulatory variabil-
ity that arises when the articulatory patterns of neighboring
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speech segments overlap. It is a fundamental part of lan-
guage sound systems that allows for dynamic transitions be-
tween adjacent phoneme segments (both within and across
words) that perhaps make speaking easier [3]. As a result,
phonemes can have very different waveforms when pro-
duced in the context of other phonemes [4].

An acoustic model that can accurately capture
these coarticulation effects is obviously needed in large-
vocabulary speech recognition systems (LVCSR). The wider
the unit models, the better the capturing of the coarticulation
effects [5]. Word unit models are impractical for LVCSR
systems due to the large amount of training data needed,
the large decoding search space, and the inefficiency for ex-
panding the vocabulary system. Syllable-based [6], [7] and
multiphone [8] units are smaller than words, both in num-
ber and duration, though there are still too many of them
and, like words, they lack generality [9]. For example, in
the large SWITCHBOARD (SWB) corpus, there are about
9,000 syllables appearing in the training database, but over
8,000 of these have fewer than 100 training tokens [7]. The
phonetic units are thus a natural choice since there are only
a few of them and their frequency of appearance in the
training data is much higher. A standard solution to the
coarticulation problem is to extend the phonetic units to in-
clude context [10]. Most of the current LVCSR systems use
the context-dependent triphone as the fundamental acoustic
unit. Context-dependent triphone units have the same struc-
ture as context independent phonetic (monophone) units, but
are trained on data with immediate preceding and following
phonetic context information [9].

Although such triphones have proved to be an efficient
choice, it is believed that they are insufficient for captur-
ing all of the coarticulation effects. These effects may come
not only from the first preceding/following contexts, but also
from further neighboring contexts. In [11], it was found that
a vowel may influence not only the preceding consonant but
also the vowel before the consonant. Records of /eli/ and
/ela/ or /ebi/ and /eba/ showed that the articulatory setting
for /e/ was different according to the second vowel in the se-
quence: the tongue rose higher and nearer to the /i/ in /eli/
and /ebi/ than in tokens in which the last sound constituted
an /a/ [12]. Other studies also found that English consonants
such as /l/ and /r/ exert long-distance coarticulation effects
across syllables, or “resonance” [13], [14]. Thus, by incor-
porating something wider than the triphone context, more
than just one preceding and one following phonetic context
is taken into account, which is expected to lead to an im-
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provement in the performance of such an acoustic model.
Many researchers have tried to improve acoustic mod-

els by incorporating a wider-than-triphone context, such
as a tetraphone, quinphone/pentaphone, or more [15], [16].
To date, the IBM, Philips/RWTH, and AT&T LVCSR sys-
tems have been quite successful in using pentaphone mod-
els [17]–[19]. To properly train the model parameters and
use them in cross-word decoding, a huge amount of train-
ing data and memory space are required. However, such
resources are usually not available. If only limited training
data is available, context resolution may be lost due to non-
robust parameter estimation and an increased number of un-
seen contexts. If we also face a memory constraint, the use
of the cross-word wide-context model may become cumber-
some and sometimes even impossible [20]. For large-scale
systems, then, a simple procedure to avoid decoding com-
plexity is to apply the wide-context models in the rescoring
pass. In this case, the decoding will use knowledge sources
of progressively increasing complexity to decrease the size
of the search space [21]. Another possibility is to use only
intra-word wide-context units [18]. In [22], it was proposed
to compile wide-context-dependent models into a network
of Weighted Finite State Transducers (WFST), so the de-
coding process is completely decoupled from dealing with
the wide context. However, when higher-order models are
used, difficulties lie in the compilation itself. The work in
[20] was thus conducted in an attempt to simplify the com-
pilation method.

In essence, incorporating wider-than-triphone-context
units often leads to additional improvement, but it requires
large training data and makes the training and decoding dif-
ficult. On the other hand, the simpler model is more reli-
able but less precise in capturing the coarticualtion effects.
Therefore, an efficient modeling of the wide-context unit,
which can maintain the balance between the context reso-
lution and training data size, is one important problem that
needs to be addressed to achieve the realistic application of
an ASR system.

Over the last decade, the Bayesian Network (BN) has
become a popular method for encoding uncertainty in artifi-
cial intelligence. It has also been found to be very powerful
in solving various data analysis problems in areas such as
expert systems, decision support systems, and pattern recog-
nition [23]. A BN can readily handle incomplete data sets;
it allows one to learn about causal relationships; it is well
structured and easy to represent; it facilitates the combina-
tion of domain knowledge and data; and lastly, it offers an
efficient and principled approach for avoiding over-fitting
data [24]. With a BN, since it is possible to associate an
arbitrary set of variables with each speech frame or HMM
state, it is easy to construct models in which phonetic state
information is augmented with other variables [25]. That is
why, recently, many researchers in speech recognition use
a BN to incorporate additional knowledge, such as articula-
tory features, sub-band correlation, or speaking style [26]–
[29]. Another advantage of a BN is that additional features
that are difficult to estimate reliably during recognition may

be left hidden, i.e., unobservable.
The approach we propose in this paper is based on the

hybrid HMM/BN model [25], which allows us to incorpo-
rate a wider-than-triphone context by utilizing the advan-
tages of a BN. The probabilistic dependencies between the
triphone context unit and the next preceding/following con-
texts are learned through a BN, and the wide context state
output probability distribution can be modeled. The advan-
tages of this approach are that we are able to extend the
modeled phonetic context within the triphone framework,
and we can use a standard decoding system by assuming
the next preceding/following context variables hidden dur-
ing the recognition. In this study, it is first assumed that
the next preceding and following contexts affect mainly the
outer HMM states and we only modify those states’ pdfs.
Then we try to extend the approach to include the inner
states of the triphone HMM model. To improve the robust-
ness of the parameter estimation, the standard approach is to
tie some state output probability distributions. In this study,
we apply Gaussian tying using both knowledge-based and
data-driven clustering techniques.

In the next section, we briefly describe the hybrid
HMM/BN background followed by the structure of the hy-
brid pentaphone HMM/BN model. Parameter reduction
with phoneme classes and clustering methods is described
in Sect. 4. Details of experiments are presented in Sect. 5,
including results and a discussion. A conclusion is drawn in
Sect. 6.

2. Hybrid HMM/BN Background

The HMM/BN model is a combination of an HMM and a
BN. The temporal characteristics of speech are modeled by
the HMM state transitions, while the HMM state probability
distributions are represented by the BN. A block diagram of
the HMM/BN is shown in Fig. 1, with the HMM on top level
and the BN underneath.

This model is described by two sets of probabilities:
HMM transition probabilities P(qi|q j) and the joint proba-
bility distribution of the BN P(Z1, . . . , ZK), where Zk, k =
1, . . . ,K are the BN variables. The BN joint probability den-
sity function (PDF) can be factorized as:

P(Z1, Z2, . . . , ZK) =
K∏

k=1

P(Zk|Pa(Zk)), (1)

where Pa(Zk) denotes the parents of variable Zk.

Fig. 1 HMM/BN model structure. HMM transitions model speech tem-
poral characteristics and BN represents state probability distributions.
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It is also possible to use different kinds of BN structures
for different sets of HMM states. Figure 2 shows a simple
example of a BN structure with three variables, where vari-
able Q represents the HMM state, X represents the spectrum
observation variable, and Y represents any other additional
information, such as pitch, articulatory positions, speaker
gender, context information, etc. Here, Q and Y are discrete
variables denoted by square nodes, and X is a continuous
variable denoted by a circle node. The dependency between
two variables (parent and child nodes) is denoted by an arc
and is described by a conditional probability function. Since
it is usually difficult to automatically learn the BN structure,
it is designed manually based on our knowledge about the
data.

In a conventional HMM, the state PDF is usually rep-
resented by Gaussian mixture density and the state output
probability is obtained as:

P(xt|qi) =
M∑

m=1

bmN(xt; µm,Σm), (2)

where bm is the mixture weight for the mth mixture in the
state qi, and N(.) is a Gaussian function with mean vector
µm and covariance matrix Σm.

In the case of the HMM/BN model, as that of Fig. 2,
the state PDF is the BN joint probability model that can be
expressed by a chain rule, according to Eq. (1):

P(X, Y,Q) = P(X|Y,Q)P(Y |Q)P(Q), (3)

thus the state output probability, when all the BN variables
are observable, is simply:

P(xt|yn, qi) = P(X = xt|Y = yn,Q = qi). (4)

However, if the additional variable Y is hidden, then the
state output probability is calculated by marginalization over
Y:

P(xt|qi) =
P(xt, qi)

P(qi)
=

∑N
n=1 P(xt, yn, qi)

P(qi)

=

∑N
n=1 P(xt|yn, qi)P(yn|qi)P(qi)

P(qi)

=

N∑

n=1

P(yn|qi)P(xt|yn, qi), (5)

Fig. 2 A simple example of a BN structure with three variables Q, Y, X,
where Q represents the HMM state, X represents the spectrum observation
variable, and Y represents any additional information.

where for simplicity, we use these xt, qi, and yn notations
instead of 〈X = xt〉, 〈Q = qi〉, and 〈Y = yn〉, respectively.
Here, we can see that Eq. (5) is equivalent to the state out-
put probability of the conventional HMM of Eq. (2) if we
treat the term P(yn|qi) as a mixture weight coefficient for the
Gaussian component P(X|yn, qi). Thus, the existing HMM
decoders can work with the HMM/BN model without any
modifications.

The training procedure for the hybrid HMM/BN model
is based on the Viterbi algorithm and consists of the follow-
ing steps:

1. Initialization: HMM/BN parameter initialization using
the bootstrap conventional HMM model.

2. Viterbi alignment: Obtain time-aligned state segmen-
tation of the training data.

3. BN training: Train the BN using state-labelled training
data.

4. Transition probability updating.
5. Embedded BN/HMM training.
6. Convergence check: Stop if convergence criterion is

met, otherwise go to step 2.

The training of the state BN at step 3 above is done using
standard statistical methods. If all variables are observable
during training, only simple ML parameter estimation can
be applied; however, if some variables are hidden, then the
parameters can be estimated by the standard EM algorithm.

More details about the HMM/BN approach can be
found in [25]–[27].

3. Hybrid Pentaphone HMM/BN Model

In our pentaphone HMM/BN model, the HMM at the top
level corresponds to the triphone-context acoustic unit and
has three states. The BN at the bottom level is used
to model the probabilistic dependencies between triphone-
context units and the second preceding/following contexts
represented by different BN variables. Let /a−, a, a+/ be a
triphone context, then the corresponding pentaphone three-
states left-to-right HMM/BN structure becomes the one
shown in Fig. 3.

If we extend the conventional triphone HMM with ad-
ditional second preceding and following contexts, we have a
pentaphone context like /a−−, a−, a, a+, a++/. The left, cen-
ter, and right state output probability distributions can be
represented by three different BN topologies as shown in

Fig. 3 Hybrid pentaphone HMM/BN structure.
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Fig. 4 BN topologies of the left state (a), center state (b), and
right state (c) of LR-HMM/BN, for modeling a pentaphone context
/a−−, a−, a, a+, a++/.

Fig. 4 (a), (b) and (c), respectively. Here, it is first assumed
that the next preceding and following contexts mainly affect
the outer states of the triphone HMM model, so that only
BNL and BNR have an additional discrete variable CL and CR

(as variable Y in the previous section). They are associated
with the second preceding and following contexts, respec-
tively. BNC does not have any additional context variables.
Since only the left and right states have additional variables,
we call this model LR-HMM/BN.

The state PDF of the pentaphone HMM/BN model is
the BN joint probability model, which is expressed as:

P(X,C,Q) = P(X|C,Q)P(C|Q)P(Q), (6)

where it depends on the second preceding or succeeding
context C. When C is observable, the left/right state out-
put probability is simply:

P(xt|cn, qi) = P(X = xt|C = cn,Q = qi). (7)

However, since the second preceding/following context C
(CL or CR) is assumed hidden during recognition and
the left/right state output probability is then calculated by
marginalization over C:

P(xt|qi) =
N∑

n=1

P(cn|qi)P(xt|cn, qi), (8)

where for simplicity, we use these xt, qi, and cn notations
instead of 〈X = xt〉, 〈Q = qi〉, and 〈C = cn〉, respectively.
P(cn|qi) is the probability that the state qi has the second
preceding/following contexts cn, and P(xt|cn, qi) is the prob-
ability of observation xt given that we are in the state qi hav-
ing the second preceding/following contexts cn. Here, we
can see that Eq. (8) is equivalent to the state output prob-
ability of the conventional HMM of Eq. (2) if we treat the
term P(cn|qi) as a mixture weight coefficient for the Gaus-
sian component P(X|cn, qi).

Next, we attempted to incorporate the wide context de-
pendencies into the center state of the triphone HMM model.
The state BN topologies for this case are shown in Fig. 5.
The BNL and BNR are the same as before, while BNC has
two additional context variables: the second preceding (CL)
and the second following (CR) contexts. Since all states have
wide-context variables, we call this model LRC-HMM/BN.

The output probability for the left/right state is obtained

Fig. 5 BN topologies of the left state (a), center state (b), and
right state (c) of LRC-HMM/BN, for modeling a pentaphone context
/a−−, a−, a, a+, a++/.

as in LR-HMM/BN. Here, the center state output probabil-
ity is obtained from the BNC assuming also that both ad-
ditional variables CL and CR are hidden during recognition
and take NL and NR values:

P(xt|qi) =
NL∑

l=1

NR∑

r=1

P(cl|qi)P(cr|qi)P(xt|cl, cr, qi), (9)

where for simplicity, we use these xt, qi, cl, and cr notations
instead of 〈X = xt〉, 〈Q = qi〉, 〈CL = cl〉, and 〈CR = cr〉, re-
spectively. P(cl|Q)P(cr|qi) are the probabilities that the cen-
ter state qi has the second preceding and following contexts
(cl and cr), and P(xt|cl, cr, qi) is the probability of observa-
tion xt given that we are in the center state qi having the
second preceding and following contexts, cl and cr, respec-
tively. Here, we can see that Eq. (9) is also equivalent to the
state output probability of the conventional HMM of Eq. (2)
if we treat the term P(cl|qi)P(cr|qi) as a mixture weight co-
efficient for the Gaussian component P(X|cl, cr, qi).

Using these expressions (Eqs. (8) and (9)), we can per-
form recognition using the existing triphone HMM based
decoders without any modification.

The training procedure for the hybrid pentaphone
HMM/BN model is based on the Viterbi algorithm as de-
scribed in Sect. 2. Since all variables, including triphone
state Q, second preceding (CL) context, second following
(CR) context and feature variable X, are observable during
training, only simple ML parameter estimation is applied on
the training of the state BN at step 3 of the algorithm.

4. Parameter Reduction

According to Eqs. (8) and (9), for each value cn of the sec-
ond preceding/following phonetic context C, there is a cor-
responding Gaussian component. An example of observa-
tion space modeling by BNR is shown in Fig. 6. If we use
a 44-phoneme set (including silence) for the English ASR,
it means that the second preceding/following phonetic con-
text C has 44 possible values (C = c1, c2, . . . , c44), thus the
total number of Gaussians for each left/right state may be-
come 44, and the total number of Gaussians for each center
state of LRC-HMM/BN may become 442 = 1,936. If the
amount of training data is not enough to obtain a reliable es-
timate of the increased model parameters, the overall perfor-
mance may degrade significantly. It is therefore necessary
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Fig. 6 An example of observation space modeling by BNR, where a dif-
ferent value of CR corresponds to a different Gaussian.

to reduce the number of Gaussians. Here we attempt both
knowledge-based phoneme classes and data-driven cluster-
ing techniques.

4.1 Knowledge-Based Phoneme Classes

This is a method where specific knowledge of the unit con-
texts is explicitly used to guide the classification proce-
dure [30]. Here, we structure the phoneme contexts into
a tree based on major distinctions in the manner of artic-
ulation. Many phonemes having the same location of ar-
ticulation tend to have similar effects on the neighboring
phonemes. For example, /b/ and /p/ have similar effects on
the following vowel, while /n/ and /m/ also have similar ef-
fects on the following vowel. The main terminal nodes of
the phoneme tree that we used here are: plosives (example:
/b/, /p/, /k/, /ch/), nasals (example: /n/, /m/), fricatives (ex-
ample: /f/, /s/), laterals (example: /l/), trills (example: /r/),
and vowels (example: /a/, /i/). Considering also the amount
of training data, each of these terminal nodes is divided into
more detailed nodes, such as plosive bilabials, plosive ve-
lars, and fricative glottals. Based on this tree, we can cluster
N (NL or NR) second preceding/following contexts into L
classes where L < N.

4.2 Data-Driven Clustering

Data-driven clustering is also a common approach for pa-
rameter tying. Instead of clustering the data based on spe-
cific knowledge, they are clustered based on some similar-
ity measure regardless of what phonetic context they rep-
resent [23]. Initially, each Gaussian is placed in a separate
cluster, then the pair of clusters which would form the small-
est resultant cluster when combined are merged. The dis-
tance metric is determined by the Euclidean distance be-
tween the Gaussian means. This process is repeated until
the total number of clusters falls below a certain threshold.
With this clustering technique, we can set up any total num-
ber of Gaussian components, such that it will correspond to
an average of any fixed number of mixture components per
state.

5. Experimental Results and Discussion

Our baseline triphone HMM acoustic model is trained on
more than 60 hours of native English speech data from the
Wall Street Journal (WSJ0 and WSJ1) speech corpus [31].
A sampling frequency of 16 kHz, a frame length of a 20-
ms Hamming window, a frame shift of 10 ms, and 25 di-
mensional feature parameters consisting of 12-order MFCC,
∆ MFCC, and ∆ log power are used as feature parame-
ters. Three states were used as the initial model for each
phoneme. Then, a state level HMnet is obtained using a
successive state splitting (SSS) algorithm based on the mini-
mum description length (MDL) criterion in order to gain the
optimal state topology in which triphone contexts are shared
and tied at the state level. Details about MDL-SSS can be
found in [32]. Here, the length of the HMnet path for each
triphone context is kept to three states. The total number of
states is 1,144 with four different versions of Gaussian mix-
ture component numbers per state: 5, 10, 15, and 20. Each
Gaussian distribution has diagonal-covariance matrix.

The performance of the models was tested on the ATR
Basic Travel Expression Corpus (BTEC) [33], which is quite
different from the training corpus. In this study, we ran-
domly selected 200 utterances from 4,080 utterances spo-
ken by 40 different speakers (20 Males, 20 Females). The
best baseline HMM performance is 87.98% word accuracy,
obtained by a triphone HMM with 15 Gaussians per state.

Using the same database corpus, we obtained time-
aligned state segmentation. First, we evaluated the hy-
brid pentaphone LR-HMM/BN and trained the BNL/BNR

with second preceding/following contexts as additional dis-
crete variables. The center state BNC was equivalent to the
standard HMM state PDF modeled as a mixture of Gaus-
sians. Thus, as a center state of the HMM/BN model, we
used the corresponding five component mixture states from
the baseline acoustic model. The HMM/BN state topol-
ogy, the total number of states, and the transition proba-
bilities are all the same as those of the baseline. The ini-
tial HMM/BN model used a 44-phoneme context set for
C (C = c1, c2, . . . , c44). During training, there were some
phoneme contexts cn which did not exist due to grammat-
ical rules or were unseen in the training data, which af-
ter training resulted in about 30 Gaussians on average per
left/right state. Since the center-state parameters remain the
same as the baseline triphone 5-mixture-component HMM,
the final hybrid LR-HMM/BN model has about 24 mixtures
per state (on average). Then, as described in Sect. 4, us-
ing the knowledge-based phoneme clustering, we reduced
the 44-phoneme set into 30, 20, 10, and 6 classes. Keep-
ing the center state with five Gaussians per state resulted in
hybrid LR-HMM/BN models with 18, 13, 8, and 5 compo-
nent mixtures on average, respectively. The results of the
pentaphone LR-HMM/BN with different kinds of phoneme
class sets are shown in Fig. 7. For comparison, we include
the HMM triphone baseline with the 15 component mixtures
that performed the best.
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Fig. 7 Recognition accuracy rates of pentaphone LR-HMM/BN using
knowledge-based second preceding and following context clustering.

Fig. 8 Recognition accuracy rates of pentaphone LRC-HMM/BN using
knowledge-based second preceding and following context clustering.

Next, we also evaluated the hybrid pentaphone LRC-
HMM/BN model and trained the BNC with both second pre-
ceding and following contexts as additional discrete vari-
ables. The left and right state (BNL and BNR) are the same as
the hybrid pentaphone LR-HMM/BN. The HMM/BN state
topology, the total number of states, and the transition prob-
ability are all also the same as those of the baseline. The
initial HMM/BN model used a 44-phoneme context set for
C (C = c1, c2, . . . , c44). During training, there were some
phoneme contexts cn that did not exist due to grammatical
rules or were unseen in the training data, which after training
resulted in about 412 Gaussians on average per center state
and 30 Gaussians on average per left/right state. The aver-
age for the final hybrid pentaphone LRC-HMM/BN model
was about 142 mixtures per state. To reduce the number of
Gaussians, we clustered the 44-phoneme-context set into 30,
20, 10, and 6 classes using knowledge-based phoneme clus-
tering. As a result, the hybrid pentaphone LRC-HMM/BN
models had 108, 70, 29, and 13 component mixtures, re-
spectively. The results of the pentaphone LRC-HMM/BN
with different kinds of phoneme class sets are shown in
Fig. 8.

By only changing the probability distribution of states
to incorporate a wider phonetic context through BN (and
keeping the other parameters the same), we obtained im-
proved recognition performance. The pentaphone LR-
HMM/BN with 30 classes is the best, and further reducing

Fig. 9 Recognition accuracy rates of pentaphone LR-HMM/BN and
LRC-HMM/BN using data-driven Gaussian clustering.

the number of parameters degrades the performance. Nev-
ertheless, the worst performance is still better than the base-
line. The pentaphone LRC-HMM/BN with a 44-phoneme
set (142 mixtures per state) performed only slightly better
than the HMM baseline due to the huge number of param-
eters. By reducing the number of Gaussians, the resulting
performance can be improved from 88.05% to 88.82%. This
best performance of the pentaphone LRC-HMM/BN is ob-
tained with 10 classes (29 Gaussians per state). For the opti-
mal size of CL and CR using the knowledge-based phoneme
clustering, both LRC-HMM/BN and LR-HMM/BN models
achieved similar performance.

To be able to compare the pentaphone HMM/BN
model and the baseline having exactly the same total num-
ber of Gaussians, using data driven clustering we reduced
the size of the initial HMM/BN model to correspond to a 5-,
10-, 15-, and 20-mixture component baseline. The center
state of the pentaphone LR-HMM/BN also had the corre-
sponding mixture component size. The results of the tri-
phone HMM baseline, the pentaphone LR-HMM/BN, and
the pentaphone LRC-HMM/BN are shown in Fig. 9.

It can be seen that within the same number of param-
eters, both types of pentaphone HMM/BN outperformed
the baseline. The best performance of the pentaphone LR-
HMM/BN is obtained with 15 Gaussian mixtures, which
gives about a 9% relative word error rate (WER) reduc-
tion, while the best performance of the pentaphone LRC-
HMM/BN is obtained with 20 Gaussian mixtures, which
gives about a 10% relative word error rate (WER) reduction.
On average, both the LRC-HMM/BN and LR-HMM/BN
models also achieved similar performance as before, indi-
cating that both knowledge-based and data-driven cluster-
ing techniques are equally efficient in reducing the number
of Gaussian components.

Previously, there were experimental results by another
researchers showing that a model with a varied number of
mixture components often outperforms a model with a fixed
number of mixture components, where both models have
almost the same total number of Gaussians [34]. To in-
vestigate whether the superior performance of our proposed
models is mainly not due to that reason, we conducted ad-



960
IEICE TRANS. INF. & SYST., VOL.E89–D, NO.3 MARCH 2006

Fig. 10 Comparing recognition accuracy rates of triphone HMM and
pentaphone HMM/BN models with a fixed and a varied number of mix-
ture components per state, but having the same 15 mixture components per
state on average.

ditional experiments with the triphone HMM model with
a varied number of mixture components per state that is
trained by simply assigning the number of mixture com-
ponents per state depending on the amount of training data
for that state, and the LR-HMM/BN with a fixed number
of mixture components per state trained by applying data-
driven clustering for each state. With both having about the
same 15 mixture components per state, their performances
were compared with the baseline and the previous penta-
phone HMM/BN models, and the results of which are shown
in Fig. 10. The performance of the LR-HMM/BN with a
fixed number is still better than the triphone models with a
varied number of mixture components. This indicates that
the coarticulation variability is higher than most of the other
variability factors. Thus, by explicitly conditioning each
Gaussian on such pentaphone-context dependency, instead
of just implicitly learning it by the EM algorithm, we can
better model the overall PDF, effecting an improvement in
performance.

6. Conclusion

We have demonstrated the possibility and benefits of utiliz-
ing the wide-context dependency based on the HMM/BN
acoustic modeling framework. With this method, we
can easily extend the conventional triphone model to
cover a wider context where the additional knowledge of
pentaphone-context dependency is incorporated into tri-
phone state PDF by means of the BN. Beneficially, we can
impose a kind of knowledge-based structure so that the state
PDF can be learned more specifically and precisely. On the
issue of recognition, if we lack an appropriate decoding for
the pentaphone HMM/BN model, we still can use the stan-
dard decoding system without any modification, while the
second preceding/following context is then assumed hidden
and the state output probability calculation can be reduced
to that of a Gaussian mixture. The recognition results indi-
cate that ASR system performance can be improved with the
proposed hybrid pentaphone HMM/BN model, even when it
has the same number of Gaussians as the baseline triphone

HMM.
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