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SUMMARY In recent years, the number of studies investigating new
directions in speech modeling that goes beyond the conventional HMM
has increased considerably. One promising approach is to use Bayesian
Networks (BN) as speech models. Full recognition systems based on Dy-
namic BN as well as acoustic models using BN have been proposed lately.
Our group at ATR has been developing a hybrid HMM/BN model, which
is an HMM where the state probability distribution is modeled by a BN, in-
stead of commonly used mixtures of Gaussian functions. In this paper, we
describe how to use the hybrid HMM/BN acoustic models, especially em-
phasizing some design and implementation issues. The most essential part
of HMM/BN model building is the choice of the state BN topology. As it
is manually chosen, there are some factors that should be considered in this
process. They include, but are not limited to, the type of data, the task and
the available additional information. When context-dependent models are
used, the state-level structure can be obtained by traditional methods. The
HMM/BN parameter learning is based on the Viterbi training paradigm and
consists of two alternating steps - BN training and HMM transition updates.
For recognition, in some cases, BN inference is computationally equivalent
to a mixture of Gaussians, which allows HMM/BN model to be used in
existing decoders without any modification. We present two examples of
HMM/BN model applications in speech recognition systems. Evaluations
under various conditions and for different tasks showed that the HMM/BN
model gives consistently better performance than the conventional HMM.
key words: HMM/BN, acoustic model, Bayesian network

1. Introduction

For many years, since the introduction of the HMM for
speech recognition [1], [2], it has been the dominating tool
for acoustic modeling of speech signals. A lot of research
has been directed into improving and extending the HMM
framework and significant advances have been achieved.
However, the pace of performance improvement has signif-
icantly slowed down lately, suggesting that to some extent
we may soon reach or may have already reached the limit
of HMM modeling power. As a consequence, the number
of studies pursuing new, beyond-HMM approaches has in-
creased recently.

One promising research direction is the application
of Bayesian Networks (BN) as speech models. Bayesian
Networks (BN) have attracted researchers’ attention be-
cause they can model complex joint probability distribu-
tions of many different (discrete and/or continuous) ran-
dom variables in well structured and easy-to-represent ways.
Especially suitable for modeling temporal speech charac-
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teristics is the Dynamic BN (DBN) [3]–[5]. DBN is re-
garded as a generalization of the HMM, which in addi-
tion to speech spectral information can easily incorporate
additional knowledge, such as the sub-band correlation [6],
speaking rate [7], etc. In [8], acoustic features are easily
supplemented with pitch information within the framework
of DBN. A combination of features coming from different
modalities, i.e. audio and video, can be easily implemented
with the help of DBN [9]. Another advantage of Bayesian
Networks is that additional features that are difficult to es-
timate reliably during recognition may be left hidden, i.e.
unobservable.

Our research group at ATR Spoken Language Commu-
nication Research Labs has been developing a new acoustic
model called a hybrid HMM/BN. In the HMM/BN, tem-
poral characteristics of speech signal are modeled by HMM
state transitions and a BN is used to model HMM state dis-
tributions. The advantage of this is that the existing meth-
ods for HMM design, training and recognition can be used
without significant modifications since the HMM/BN be-
haves essentially as a conventional HMM. We have suc-
cessfully applied this model in several tasks such as noisy
speech recognition [10], large vocabulary [11] or phoneme
recognition [12]. In all these cases, different additional in-
formation such as noise type and SNR value, speaker gender
and pitch frequency or articulatory parameters has been inte-
grated in the state probability density functions by means of
BN. By incorporating non-spectrum-based information in
our model we were able to increase its performance, which
was consistently better than that of the conventional HMM.
The HMM/BN model can be regarded as an extension of the
HMM or as a DBN with a constraint on the network topol-
ogy; i.e., temporal dependencies are allowed only between
state variables. What makes the HMM/BN different from
the traditional HMM is the efficient and flexible modeling
of the state probability density by the BN. On the other
hand, the hybrid model does not require the complicated
and computationally expensive inference algorithms that are
used with the DBN.

In this paper, based on our experience with the
HMM/BN, we describe and discuss several practical is-
sues that may arise when developing and implementing this
model. The first things to be decided in the model design are
the state structure and the BN topology. Since at the state
level the HMM/BN is equivalent to the traditional HMM,
we can use the same methods to develop the state structure.
For small tasks and context-independent unit models, this
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includes only setting a proper number of states. Further-
more, the structure is almost always left-to-right. When a
context-dependent (for example: triphone) unit model is re-
quired, traditional state clustering and tying techniques can
be applied. Once the state structure is fixed, the BN topol-
ogy has to be chosen. It is in this step we can integrate
different speech information sources. Dependencies can be
set according to prior knowledge or data correlation analy-
sis. In this way, we can impose a knowledge-based structure
on the state output pdf and achieve a more precise model.

The HMM/BN model training involves two main steps:
estimation of state transition probabilities and training of the
BN itself. This procedure is based on the Viterbi training al-
gorithm, where the two steps are performed sequentially at
each iteration and the parameters learned at the previous step
are fixed. In general, Bayesian statistical methods are used
for BN learning [13]. The most simple algorithms apply
to tree-structured BN with only discrete variables [14], [15].
For non-tree structures, the “junction tree” (or JLO) algo-
rithm [16], [17] is widely used. When the complexity of the
BN makes these algorithms infeasible, a number of approx-
imate algorithms based on variational [18] or Monte-Carlo
sampling methods [19] may be used. In the case where all
BN variables are observable and CPDs are in the exponen-
tial family, as in the HMM/BN model, the Maximum Like-
lihood (ML) parameter estimation algorithm may be used.

One problem specific to HMM/BN that may occur dur-
ing BN training is the increased parameter number and con-
sequently poor parameter estimation. Depending on the
number and the size of the BN variables, encoding their con-
ditional probabilistic dependencies may require quite a lot
of parameters. Except for the rare cases when the amount
of available training data is large enough, some clustering
and parameter-tying schemes should be applied to reduce
the actual number of parameters that need to be estimated.

During recognition, the only difference between tradi-
tional HMM and HMM/BN is that instead of calculating the
state output as a Gaussian mixture, in the HMM/BN case,
we infer it from the state BN. Depending on its topol-
ogy and the types of its variables, the BN inference may
be simple or quite complex. In this paper we show that
under some conditions and by putting some limitations on
the variables’ types, the BN inference complexity can be re-
duced to that of a mixture of Gaussians. This makes the
HMM/BN model computationally equivalent to the conven-
tional HMM and, moreover, allows for a direct replacement
of the HMM acoustic model with an HMM/BN model hav-
ing the same state structure.

In this paper, we describe two example applications
of the HMM/BN model for an LVCSR task [11], [20]. In
the first case, as additional state BN variables we use the
speaker gender and F0 frequency value. In the second case,
the BN is designed to learn the correlation between neigh-
boring speech frames.

The remainder of the paper is organized as follows.
The next section gives a brief introduction of the HMM/BN
model and provides details about its design, training and im-

plementation. Section 3 provides details about the example
systems based on the HMM/BN and conclusions are drawn
in Sect. 4.

2. Hybrid HMM/BN Model

2.1 Background

The HMM/BN model is a combination of an HMM and
a Bayesian Network. Speech temporal characteristics are
modeled by the HMM state transitions while the HMM
states’ probability distributions are represented by the BN.
A block diagram of the HMM/BN is shown in Fig. 1.

Structurally, the HMM/BN model is analogous to the
hybrid HMM/NN model [21]. The difference is that instead
of a Neural Network, the HMM is coupled with a BN. The
HMM states in Fig. 1 share the same BN, which means that
their probability density functions are the same. In some
cases, it might be advantageous to have different BN topolo-
gies for different sets of states†. For example, first states of
all HMMs may have different state BNs than center states
or last states. Such cases are regarded as an extension of the
basic HMM/BN model and all the methodology described
below can be applied to them without a loss of generality.

By definition, a Bayesian Network represents a joint
probability distribution of a set of random variables
Z1, . . . , ZN , and is expressed by a directed acyclic graph
(DAG), where each node corresponds to a unique variable.
Arcs between the nodes show the conditional dependencies
of the BN variables. Immediate predecessors of variable
Zi are called its parents and are referred to as Pa(Zi). The
BN joint probability distribution function can be factored as
[22]:

P(Z1, . . . , ZN) =
N∏

i=1

P(Zi|Pa(Zi)). (1)

In practice, the HMM state distribution is often mod-
eled with a mixture of Gaussian functions. This can be
graphically represented by a BN with topology shown in
Fig. 2, where M = {m j}, j = 1, . . . ,K is a discrete variable
representing mixture component index. Since the variable
M is hidden, the data likelihood p(xt|qi) can be calculated

Fig. 1 HMM/BN model structure. HMM transitions model speech tem-
poral characteristics and BN represents states’ probability distributions.

†Here, we assume sets of states whose union consists of all the
states of an acoustic model, not just a single HMM.
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Fig. 2 BN representing mixture of Gaussians.

using the BN joint probability function (Eq. (1)) as follows:

p(xt|qi) =
P(xt, qi)

P(qi)
=

∑K
j=1 P(xt,m j, qi)

P(qi)

=

∑K
j=1 P(xt|m j, qi)P(m j|qi)P(qi)

P(qi)

=

K∑

j=1

P(m j|qi)P(xt|m j, qi). (2)

If we replace P(m j|qi) with wji and P(xt|m j, qi) with Gaus-
sian function N(xt; µ ji,Σ ji), we get a standard mixture of
Gaussians equation:

p(xt|qi) =
K∑

j=1

wjiN(xt; µ ji,Σ ji) (3)

Figure 2 allows us to interpret the Gaussian mixture distribu-
tion in a different way. It shows that observation variable X
depends not only on the state index but also on the variable
M. However, M has no physical meaning. In this respect,
Gaussian mixture learning is ”blind” and does not reflect the
way a speech signal is produced; or at least it does not ac-
count for the factors it depends on, such as speaker gender,
environmental noises, communication channels, etc. Vari-
able M, for example, could represent pitch value, articula-
tory configuration or some other parameter that effects the
speech spectrum.

2.2 HMM/BN Model Design and Training

The HMM/BN acoustic model design involves several main
steps: choosing the speech unit to be modeled (phoneme,
word, etc.); determining the number of states per unit and
the state topology; and choosing the BN structure. The
first two steps are essentially the same as for the standard
HMM. Therefore, the same methods and techniques are ap-
plicable in the HMM/BN case. For small tasks and context-
independent unit models, we need to set only an appropri-
ate number of states: for monophones, usually three states
and five or more for syllable units. The number of states for
word-level models will depend on the average word duration
and is mainly between 10 and 20 states. The state structure
is almost always left-to-right. When a context-dependent
(for example: triphone) unit model is required, traditional
state clustering and tying techniques can be applied. That
can be either phonetic tree clustering [23] or successive state
splitting [24] algorithms.

Ideally, the BN structure should be learned automat-
ically from the training data, but this is a very difficult
task [13] and, usually, BN topology is chosen manually by
taking into account the available data and the task at hand.
The BN can have many variables corresponding to differ-
ent speech features or variability factors. Dependencies are
usually set according to prior knowledge or data correla-
tion analysis. In this way, we can impose knowledge-based
structure on the speech generation process and achieve a
more precise speech model. Which BN variables should
be hidden or observable depends on the available addi-
tional speech training data (pitch, articulatory observations,
prosodic features, etc.) or high-level knowledge (speaker
gender, environment factor, phoneme position, etc.). In case
we do not have observations of some variable, we could as-
sume it hidden. However, as in the Gaussian mixture ex-
ample described in the previous section, in such cases, the
training with the EM algorithm is “blind” and there is noth-
ing to force the hidden variable to keep its “meaningful”
interpretation, i.e., to represent a particular speech feature.
Therefore, it is better to avoid having hidden BN variables
during training.

As in the case of the HMM/NN model, parameter
learning of the HMM/BN is based on the Viterbi training
paradigm and can be summarized in the following algo-
rithm.

• Step 1. Initialization.
• Step 2. Viterbi alignment.
• Step 3. Update BN parameters.
• Step 4. Update HMM transition probabilities.
• Step 5. Stop or go to Step 2.

The initialization step involves setting initial values of
the model parameters (transition probabilities and BN pa-
rameters) given that state structure and BN topology are de-
cided in advance. Although random initialization is pos-
sible, in practice, to facilitate the training we first train a
bootstrap HMM model and use its state structure and tran-
sition probabilities to initialize the HMM/BN. For the BN,
any initial parameter values can be used. Thus, the main
part of HMM/BN training becomes the BN parameter es-
timation. Since the state variable Q is observable, before
BN training we need to obtain its values for each sample
of X. This is done by the Viterbi alignment step. For BN
parameter estimation, several methods are available. When
all BN variables are observable, i.e., in the full observability
case, the maximum likelihood (ML) approach to parame-
ter estimation can be easily applied. In this case, given the
training data O = {ot}, t = 1, . . . , T where each ot contains
observations of all BN variables, ot = {z1t , . . . , zNt }, the log-
likelihood function is [5]:

L = log
T∏

t=1

Pr(ot|G)

= log
T∏

t=1

P(Z1 = z1t , . . . , ZN = zNt )
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=

N∑

i=1

T∑

t=1

log P(Zi|Pa(Zi))|z1t ,...,zNt
(4)

where G denotes the BN. We can see that this function de-
composes into a series of terms, one per variable. Therefore,
the ML training is essentially a parameter estimation of each
node’s CPD given its local data {ot(Zi, Pa(Zi))}. When the
CPD is tabular (represented by CPT), then the log-likelihood
becomes:

L =
∑

i jk

Ni jk log θi jk (5)

where by definition θi jk = P(Zi = k|Pa(Zi) = j) and Ni jk is
the number of times the event (Zi = k, Pa(Zi) = j) was seen
in the training set. The ML estimate of θi jk is:

θ̂i jk =
Ni jk∑
k′ Ni jk′

(6)

For continuous nodes that have discrete parents, the CPD
can be represented by Gaussian functions:

p(zi|Pa(Zi) = j) = N(zi; µ j,Σ j) (7)

for which the ML parameter estimates are well known.
In a partially observed case, i.e. when some of the (dis-

crete) variables are hidden, the Expectation-Maximization
(EM) algorithm can be applied. After BN is trained and its
parameters fixed, the HMM transition probabilities are re-
estimated with the standard forward-backward algorithm.
All of these steps are repeated until the convergence crite-
rion is met. This can be an increase in data likelihood or
simply a fixed number of iterations.

When the BN is fully observable, the most time con-
suming steps of the HMM/BN training are the Viterbi
alignment (Step 2) and transition probabilities update (Step
4) each of which have similar complexity to the HMM
forward-backward training step. However, in practice, Step
4 may be skipped if the initial values of the transition prob-
abilities are good enough, i.e., when initialized from a boot-
strap HMM. In terms of the memory required to store the
model parameters, HMM/BN and HMM do not differ signif-
icantly as long as they have a similar number of Gaussians.

2.3 Implementation and Decoding

The decoding in HMM-based ASR systems is usually done
in a frame-synchronous manner using the Viterbi algorithm.
As the difference between HMM/BN and HMM is in the
way the state output probability is calculated, the same de-
coding strategy can be applied. Depending on the BN com-
plexity and the type of its variables, the output probability
inference can be done in different ways. In general, we need
to obtain P(xt, z1

t , . . . , z
N
t |qt), where xt is the speech spectrum

observation, z1
t , . . . , z

N
t are the instances of all additional ob-

servable variables, and qt is the HMM state ID at time t.
This requires a BN inference engine that should be coupled
with the Viterbi decoder and a feature extraction modules

that will provide the z1
t , . . . , z

N
t observations. Since this may

not always be practical and in order to reduce the imple-
mentation costs, we can assume all additional variables hid-
den during recognition. This is especially useful when dur-
ing recognition the extraction of some features is difficult or
even impossible, like in the case of articulatory features.

A further simplification can be achieved if all addi-
tional BN variables are chosen to be discrete. In that case,
for an arbitrary BN having joint pdf P(X,Q, Z1, . . . , ZN),
from Eqs. (1) and (2), we have:

P(x|q)

=
∑

z1

. . .
∑

zN

N∏

i=1

P(zi|Pa(zi))P(x|Pa(x)). (8)

Since all zi and their parents are discrete, the product∏N
i=1 P(zi|Pa(zi)) is a scalar and can be calculated eas-

ily. The probability P(x|Pa(x)) is usually represented by
a Gaussian function and therefore the above equation rep-
resents a Gaussian mixture. The mixture weights, i.e.∏N

i=1 P(zi|Pa(zi)), can be calculated in advance because they
do not depend on x. Thus, each state is associated with a set
of Gaussians and their weights. Note that in contrast to the
conventional HMM†, different states may have mixtures of
different sizes depending solely on the BN variables’ joint
distribution given the state ID.

Such simplification of the BN inference is practically
useful because the HMM/BN model becomes computation-
ally equivalent to the HMM; therefore, there is no need for
an inference engine or any modifications to the traditional
HMM decoder.

Hiding the additional BN variables during recognition
has another advantage for dealing with the “unseen data”
problem that often occurs with limited training data. It is not
unusual that some “contexts” (in terms of BN, that would be
some combination of BN variables’ values) may not appear
in the training data, but be present in the test data. In such
cases, if prior knowledge of “contexts” similarities is avail-
able, models for the “unseen data” can be generated. Other-
wise, small fixed probabilities are assigned to all the prob-
lematic “contexts.” In the BN case, when the output proba-
bility is calculated by Eq. 8, the problem is solved automat-
ically because this equation, in fact, “marginalizes out” all
the hidden variables.

2.4 Reduction of HMM/BN Parameter Number

The HMM/BN model is fully described by two sets of pa-
rameters: HMM transition probabilities and state BN pa-
rameters. The number of transition probabilities is propor-
tional to the number of states and as it is usually in the
order of thousands, their estimation is not a problem. For
the BN, however, depending on the number of variables and
their sizes, the parameter number may become too large,

†Although there are techniques that attempt to optimize the
number of Gaussians, such as [25], the common approach is to use
the same manually set mixture component number for each state.
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making estimation quite poor. For example, let us con-
sider the BN from Fig. 2 and assume that the additional
variable M is not the Gaussian component ID, but rather
some observable discrete speech variability factor. Then
according to Eq. 2, there will be K (Gaussian) components
P(x|m j, qi), j = 1, . . . ,K for each state qi. If our HMM/BN
acoustic model has several thousand states and the size of M
is about one hundred, then the total number of Gaussians in
the model will be in the order of hundreds of thousands.

Obviously, we need a huge database in order to train
such a large model. In practice, however, the actual number
of mixture components per state rarely reaches K. There are
two reasons for that: 1) the conditional distribution P(m|q)
may have many zeroes. For example, if qi represents an un-
voiced speech interval and m j denotes some pitch frequency,
then, naturally, P(m j|qi) = 0; 2) there are no samples in the
training data corresponding to some P(m j|qi). This is the
so-called “unseen data” phenomenon, and its handling was
discussed in the previous section. Nevertheless, even though
the number of mixture components per state does not reach
K, we can still face the limited data problem since many
Gaussians may have only a few training samples. The most
widely used solutions are data clustering and parameter ty-
ing.

Since the BN is trained on several speech feature sets
(spectral features as well as features represented by the ad-
ditional BN variables), clustering can be applied to some or
all feature sets depending on the required degree of param-
eter number reduction. By clustering the additional (dis-
crete) features we effectively decrease the size of the state
mixtures (K), which may reduce the feature space resolu-
tion and result in a less precise model. Clustering and ty-
ing of the Gaussians is more flexible because the mixtures
can share some components but keep their original size, and
more importantly, their original weights.

3. HMM/BN Application Examples

3.1 LVCSR System Using Pitch and Gender Information

To achieve high performance and manageable model size,
most of the large-vocabulary speech recognition systems are
based on context-dependent sub-word unit HMMs with a
tied state structure. Our system is built in a similar man-
ner, but instead uses crossword triphone HMM/BN models.
The state-level topology (three-state left-to-right) and the ty-
ing scheme are taken from a bootstrap conventional HMM
acoustic model trained on the same data.

Training LVCSR system requires a lot of data and the
available databases of sufficient size consist of speech data
only. Therefore, any speech feature other than a spectrum
representation (MFCC, for example) that we would like to
use as an additional BN variable should also be extracted
from the speech signal. The fundamental frequency, or pitch
as it is often called, is one such feature that can be ob-
tained relatively easily from the speech waveform. Also,
most databases contain information about the speaker’s ID

Fig. 3 State BN structure with pitch frequency F and speaker gender G
as additional variables.

and gender. Therefore, it is easy to obtain a label for the
speaker’s gender that can be considered as a high-level dis-
crete speech feature. Thus, we can use both pitch and gen-
der as additional state BN variables. The structure of the
state Bayesian Network we used is shown in Fig. 3, where
variables Q and X represent the state and the speech spec-
trum feature and the other two - F and G - correspond to
the pitch frequency and speaker gender. As can be seen,
pitch depends on the speaker gender and they both influence
the speech spectrum (X). Also, pitch as well as the speech
spectrum depend on the phonetic unit state represented by
Q. All the BN dependencies are set according to our prior
knowledge about the relationship between the speech fea-
tures [11].

To make use of the simplified BN inference as de-
scribed in Sect. 2.3, a discrete representation of the pitch
frequency is necessary. For that, we used Vector Quantiza-
tion. The discretization of a continuous variable always in-
troduces some information loss, but in this case it offers the
advantage of consistent representation of both voiced and
unvoiced speech frames. This is possible if we consider the
unvoiced frames as having zero pitch frequency and label
them with identical labels.

During recognition, the speaker gender is not known,
so the variable G is hidden. The pitch variable can be con-
sidered hidden as well despite the possibility of observing
it, i.e. using a voiced/unvoiced detector, extracting pitch fre-
quency and quantizing it. Under these conditions, the state
output probability can be calculated from the BN joint pdf
and Eq. (1) as:

P(xt|qt) =
P(xt, qt)

P(qt)

=

∑
f ,g P(xt, f , g,qt)

P(qt)

=

∑
f ,g P(xt| f , g, qt)P( f |g, qt)P(g)P(qt)

P(qt)

=
1
2

∑

f ,g

P( f |g, qt)P(xt| f , g, qt).

(9)

In the above equation, we assume that the prior prob-
abilities of the speaker being male or female are equal, so
P(g) = 0.5.

We evaluated our HMM/BN-based LVCSR system us-
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ing the WSJ database. The experimental setup followed
closely the HUB2 (Nov93) evaluation specifications [26].
For training we employed the SI-284 training set. The lan-
guage model was a standard bigram provided for the HUB2
evaluation. The test set consisted of 215 utterances with 0%
OOV and a 5,000-word dictionary.

Speech data were transformed into 39 dimensional fea-
ture vectors (Pow + 12MFCC + ∆Pow + 12∆MFCC +
∆∆Pow + 12∆∆MFCC) from 20-ms long frames with 10-ms
shift. The pitch frequency was obtained from the speech sig-
nal by Entropic’s ESPS package which uses the pitch track-
ing algorithm described in [27]. The pitch extraction rate
was the same as for the speech features, so for each cepstrum
vector there was a corresponding pitch value. Zero pitch
was set for silence and non-voiced frames. From all non-
zero pitch data two VQ codebooks were trained with three
and seven centroids respectively. Later, a zero centroid was
added manually to each of the codebooks, so the number of
centroids became four and eight. The pitch data were then
quantized and codebook labels were obtained. Thus, each
speech feature vector was labeled with a pitch and speaker
gender label.

Using the HTK speech toolkit we trained three tied-
state crossword triphone bootstrap HMM models with
10,071, 7,870 and 5,666 states respectively. They were used
to initialize three HMM/BN models. State labels for the first
iteration of the HMM/BN training were obtained from the
bootstrap models by Viterbi alignment. Because all the BN
variables were observable (for the training), BN parameters
were estimated using the ML algorithm. During training,
each Gaussian p(x| f , g, q) was estimated from its local data,
i.e., from speech vectors labeled with the same gender, pitch
and state labels. In some cases, the amount of this data
was too sparse and in order to avoid badly trained param-
eters, we used thresholding and Gaussian tying. A threshold
trh = 100 was applied to each Gaussian’s local data (vec-
tor) number and if it was below the threshold, the data were
pooled together with those that have the same state and pitch
labels but the opposite gender label. If the pooled data vec-
tor number exceeded the threshold, the two Gaussians were
tied, otherwise they were removed from the model. The
number of HMM/BN model training iterations was set to
five.

Table 1 and Table 2 respectively show the results using
four and eight level quantized pitch data. In the HMM/BN
case, since the mixture number varies from state to state, the
average number of Gaussians per state is given. For com-
parison, results for a similarly complex HMM model are
shown.

For the case of four-level quantized pitch data and a
lesser number of model parameters, we obtained better re-
sults than the baseline HMM. Furthermore, the relative im-
provement was highest for the model with smallest state
number. On the other hand, with eight level quantized data,
HMM/BN did not improve the baseline HMM performance,
but for the case of the smallest state number, WERs were al-
most the same. This indicates that the amount of training

Table 1 Results using 4 level CB quantized pitch data.

Model states mix/state WER (%)

HMM 4 12.4
HMM/BN 10071 3.7 11.8

HMM 4 14.7
HMM/BN 7850 4.1 14.0

HMM 5 13.6
HMM/BN 5666 4.5 12.4

Table 2 Results using 8 level CB quantized pitch data.

Model states mix/state WER (%)

HMM 6 11.2
HMM/BN 10071 5.6 12.1

HMM 6 13.3
HMM/BN 7850 5.9 13.8

HMM 7 12.5
HMM/BN 5666 6.6 12.8

Fig. 4 BN topology for modeling dependency on the previous observa-
tion.

data may not be sufficient in the eight-level CB case. Also,
since the pitch extraction is not error-free, quantization with
a CB of a larger size makes the BN parameter estimation
more sensitive to such errors.

3.2 Modeling Successive Frame Dependencies

The advantage of using the BN as a state distribution model
is that it is very easy to add additional variables. In order to
model the dependency between the current and previous ob-
servations, we can add one additional variable representing
speech spectrum feature at time t − 1 as shown in Fig. 4.

Variables xt and xt−1 take real values and there are
several choices for modeling their conditional distribution,
such as, for example, a Linear Regression (LR) model [28].
However, when the number of states is too big, as in the
context-dependent acoustic models, having an LR or any
other complex CPD approximation increases the complex-
ity of the entire model. The approach we took is to convert
xt−1 into a discrete variable by means of VQ. This simplifies
the HMM/BN implementation as described in Sect. 2.3 and
is similar to the previous example where we used discrete
pitch values. Since all BN variables are observable during
training, the BN is trained by ML algorithm. During recog-
nition, the xt−1 variable can be either observable (labels can
be obtained by VQ) or hidden. The latter case, however,
simplifies the P(xt|qt) inference to a Gaussian mixture cal-
culation. Similarly to Eq. (2), we have:

P(xt|qt) =
∑

xt−1

P(xt−1|qt)P(xt|xt−1, qt) (10)
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Fig. 5 BN topology for modeling dependency on both previous observa-
tion and previous state.

where summation is done over all discrete values of xt−1.
Extending this model to include the current observa-

tion’s dependency on the previous state is as easy as adding
another discrete variable representing qt−1. The BN topol-
ogy in this case is shown in Fig. 5. Assuming again that xt−1

and qt−1 are hidden during recognition, for P(xt|qt) we get:

P(xt|qt)

=
∑

qt−1

∑

xt−1

P(qt−1|qt)P(xt−1|qt−1, qt)

P(xt|xt−1, qt−1, qt) (11)

where the double sum is over all state IDs and all values of
xt−1.

For acoustic model training, we used the same WSJ-
284 data as in the previous example. However, in this
case, we used different test data that consisted of 200 ut-
terances selected randomly from a set of 4000 read speech
utterances spoken by 40 speakers. The speech material of
the test data consists of travel-related expressions and is
quite different from that of the training data. All speech
utterances were collected in quiet environments. Here, 25-
dimensional (12MFCC + 12∆MFCC + Pow) feature vectors
are extracted with a 20 ms sliding window at a 10 ms frame
rate. The language model used in these experiments was a
word bi-gram and was trained on a different text corpus con-
sisting of about 150,000 travel domain sentences. Note that
the WSJ sentences come from financial news articles. The
vocabulary size was about 20,000 words and the test data
out-of-vocabulary rate was about 1.5%.

Our baseline acoustic model is an HMnet obtained by
a successive state splitting algorithm with an MDL stopping
criterion [29]. The total number of states is 2009. Four ver-
sions with 5, 10, 15 and 20 Gaussian components per state
were trained in order to compare models with different pa-
rameter numbers. The HMM/BN models were initialized
using the baseline HMnet, meaning that they have the same
number of states and the same state topology.

As can be seen from Eqs. (10) and (11), the number of
Gaussian components of the HMM/BN model depends on
the VQ codebook size, and this number can become quite
large. Indeed, using the BN topology of Fig. 4 with a VQ
size of 128 resulted in more than 100,000 Gaussians. To re-
duce the parameter number, we applied Gaussian clustering
and tying as described in Sect. 2.4. In this way, for each VQ

Fig. 6 Results of LVCSR experiments.

codebook size of 32, 64 and 128, we made four models, with
the total number of Gaussians corresponding to that of the
baseline models, i.e., models with 5, 10, 15 and 20 mixture
components per state in average.

We evaluated HMM/BN models having all possible
variants of BN structures and codebook sizes and the re-
sults of the best three and the baseline MDL-SSS HMnet are
shown in Fig. 6. In this figure, the HMM/BN with the BN
topologies from Fig. 4 and Fig. 5 are denoted as BN1 and
BN2, respectively. The numbers after the name indicate the
size of the VQ codebook used. The improved performance
of the HMM/BN model clearly shows that it was able to uti-
lize the frame correlation information effectively.

4. Conclusion

In this paper, we described the hybrid HMM/BN model
and discussed some issues related to its design and imple-
mentation. Although this model can be regarded as a pure
Bayesian Network, its structure allows simple algorithms to
be used for training and recognition instead of general BN
learning and inference methods which depending on the task
may often become computationally intractable.

Since the HMM/BN has the same state topology as the
HMM, the way we build acoustic models is not altered at
all. The only difference is the need for BN training, which in
many cases can be reduced to an easy ML parameter estima-
tion. The implementation of the HMM/BN can be simplified
by forcing all the additional BN variables to be discrete and
assuming them hidden during recognition. This way, the BN
inference becomes equivalent to a Gaussian mixture compu-
tation.

As the provided examples of HMM/BN application
show, even with a few additional variables and simple BN
topologies, the hybrid model achieved better performance
than the conventional HMM.
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