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SUMMARY In this paper, we describe a parallel decoding-based ASR
system developed of ATR that is robust to noise type, SNR and speaking
style. It is difficult to recognize speech affected by various factors, espe-
cially when an ASR system contains only a single acoustic model. One so-
lution is to employ multiple acoustic models, one model for each different
condition. Even though the robustness of each acoustic model is limited,
the whole ASR system can handle various conditions appropriately. In our
system, there are two recognition sub-systems which use different features
such as MFCC and Differential MFCC (DMFCC). Each sub-system has
several acoustic models depending on SNR, speaker gender and speaking
style, and during recognition each acoustic model is adapted by fast noise
adaptation. From each sub-system, one hypothesis is selected based on
posterior probability. The final recognition result is obtained by combining
the best hypotheses from the two sub-systems. On the AURORA-2J task
used widely for the evaluation of noise robustness, our system achieved
higher recognition performance than a system which contains only a sin-
gle model. Also, our system was tested using normal and hyper-articulated
speech contaminated by several background noises, and exhibited high ro-
bustness to noise and speaking styles.
key words: automatic speech recognition, parallel decoding, multiple
acoustic models, fast noise adaptation, speaking style, hyper-articulated
speech

1. Introduction

In a real environment, there is a wide variety of noises such
as engine noise from automobiles, babble noise in conven-
tion halls, street traffic noise, etc. Moreover, natural speech
exhibits various speaking styles such as fast and slow ut-
terances, hyper-articulation and whispering. Therefore, it
is important to have a system that can handle such a wide
variety of noises and speaking styles.

To date, many techniques have been proposed that im-
prove noise robustness [1]. In the field of speech enhance-
ment, Spectrum Subtraction (SS) [2] and two-stage mel-
scaled Wiener-filtering [3] have been proposed. RASTA
processing [4] and Cepstrum Mean Normalization (CMN)
have also been developed as noise-robust feature extrac-
tion techniques. In addition, Parallel Model Combina-
tion (PMC) [5] and Maximum Likelihood Linear Regression
(MLLR) [6] have been proposed to adapt models to a partic-
ular noise environment. Multi-condition training is widely
used for generating a model robust to noise type and level.
To deal with variations in speaking style, there are some
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techniques for robust recognition of speech distorted by the
Lombard effect [7], for hyper-articulated speech [8] and fast
spontaneous speech [9], [10].

These techniques can be classified into three typical
categories. Acoustic modeling techniques for improving ro-
bustness are classified into the first category as shown in
Fig. 1 (1). The multi-condition training belongs to the first
category, where a single acoustic model is estimated with a
large database which contains several environments includ-
ing different noise types, noise levels and speaking styles.
An acoustic model estimated by this method can robustly
recognize speech uttered in an environment which is in-
cluded in the training data. However, an acoustic model
trained with data collected in a specific environment can
accurately recognize speech uttered in the same environ-
ment (matched condition), and achieves higher recognition
performance than a model estimated by the multi-condition
training. Therefore, for a single model, there is a trade-off
between robustness and accuracy. As principly shown in
Fig. 2, the variety of speaking environments for which a sin-
gle model can have high performance is limited.

The speech enhancement and the noise-robust feature
extraction methods belong to the second category, where
noisy speech is mapped into a specific environment such as
clean speech. Figure 1 (2) conceptually illustrates mappings
from a noisy environment to a clean one. If the specific
environment is modeled completely by an acoustic model,
the model can accurately recognize the speech from that
environment. SS and Wiener-filtering are used to reduce
background noise. The types of environment which can be
mapped depend on individual techniques applied in this cat-
egory.

The model adaptation methods and techniques for deal-
ing with variable speaking styles belong to the third cate-
gory. They are used to transform the model to a different
speaking environment. Figure 1 (3) depicts conversion from
an acoustic model for environment 1 to environment 2. The
area of the speaking environment space that can be trans-
formed generally depends on the acoustic model. One ap-
proach to extend the area that can be adapted is to prepare
multiple acoustic models depending on different environ-
ments, and then to perform model adaptation of the model
that is close to the input speech.

In this paper, we describe an ASR system developed
by ATR which is based on parallel decoding with improved
robustness to noise, SNR and speaking styles. Our sys-
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Fig. 1 Classification of techniques for improving robustness.

Fig. 2 Performance of models trained with speech data from single and
multiple environments.

tem works with multiple acoustic models. A wide vari-
ety of speaking environments are handled by using many
acoustic models, which are trained and constructed for each
specific environment (noise type, SNR, speaker gender and
speaking style) using different acoustic features. For each
test utterance, noise-adapted acoustic models are gener-
ated, then multiple hypotheses obtained from these acous-
tic models are selected and combined by hypothesis selec-
tion and hypothesis combination [11] based on lattice re-
construction. To adapt acoustic models to noisy environ-
ments, we proposed a new fast noise adaptation technique
using noise GMMs that can be applied to any acoustic fea-
tures, not only MFCC without Cepstrum Mean Subtraction
(CMS). Moreover, we proposed a new hypothesis combina-
tion technique using Generalized Word Posterior Probability
(GWPP). Even though the robustness of each single acoustic
model is limited, an ASR system with many specific models
can handle various conditions.

We demonstrated that a parallel decoding-based ASR
system can achieve higher performance, than in a single
decoding-based ASR system, even though speech is con-
taminated and distorted by both noise and speaking styles.

In Sect. 2, we describe techniques used in our ASR
system. In Sect. 3, we evaluate our system’s noise robust-
ness. In Sect. 4, in addition to noise, the system’s robustness
to speaking style is evaluated. Conclusions are drawn in
Sect. 5.

2. System Description

2.1 Fast Noise Adaptation

For fast noise adaptation, we propose a Gaussian Mixture
Model (GMM)-based technique. The technique consists of
two steps. First, noise GMMs and noise-dependent speech
HMMs are prepared using various types of noise in advance.
During recognition, given the first 500 ms of speech data,
weights to individual noise-dependent GMMs are estimated
using the Expectation Maximization (EM) algorithm. Then,
one HMM is composed from the noise-dependent HMMs
using those estimated weights. This procedure is illustrated
in Fig. 3, where, P(x|sn,i) is the state output probability of
the i-th state in the n-th noisy speech HMM and wn is the
weight for the n-th noise GMM. P(x|ŝi) is calculated as sum
of these state output probabilities as follows:

P(x|ŝi) =
N∑

n=1

wnP(x|sn,i), (1)

where N is number of noisy speech HMMs.
State transition probabilities in the noisy speech HMM

are calculated using state durations obtained by using the
following equation:

ln,i =
1

1 − an,i
, (2)

where an,i and ln,i are respectively the self-state transition
probability and the state duration of the i-th state in the n-th
noisy speech HMM. Then, the state transition probability âi

in a noise-adapted HMM is calculated by using these state
duration times as follows:

l̂i =
1
N

N∑

n=1

ln,i, (3)

âi =
l̂i − 1

l̂i
, (4)

Therefore, state output distributions are adapted using
weights for noise GMMs; however, these transition proba-
bilities are not adapted because the average duration of all
noisy speech HMMs is used.

This technique belongs to the third category in Fig. 1.
This approach is similar to the HMM composition-based
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Fig. 3 Generation of noise-adapted HMM.

technique [13]. This technique cannot be applied to an
acoustic feature other than an MFCC feature, since it is
based on the PMC method. Our technique, however, can be
applied to any feature such as an MFCC feature normalized
by CMS and DMFCC.

In the previous ATR system presented in [11], MLLR
online adaptation is used for adaptation of noise type,
speaker, and channel characteristic. A model is adapted us-
ing an utterance, which consists of noise and noisy speech
periods. Then the utterance is decoded again using the
adapted model. On the other hand, fast noise adaptation can
generate an adapted model using only the noise period. The
fast noise adaptation technique can generate a noise-adapted
model before the decoding process. Therefore, it is more
suitable for realtime applications.

2.2 Hypothesis Selection

Here we implement the hypothesis selection technique
based on posterior probability. The hypothesis with the
highest score is selected from multiple hypotheses as fol-
lows:

k̂ =
K

argmax
k=1

Hk, (5)

where Hk is the score of a hypothesis obtained from the k-th
decoder. K denotes the number of decoders. A hypothesis
obtained from the k̂-th decoder has the highest score, which
is defined as the sum of the log acoustic model likelihood
and the log language model probability of a hypothesis as
follows:

H = log P(X|W) + λ log P(W), (6)

where X, W, and H are respectively an observed feature vec-
tor sequence, a hypothesis represented by a word sequence,
and the score for the hypothesis. log P(X|W) and log P(W)
denote respectively a log acoustic model likelihood and a
log language model probability. λ denotes a language model
weight used during the decoding process.

This technique is used for expanding an area that can
be recognized robustly and accurately. Therefore, this tech-
nique belongs to the first category in Fig. 1. Even though
the robustness of each acoustic model is limited, an area that
can be recognized robustly is expanded effectively when the
technique can select an appropriate hypothesis.

Note that a period of silence basically does not depend
on the SNR level, speaker gender or speaking style. In hy-
pothesis selection, we experimentally confirmed that an in-
correct hypothesis is often selected using the likelihoods of
silence models estimated from different speech databases at
a very significant rate. In the experiments described later,
we estimated a common silence model to avoid this perfor-
mance degradation.

2.3 Differential MFCC

Our previous research showed that some modifications to
the MFCC algorithm can yield better performance in noisy
speech conditions [12]. The so-called differential spectrum
MFCC is calculated from the differential power spectrum of
speech, which is defined as:

D(i, k) = |Y(i, k) − Y(i, k + 1)|, (7)

where D(i, k) is the differential spectrum, Y(i, k) is the power
spectrum for the i-th frame and k is the spectrum bin index.
This technique belongs to the second category in Fig. 1. We
denote this type of differential spectrum MFCC feature as
DMFCC.

2.4 Hypothesis Combination

In our system, we propose a hypothesis combination tech-
nique based on GWPP (Generalized Word Posterior Prob-
ability) [14], which is used as a confidence measure. This
technique combines multiple hypotheses obtained from dif-
ferent decoders, and if these hypotheses are complementary
to each other, it is possible to obtain a more correct result.
Figure 4 depicts an example of hypothesis combination. Our
system uses this technique to combine hypotheses from the
two different sub-systems.

Initially, each word in each of the hypotheses is repre-
sented by an arc in the graph, where the weighted confidence
score of that word is associated with the arc. The score An

for n-th word is defined as:

An = Tn log Cn, (8)

where Cn and Tn are respectively the GWPP and duration
of the n-th word in a hypothesis. In the next step, all arcs
representing identical words hypothesized between the same
time instants are collapsed into a single arc. Finally, nodes
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Fig. 4 Examples of a hypothesis combination.

are formed between all arc pairs where the word-end time
of one arc and the word start time of the next arc are within
30 ms of each other.

After the word graph is constructed in this manner,
weighted confidence score and language model probability
for each word are combined to form the word score. Fi-
nally, a DP search is performed to find the best scoring path
through the graph.

This technique can also be used for expanding an area
that can be recognized robustly and accurately. Therefore,
this technique belongs to the first category in Fig. 1.

The previous ATR system presented [11] includes the
likelihood-based hypothesis combination technique that
uses a normalized acoustic likelihood obtained from the
log acoustic model likelihood P(X|W). On the other
hand, GWPP is the approximation of posterior probability
P(W|X). In this paper, we evaluate the improvement in both
the GWPP-based and likelihood-based hypothesis combina-
tion techniques.

2.5 Acoustic Model for Hyper-Articulated Speech

When using real ASR system, if a recognition error occurs,
the user has to repeat the last utterance. Okuda et al. [8]
reported that a short pause is usually inserted after vowels
in the repeated utterances, and consequently the ASR per-
formance degrades. To recognize such utterances robustly,
they proposed a new acoustic model which allows short-
pause insertion after vowels for hyper-articulated speech.
The structure of this acoustic model is illustrated in Fig. 5.
Our system employs such an acoustic model for recogni-
tion of hyper-articulated utterances such as repeated speech.
This technique belongs to the first category.

3. Evaluation of Robustness to Noise

3.1 Experimental Conditions

Our system was tested on the AURORA-2J task [15]. This

Fig. 5 Structure of an acoustic model for hyper-articulated speech.

Table 1 Noise types used for the AURORA-2J task.

Training Restaurant, Street, Airport, Station
Testing Subway, Babble, Car, Exhibition

Table 2 HMMs for the AURORA-2J task.

Number of states Number of mixtures
digits 16 20
silence 3 36
short pause 1 36

database consists of Japanese connected digit corpus for
training and testing. The ATRASR version 3.3 developed by
ATR Spoken Language Communication Laboratories was
used as a decoder. The clean-training set in the AURORA-
2J was employed for estimating acoustic models. There is
a total of 8,440 utterances by 110 speakers (55 male and 55
female). The training set was contaminated by four types
of noise as shown in Table 1 at four types of SNR (20, 15,
10 and 5 dB). Digits and silence were modeled by different
HMMs as shown in Table 2, with the total number of acous-
tic models being 2 features × 4 SNRs × 4 noises = 32. For
each noise type, a noise GMM with eight Gaussian distribu-
tions was estimated.

For a baseline system, we prepared an acoustic model
trained using a multi-condition training set, in which four
types of noise are added to the clean speech at five types
of SNR (Clean, 20, 15, 10 and 5 dB). Each noise and SNR
condition included 422 utterances. The test set-B in the
AURORA-2J was used for testing. In this set, speech ut-
terances were contaminated by four types of noise, which
were different from the noises used for the training, at differ-
ent SNRs ranging from 0 dB to 20 dB as shown in Table 1.
The G.712 filter was applied to all training and testing
speech data. The feature vector consists of 12 MFCCs, ∆
pow, 12∆MFCCs, ∆∆ pow and 12∆∆MFCCs calculated
with a 10-ms frame period and 25-ms frame length. The
DMFCC features have the same structure as the MFCC fea-
tures, and the Cepstrum Mean Subtraction (CMS) was ap-
plied to both types of feature. We denote these features as
MFCC CMS and DMFCC CMS, respectively. In addition,
before feature extraction, we applied a two-stage Wiener-
filtering: the AFE (ES 202 050 front-end) [3] distributed by
ETSI. We denote MFCC and DMFCC features extracted
from noise-suppressed speech by the AFE as MFCC AFE
and DMFCC AFE, respectively.

In [15], AURORA-2J results were reported where
multi-conditional trained models with MFCC AFE features
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are obtained using the HTK toolkit [16]. In order to be able
to compare our system with that from [15], we also trained a
simple model with the multi-condition data and MFCC AFE
features. The ATRASR achieved an 89.09% average word
accuracy, which is comparable with the 88.98% reported in
[15].

3.2 System Structure

To investigate the effect of the parallel-decoding based
speech recognition, we evaluated the performance of several
ASR systems as follows.

System A) Multi-conditional trained AM

In this system, a single acoustic model estimated with
the multi-condition training set is used only, thus this
system is based on single-decoding. MFCC CMS is
used as the acoustic feature.

System B) SNR-independent AM

Also, this system is based on single-decoding, having
only a single acoustic model composed from 16 noise
type and SNR-dependent models described in Sect. 3.1.
Each state of the model consists of mixture components
of individual environment-dependent models, and has
20 mixture × 4 SNR levels× 4 noise types= 320 Gaus-
sian distributions.

System C) SNR-dependent AMs

This system contains four decoders with acoustic mod-
els for four SNR levels, thus there are four recognizers.
Each SNR-dependent model is composed from models
which depend on four noise types for each SNR level.
Each state has 20 mixture× 4 noise types= 80 distribu-
tions. The hypothesis with the highest score is selected
as the final result from the hypotheses of these models.

System D) Noise-adapted SNR-dependent AMs

This system contains the four SNR-dependent acoustic
models of the system C which are adapted using the
fast 500 ms of speech data by the fast noise adaptation.

System E) Overall system

The overall system consists of two sub-systems, one for
MFCC CMS and one for DMFCC CMS as shown in
Fig. 6. Each sub-system has four SNR-dependent mod-
els, which are adapted with the first 500 ms of speech
data. Each sub-system outputs a hypothesis obtained
by noise-adapted SNR-dependent models. The final
result is obtained by the hypothesis combination tech-
nique.

As an another combination method, system E with-
out noise adaptation, the system consists of system C using
MFCC and system C using DMFCC. However, a situation
where an ASR system without noise adaptation is used is
not realistic, because speech is inevitably contaminated by

background noise in real environment. Therefore, the fast
noise adaptation technique is essential for ASR systems in
real environments.

3.3 Evaluation

Figure 7 shows the average word accuracies of several sys-
tems. The performance of system A, which has a multi-
conditional trained AM, is very similar to system B, which
has an SNR-independent AM. System C, which is based on
the parallel-decoding using SNR-dependent AMs, reduces
the errors by 14.7% compared with system A. It is clear that
the recognition accuracy is improved by parallel-decoding
using multiple models. Moreover, system D, which has
noise-adapted models, reduces the error by 22.3% compared
to system A. Clearly, then the accuracy of each models is
improved by fast noise adaptation.

Figure 8 shows the performances of individual SNR-
dependent models in system D and hypothesis selection
technique. We can see that a model depending on a SNR
level which is close to that of input speech achieves the best
performance. The hypothesis selection performance is al-
most equal to the best performance, meaning that it can se-

Fig. 6 Structure of the ASR system used for noise robustness
experiments.

Fig. 7 Performance of systems A to D using MFCC CMS.
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lect a best hypothesis effectively.
We evaluated the performance of the overall system

(System E), with Fig. 9 showing performances. By com-
bining hypotheses from two sub-systems, our system per-
formed better than systems A to D. Our system reduces
the errors by 27.2% in comparison to system A. Further-
more, our system achieved higher performance than a sys-
tem containing an MFCC AFE acoustic model trained with
a multi-condition training set. Clearly, performance is im-
proved by applying the hypothesis combination to hypothe-
ses from multiple features.

We compared the performances of both the GWPP-
based and the likelihood-based hypothesis combination as
shown in Table 3. In the evaluation of ASR systems that use
acoustic features normalized by CMS, the performance of
the likelihood-based technique was the same as the DMFCC
sub-system. On the other hand, the GWPP-based technique
could achieve higher performance than the DMFCC sub-
system.

Moreover, we applied the AFE as the noise suppression
technique to our ASR systems. Figure 10 shows the average
word accuracies of several systems using MFCC AFE. Just

Fig. 8 Performance of individual noise-adapted SNR-dependent AMs
and the hypothesis selection in system D using MFCC CMS.

Fig. 9 Performance of the system E, which consists of the MFCC CMS
and the DMFCC CMS sub-systems.

like with ASR systems using MFCC CMS, it is clear that the
recognition accuracy is improved by the fast noise adapta-
tion technique, the hypothesis combination and the parallel
decoding-based system.

Finally, we evaluated the performance of system E con-
sisting of MFCC AFE and DMFCC AFE sub-systems, and
the results are shown Fig. 11. As can be seen there, us-
ing AFE is effective and reduces the errors by respectively
41.6% and 21.4% compared with system A and a system
containing an MFCC AFE acoustic model trained using the
multi-condition training set.

In the evaluation for hypothesis combination tech-
niques, Table 3 shows that the GWPP-based hypothe-
sis combination achieves higher performance than the

Table 3 Word accuracy (%) of both the GWPP-based and the likelihood-
based hypothesis combination techniques in the evaluations for robustness
to noise.

+CMS +AFE

MFCC sub-system 89.21 91.24
DMFCC sub-system 89.38 91.17

GWPP-based H.C. 89.80 91.90
Likelihood-based H.C. 89.38 91.81

Fig. 10 Performance of systems A to D using MFCC AFE.

Fig. 11 Performance of the system E, which consists of the MFCC AFE
and the DMFCC AFE sub-systems.
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likelihood-based technique.

4. Evaluation of Robustness to Noise and Speaking
Style

4.1 Experimental Conditions

To evaluate of robustness to both noise and speaking style,
we tested our system using normal and hyper-articulated
speech. Figure 12 shows the structure of the system. It
consisted of two sub-systems as before, but there were now
six decoders in each sub-system. Noise-dependent acoustic
models for fast noise adaptation were trained using dialog
speech from the ATR travel arrangement task database (5
hours), read speech of phonetically balanced sentences (25
hours) and 12 types of noise listed in Table 4. A state-tying
structure with 2,089 states was generated by using the MDL-
SSS technique [17] where each state had five Gaussian com-
ponents. All acoustic models were trained from data con-
taminated by different noises and different SNR levels (10,
20 and 30 dB), and hyper-articulated acoustic models were
generated from acoustic models of normal speech. Param-
eters of each distribution were kept the same but the HMM
topology was different. Each acoustic model was gender de-
pendent, and the generated acoustic models depended on 3
SNR levels, 12 types of noise, MFCC and DMFCC features,
speaker gender and speaking style. Therefore, the total num-
ber of acoustic models was 3 × 12 × 2 × 2 × 2 = 288. For
each noise type, a noise GMM with eight Gaussian distri-
butions was estimated. Noise-adapted acoustic models were

Fig. 12 Structure of the ASR system used for experiments on robustness
to noise and speaking style.

Table 4 Noise types used for experiments on robustness to noise and
speaking styles.

Training Airport lobby, Airbus, Underground city,
Car driving, Food counter, Square, Station
yard Platform at station, High-speed railway,
Boiler room, Rice Paddies, Forest

Testing Public bus, In front of a station, Construction
site

generated using the first 500 ms of each test utterance. The
MFCC feature consisted of 12 MFCCs, 12 ∆MFCCs and
a ∆pow extracted with a 10-ms frame period and a 20-ms
frame length. The DMFCC feature also had 12 DMFCCs,
12 ∆DMFCCs and a ∆pow. CMS was applied to both fea-
tures.

Our system uses a multi-class composite word bi-
gram [18] and a word tri-gram language model. Each
language model is trained from the spontaneous speech
database (SDB), language database (LDB) and spoken lan-
guage database (SLDB) [19], with a total of 6.1 M words.
Lexicon size is 34 k words.

For normal speech testing, we used the basic travel
expression corpus (BTEC) testset-01 (510 sentences, four
males and six females) [20], and for hyper-articulated
speech testing, we collected 40 syllable-stressed sentences
(two males and two females). The normal speech for testing
was contaminated by three types of noise at four different
SNR levels; also, the hyper-articulated speech was contam-
inated by three types of noise at three different SNR levels,
as shown in Table 4.

4.2 Evaluation for Normal Speech

We evaluated the recognition performance of a system
which contains acoustic models for normal speech and a
system which contains acoustic models for both normal and
hyper-articulated speech. All acoustic models in both sys-
tems were adapted to the noise environment using the first
500 ms of the input noisy speech. Figure 13 shows the aver-
age word accuracies for each of the individual sub-systems
and the overall systems. Both of our systems, which have
the fast noise adaptation, achieved higher performance than
the that which consists of a clean MFCC acoustic model

Fig. 13 Performances of the system with acoustic models for nor-
mal speech and the system with acoustic models for normal and hyper-
articulated speech, for normal speech data contaminated by noise.
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for normal speech. Table 5 shows the performances of both
the GWPP-based and likelihood-based hypothesis combina-
tion techniques. In this table, “normal” means the ASR sys-
tem including acoustic models for normal speech only, and
“both” means the ASR system including acoustic models for
normal and hyper-articulated speech. As the table shows,
the GWPP-based technique performed better than individual
sub-systems, even though the performance of the likelihood-
based technique was lower than that of the MFCC sub-
system. It is clear that the performance of both systems is
similar, suggesting that the integration of models for hyper-
articulated speech did not affect system performance.

4.3 Evaluation for Hyper-Articulated Speech

We evaluated the recognition performance of our system
using hyper-articulated speech data contaminated by three
types of noise. Figure 14 shows the average word accuracy
for the evaluation data. Even though the word accuracies of
the system with an acoustic model for normal speech only
were less than 10%, our system could achieve a word ac-
curacy of about 40%. The performance was improved fur-
ther by applying the GWPP-based hypothesis combination.
Clearly, then our ASR system can handle both normal and
hyper-articulated speech contaminated by noise.

Table 5 Word accuracy (%) of both the GWPP-based and the likelihood-
based hypothesis combination techniques in the evaluations using normal
speech contaminated by noise.

Acoustic models normal both

MFCC sub-system 87.30 86.40
DMFCC sub-system 86.78 85.55

GWPP-based H.C. 87.69 86.74
Likelihood-based H.C. 86.84 85.89

Fig. 14 Performances of the system with acoustic models for nor-
mal speech and the system with acoustic models for normal and hyper-
articulated speech, for hyper-articulated speech data contaminated by
noise.

5. Conclusion

In this paper, we described an ASR system robust to
noise, SNR and speaking styles. Our system has multi-
ple acoustic models, each of which depends on the noise,
SNR, speaker gender and speaking style. The GMM-based
fast noise adaptation technique was used to improve ro-
bustness to noise. Also, to improve robustness to hyper-
articulated speech, we employed the acoustic model for
hyper-articulated speech. In addition, we used two acous-
tic features as different “views” of the speech signal.

Experimental results of noise-robustness show that
both recognition accuracy and noise-robustness can be im-
proved significantly by parallel-decoding using multiple
SNR-dependent models which are adapted by fast noise
adaptation. Also, we found that the ML-based selection
and word-graph hypothesis combination techniques are ef-
fective tools for obtaining recognition output from multi-
ple hypotheses. Moreover, on the experiments of speaking
style-robustness, our ASR system was able to recognize ac-
curately both normal and hyper-articulated speech contami-
nated by noise.

Future work will include applying a microphone array
that significantly reduces back-ground noise, and develop-
ing a method to generate a set of acoustic models that effi-
ciently covers a wide variety of noises and speaking styles.
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