
TOWARDS CONTINUOUS ONLINE LEARNING BASED COGNITIVE SPEECH
PROCESSING

Konstantin Markov

Human Interface Lab.,
University of Aizu,
Fukushima, Japan

ABSTRACT

Despite the substantial progress of the speech processing
technology, it is generally acknowledged that we have a long
way to go before developing ASR systems which exhibit
performance approaching that of humans. Many researchers
believe that simply extending our current theories and practi-
cal solutions may never lead us to that goal. One promising
research direction is development of learning algorithms ex-
hibiting human-like learning behavior. There is an apparent
discrepancy between the way humans acquire their language
and the way we train our systems. Humans are ”learning
machines” while our current systems are actually ”learned
machines”. The ability to learn and reason in a continuing
loop is attributed to the emerging cognitive systems. In this
paper, we present our approach and ideas for future research
in developing a cognitive speech processing system. This
system has a hierarchical structure where each layer works
according to the same algorithm, but represents different
space or level of abstraction. The lowest layer corresponds
to the acoustic space and the other layers - to phonetic, word
and phrase spaces respectively. The information between
layers flows in both directions: bottom-up during recognition
and top-down during generation, i.e. synthesis. Development
of the full system poses multiple research challenges and
problems discussed in this paper.

Index Terms— Online learning, Never-Ending learning,
Learning machines, Speech processing.

1. INTRODUCTION

Despite the tremendous progress in spoken language sci-
ence and technology humans are still far more superior in
their abilities to process, recognize and understand speech.
Many researchers within ASR community agree that the
performance improvement observed in the recent years can
be attributed to a large extend to the increase in comput-
ing power and the availability of more speech data to train
the ASR systems [1]. Using more and more data, however,
does not guarantee steady improvement. In fact, systems
performance is asymtoting to a level far below the human

level. This suggests that it may never be possible to collect
enough data to fully characterize the relationship between
the linguistic message and its acoustic realization, and that
simply extending our current theories and practical solutions
may never lead us to the desired state of affairs [2]. What is
needed is a change of the approach or even the paradigm.

Learning is an intrinsic human capability. We learn all
the time, processing huge amounts of mostly unlabeled multi-
modal data coming from uncontrolled environments and ex-
hibiting unlimited variability. Yet, we build our internal mod-
els of speech and language effortlessly and use them not only
to recognize and predict sounds and words but to improve the
subsequent learning as well. How do we do all this? There is
still neither complete understanding nor computational mod-
els of human learning processes. [1].

On the other hand, automatic speech recognition has been
largely regarded as a classification task, where spoken input
is transformed into a sequence of pre-defined classes such as
words [3]. The lifespan of an ASR system typically goes
through a training phase using heavily annotated data, fol-
lowed by a testing or deployment phase. The system structure
is usually decided manually in advance and only the number
of parameters and their values are estimated during training.
After that, for the most part, ASR systems do not undergo
any changes. They don’t acquire new knowledge from the
test data. In contrast, in humans, learning and the usage of
the learned knowledge are continuous and intertwined. From
this point of view we can say that humans are ”learning” ma-
chines, while speech systems are, in fact, ”learned” machines.

This difference has been noticed by researchers long ago
[4], [5], and although it didn’t attract active mainstream re-
search, in many studies unsupervised continuous learning ap-
proaches have been investigated, especially in the neural net-
works community [6],[7], [8]. The main reason for the slug-
gish interest in this area is probably the fact that the traditional
”train/test” engineering paradigm has been quite successful in
wide variety of research tasks.

Inspired by the cognitive systems idea and following the
results of some studies on self-organizing neural networks
[9],[10][7],[11], we developed a network of hidden Markov



states called Dynamic Hidden Markov network (DHMnet)
[12]. It is capable of on-line unsupervised adaptive learning
and preserving previously acquired knowledge. It has dy-
namic structure which can grow or shrink according to the
changes in the input patterns distribution, i.e. it can model
non-stationary time-varying probability density functions. In
this paper, we propose a system structure which is based
on the DHMnet and aimed at recognizing and synthesizing
speech utterances. It has several hierarchical layers, each
modeled by a DHMnet, representing different space or level
of abstraction. The lowest layer corresponds to the acoustic
space and the other layers - to phonetic, word and phrase
spaces respectively. The information between layers flows in
both directions: bottom-up during recognition and top-down
during generation, i.e. synthesis. The system is not yet fully
implemented because there are many open questions espe-
cially on the word and phrase spaces. Nevertheless, since
the information processing algorithms are quite consistent
throughout all the layers, solutions developed for the first and
second layer can be easily applied in the upper layers design.

2. CURRENT LEARNING PARADIGM

The speech recognition task is widely cast as a statistical clas-
sification problem where the recognition result Ŷ is found
from

Ŷ = max
Y

P (Y |X) = max
Y

P (X|Y )P (Y ). (1)

Here, X is a representation of the input speech signal and Y
is a sequence of words, phonemes, or speakers, depending on
the task. There are some assumptions which, in fact, allow
as to use the current train/test development paradigm. These
assumptions are:

1. Random processes we deal with are stationary. This
means that these processes can be described by probability
density functions (pdf) with fixed structure and constant pa-
rameters. Consequently, the models we build for those pdf
would have fixed structure and constant parameters as well.

2. Random samples are independently and identically
distributed (i.i.d.). This is very important assumption be-
cause it justifies the whole train/test procedure. Test samples
are drawn from the same distribution as the train ones and
since all the samples are i.i.d., they don’t need to be collected
at the same time. That is, we can first train our system and
then test it.

3. Classes are known in advance and their number
is fixed. We may or may not have prior knowledge about
the task at hand, but the minimum required is the number of
classes. Furthermore, we take it as granted that this number
don’t change. This ensures that every test sample belongs to
one of the classes.

In practice, however, none of these assumptions is true.
Processes are non-stationary or at best slowly varying. Con-
sequently, samples are not i.i.d. and if collected at different

occasions may have quite different distribution. Classes are,
generally, unknown and even if some prior knowledge about
them is available, their number may changes.

As many researchers agree, the only viable solution to
this problem is adaptation. It has to be noted, however, that
all popular adaptation algorithms, such as MAP, MLLR and
others, are still based on the above assumptions and there-
fore after the adaptation, we end up again with models which
have fixed structure and constant parameters as after the ini-
tial training. When test environment changes again, we face
the same problem.

3. CONTINUOUS ONLINE LEARNING

One way to approach the problem described in the previous
section is to take more realistic assumptions. First we can
assume that random processes are non-stationary, i.e. their
joint probability distribution changes in time and space. This
means that data samples are not i.i.d. anymore. In addition,
we need to accept that the number of classes may be unknown
and varying.

Under the new assumptions and in correspondence with
Eq. (1), we can now define the classification task as

Ŷt = max
Yt

Pt(Yt|Xt), (2)

where we have assumed that:
1. Probability distributions are time-varying.
2. Samples drawn from time-varying distribution are

not i.i.d.
3. Number of classes is unknown and changing in time.
For clarity, we are going to skip the time index of Xt

and Yt and focus on Pt(). There is no established and well
understood way of modeling time-varying probability distri-
butions yet. One approach is to assume that at a very short
time scale the process is stationary, treat Pt() as constant on a
small time interval and try to apply classical modeling meth-
ods [13]. Another way, which is adopted in this paper, is to
develop a model with time-varying structure and changing pa-
rameters. The learning algorithm of this model should then
constantly track changes in the distribution as they happen. It
should be able to detect new events or classes and learn them.
Learning of new information, however, should not completely
destroy previously learned knowledge as the adaptation does
for example. Of course, some kind of knowledge erasure is
unavoidable and even desirable. Apparently, learning has to
be performed on-line - a case where input samples have no
labels or at most are roughly annotated. This suggests an un-
supervised or semi-supervised learning. We can then sum-
marize all these requirements as follows: the model of Pt()
should be capable of:

1. On-line un-/semi-supervised adaptive learning.
2. Novelty detection.
3. Knowledge preservation.



4. Gradual forgetting.
Such continuous online learning is sometimes called

Never-Ending or Life-Long learning. The above requirements
give rise to the so-called stability-plasticity dilemma [6] -
How can a system preserve its previously learned knowl-
edge while continuing to learn new things? Several solu-
tions to this problem have been proposed in the neural net-
works research field, including Adaptive Resonance Theory
(ART) [4], Life-long Learning Cell Structures [7] and Self-
Organizing Incremental Neural Network [11]. Commonly,
network plasticity is ensured by adding new nodes to accom-
modate the new knowledge, while decreasing learning rates
for the connection weights provides the necessary network
stability. Unfortunately, such neural networks do not work
with spatio-temporal data such as speech patterns.

Previously, we developed the so called Dynamic Hidden
Markov network (DHMnet) [12], [14] where we tried to im-
plement the never-ending learning requirements and avoid the
limitations of the existing approaches. It is intended to be
the basic building block of a new cognitive speech processing
system.

4. DYNAMIC HIDDEN MARKOV NETWORK

4.1. General structure

The DHMnet consists of hidden Markov states with self-
loops and transitions between them. Additionally, neigh-
boring states are connected with lateral connections. Each
state represents a part of the input feature space modeled by
a multivariate Gaussian function. State sequences or paths
through the network correspond to learned speech patterns or
classes of patterns. Similarly to other approaches, network
plasticity is ensured by adding new states and transitions
whenever a new pattern is encountered. The practical prob-
lem is to define what should be considered as a ”new” pattern
and how to detect it. Inevitably, spurious events and noises
would allocate states that may never be visited again. Such
states (and paths) are considered ”dead” and will be gradually
removed from the network. The schematic structure of the
DHMnet is shown in Fig.1, where transitions of a learned
path are represented by directed solid lines, new paths with
directed short dashed lines, and ”dead” paths with directed
long dashed lines. Undirected dashed lines represent lateral
connections between states.

4.2. ”Novelty” detection

Generally, any pattern that is sufficiently different from those
that have been already learned can be considered a new pat-
tern. In a manner similar to other reported solutions [8],[11],
we apply a threshold to the likelihood function for “novelty”
detection. Since the DHMnet is a first-order Markov chain
where input vectors are presumed conditionally independent,

Fig. 1. Schematic structure of a Dynamic Hidden Markov
network.

the pattern-level novelty detection can be substituted by mul-
tiple frame-level novelty detections. Thus, any given input
vector x will be considered ”new” if P (x|µb) < θ, where µb

is the mean of the best matching state and the θ is the so-called
vigilance threshold.

4.3. Stable learning

For the types of neural networks that we discussed in Sec-
tion 3, the weights’ update ∆Wn at each learning iteration is
generally set to:

∆Wn = αn(Xn −Wn−1) (3)

where Xn is the input vector and αn is the learning rate at the
nth iteration. Stable learning is ensured when αn is subject
to the following constraints [11]:

∞∑
n=1

αn = ∞,
∞∑

n=1

α2
n < ∞ (4)

For the DHMnet state PDF learning, we consider the sequen-
tial version of the Maximum Likelihood estimation algorithm.
In this case, the Gaussian mean update ∆µn after input vector
xn will be:

∆µn =
1

n
(xn − µn−1) (5)

which is exactly the same as Eq.(3). The learning rate is αn =
1/n and it obviously satisfies the constraints of Eq.(4).

4.4. Removing ”dead” states

When a network dynamically changes its structure, the state
neighborhood relations also change. To account for these
changes, each lateral connection is given an age that is set
to zero when a connection is made or refreshed. Otherwise,
the connection age is increased every time one of the con-
nection’s states is visited. This way, connections that reach a
certain age, i.e. ones that have not been refreshed for some
time, are removed. The DHMnet states can have many lateral
connections and if for some state all connections are removed,
this state is pronounced ”dead” and is removed along with all
transitions to and from it.



4.5. The DHMnet algorithm

We summarize the complete DHMnet algorithm as follows:

(1) Start with an empty network.

(2) For the next input vector xt, given the current state
scurr, find the best matching succeeding state sc. If
it passes the vigilance test, set it as the next state, i.e.
snext = sc, and go to (5).

(3) Find the best state, sa, from all other states. If it passes
the vigilance test, snext = sa, and go to (5).

(4) Add a new state, st, i.e. snext = st, and set its mean to
xt.

(5) Make (update) the transition from the current state
scurr to snext.

(6) Update the means of snext and all its neighbors (Eq.5).

(7) Make (refresh) the connection between snext and the
second best state. Increase the ages of all snext con-
nections.

(8) If any connection age has reached the age threshold,
remove this connection. Remove states with no con-
nections.

(9) Add snext to the best state sequence. Set the current
state scurr = snext, and go to (2).

4.6. Experiments with the DHMnet

Our preliminary experiments with the DHMnet have been al-
ready published in [12] where more details about the task and
evaluation conditions can be found. Results showed that the
DHMnet corresponds to the requirements for a never-ending
learning system set in Section 3.

5. COGNITIVE SYSTEM STRUCTURE

Although, the DHMnet described in the previous section is
capable of modeling time-varying conditional probability dis-
tributions, the speech recognition task defined as in Eq.(2) is
too complex to be successfully solved by a single network.
Current ASR systems have hierarchical structure consisting of
several layers each modeling speech at different time scales.
We take similar approach in building speech processing sys-
tem based on the DHMnet. Formally, we start from Eq.(2) and
factorize Pt(Y |X) using several latent variables V, F and S

Ŷ = max
Y

Pt(Y |X) (6)

= max
Y

∑
S

∑
F

∑
V

Pt(Y |V )Pt(V |F )Pt(F |S)Pt(S|X)

≈ max
Y,V,F,S

Pt(Y |V )Pt(V |F )Pt(F |S)Pt(S|X).

Fig. 2. Hierarchical structure of the cognitive speech process-
ing system consisting of several Dynamic Hidden Markov
networks.

Here, all variables represent sequences of variable length. The
number of factor pdfs may be different, but in this case we
have selected four each of which can be modeled by a sep-
arate DHMnet. They form a chain where the output of one
network serves as an input to the next. For example, the out-
put of the DHMnet representing Pt(S|X) is the best state se-
quence S given the input X . It in turn is the input of the
next DHMnet representing Pt(F |S) whose output F is also
input for the next network and so on. This can be viewed
as an hierarchical structure consisting of several DHMnets as
shown in Fig. 2. Let’s for a moment assume that each of these
networks represents the acoustic, phonetic, word and phrase
spaces as depicted in the figure. Then, states of the phonetic
space DHMnet will represent phoneme-like units. States of
the word space DHMnet will have meaning of words or parts
of words and the states of the phrase network will represent
phrases of different length.

Following the input-output relations between DHMnets
we can see that a sequence of states in the acoustic space is
a point in the phonetic space and will be represented by the
nearest phonetic state. In turn, sequence of phonetic states
is a point in the word space and will belong to the nearest
word state. Further up in this hierarchy, word state sequences
will form points in the phrase space and be represented by the
corresponding phrase state. Finally, phrase state sequences
interpreted as the linguistic message conveyed by the acous-
tic signal form the output of the system. In short, any input
signal of sufficient length will at the end activate one or sev-
eral sequential phrase states which corresponds to recognition
operation performed by the whole system. Information pro-
cessing in this case goes from bottom-up.

By reversing the direction of the information flow, we
can perform speech synthesis as well. Indeed, sampling from
the probability distribution associated with a particular phrase



state, we get a sequence of word states. Going down one level,
for each word state in the sequence we sample from its pdf to
obtain sequences of phonetic states from which in turn we
get sequences of acoustic states. Generating speech waves
from sequences of HMM states is the main technique of the
HMM-based speech synthesis technology [15]. Thus, using
the same system we can perform both speech recognition and
speech synthesis tasks.

So far we have assumed that each DHMnet is learned
to represent particular space - acoustic, phonetic, etc. Ob-
viously, if from the very beginning, when the system hasn’t
acquired any knowledge at all, we leave it to learn in a to-
tally unsupervised manner, there is no guarantee that after
some time spaces learned by each DHMnet will represent
what they are meant to represent. Apparently, a more intel-
ligent method of spoken language acquisition through unsu-
pervised or lightly supervised manual intervention is neces-
sary to build system knowledge. The more knowledge is ac-
quired by the system the more capable it will become in deal-
ing with unannotated input, something called self-teaching
or self-learning [16]. There has been some research in un-
supervised acquisition of words [17], [18], but there remain
many open questions to be investigated in pattern discovery
and learning algorithms.

Another issues of practical value concern the form of the
state probability functions of the phonetic, word and phrase
DHMnets. They should be such as to allow on-line parame-
ter updates and be computationally efficient. Closely related
problem is the definition of the distance measure for each
space. At the lower, acoustic space, we have experimented
with the standard Euclidean distance, but the solution is not
that simple for the other spaces. While phoneme like units can
still be compared ”acoustically” by obtaining DTW score be-
tween the corresponding sequences of acoustic states means,
efficient word and especially phrase comparison will require
intensive further research.

6. CONCLUSION

In this paper, we presented brief analysis of the current ASR
systems learning paradigm and argued that at the bottom of
many practical problems we face are several assumptions tipi-
cal to the traditional classification task. We described our
ideas and first steps towards development of an intelligent
cognitive speech processing system. There are still a lot of
questions which remain to be answered and a lot of work is
necessary to even prove the feasibility of our approach.
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