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Abstract
We introduce a method of incorporating additional knowledge
sources into an HMM-based statistical acoustic model. The
probabilistic relationship between information sources is first
learned through a Bayesian network to easily integrate any ad-
ditional knowledge sources that might come from any domain
and then the global joint probability density function (PDF) of
the model is formulated. Where the model becomes too com-
plex and direct BN inference is intractable, we utilize a junction
tree algorithm to decompose the global joint PDF into a linked
set of local conditional PDFs. This way, a simplified form of the
model can be constructed and reliably estimated using a limited
amount of training data. Here, we apply this framework to in-
corporate accents, gender, and wide-phonetic knowledge infor-
mation at the HMM phonetic model level. The performance of
the proposed method was evaluated on an LVCSR task using
two different types of accented English speech data. Experi-
mental results revealed that our method improves word accu-
racy with respect to standard HMM.
Index Terms: acoustic model, knowledge incorporation,
Bayesian network, junction tree algorithm, wide-phonetic
knowledge.

1. Introduction
There are several approaches that have been developed to build
an automatic speech recognition (ASR) system; an intelli-
gent machine that can automatically recognize naturally spoken
words uttered by humans. They can generally be classified into
two main types: ”knowledge-based” and ”corpus-based”. The
idea underlying the former was to use explicit speech knowl-
edge in a rule-based system and produce an acceptable rate of
speech recognition. This was based mainly on human ability to
interpret spectrograms or other visual representations of speech
signals [1, 2]. However, problems lay in the fact that it greatly
depended on human experts’ ability to interpret spectrograms,
and as the number of rules increased, inconsistency among rules
also occurred. In contrast, the latter approach was usually based
on modeling speech signals using well-defined statistical al-
gorithms that could automatically extract knowledge from the
data. This modeling approach has achieved encouraging results,
and has outperformed the previous knowledge-based scheme.
That is why most current ASR systems usually use statistical
data-driven methods based on hidden Markov models (HMMs).

Although such statistical approaches have proved to be ef-
ficient choices, ASR systems still often perform much worse
than human listeners, especially in the presence of unexpected
acoustic variability. Only a limited level of success can be
achieved by relying only on statistical models and mostly ig-
noring the available additional knowledge. Various attempts

to integrate more explicit knowledge-based and statistical ap-
proaches have been undertaken. The work in [3] proposed
that acoustic phonetic knowledge sources be incorporated using
neural networks. Others such [4, 5] proposed that articulatory
features, sub-band correlation, or speaking styles be incorpo-
rated by utilizing dynamic Bayesian Networks (DBNs). How-
ever, there are often cases when developing such complex mod-
els and achieving optimal performance is not feasible. This is
especially the case when resources we have, i.e., available train-
ing data and memory space, are insufficient to properly train the
model parameters. The best we can do is to choose a simplified
form of the model that can be reliably estimated using the train-
ing data available.

We introduce a method of incorporating additional knowl-
edge sources into an HMM-based statistical acoustic model in
this paper. The approach we adopted here was to utilize the
benefits of the Bayesian network framework. Since it allows
the probabilistic relationship between information sources to be
learned, any additional knowledge sources from any domain can
be integrated in a unified way and the global probability func-
tion of the model can be formulated. Where the model becomes
too complex and direct BN inference is intractable, we utilize a
junction tree algorithm to decompose the global joint PDF into
a linked set of local conditional PDFs. This way, a simplified
form of the model can be constructed and reliably estimated
using a limited amount of training data. We applied this frame-
work to incorporate accent, gender, and wide-phonetic knowl-
edge information, and experimentally verified it in an LVCSR
task using accented English speech data.

We first describe the general framework to incorporate ad-
ditional knowledge sources in the next section and give details
on junction tree decomposition in Section 3. We then show how
to apply this framework to incorporate additional knowledge
sources of accent, gender and wide-phonetic information at the
HMM phonetic model level in Section 4. Details of the experi-
ments are then presented in Section 5, including the results and
discussion. Finally, conclusions are drawn in Section 6.

2. General Framework
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Figure 1: Incorporating knowledge sources into statistical
acoustic model.

There is a schematic of the incorporation of additional
knowledge sources into a statistical acoustic model in Fig. 1,
and the procedure basically consists of several steps, as outlined
in Fig. 2.
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Figure 2: General procedure of incorporating additional knowl-
edge sources.

Let us start from a simple case, where given some observa-
tion data D, we train model M . Then, suppose that we incor-
porate two additional knowledge sources K1 and K2 into the
model. The conditional relationship between D, M, K1 and K2

using BN is like that shown in Fig. 3, assuming that both K1

and K2 are conditionally independent given M .

K2
K1 M

D

Figure 3: Conditional relationship between M , D, and addi-
tional knowledge sources K1, K2.

The BN joint probability function can be factorized [6] as

P (Z1, Z2, ..., ZK) =

KY

k=1

P (Zk|Pa(Zk)), (1)

where Pa(Zk) denotes the parents of BN variable Zk, so that
we obtain

P (D, K1, K2, M)

= P (D|K1, K2, M)P (K1|M)P (K2|M)P (M), (2)

from Fig. 3. Our primary interest is to calculate the probability,
P (D|K1, K2, M), which predicts data that can be expected,
given current knowledge about the model. The computation of
inference can be easy or difficult depending on the complexity
of the P (D|K1, K2, M). If this PDF allows direct calculation
and all variables can be observed, we can simply calculate the
output probability as P (D = d|K1 = k1j , K2 = kNj , M =
m). If some variables, such as additional knowledge sources
can not be observed or are hidden, we still can carry out direct
inference by marginalization over all possible values of these
hidden knowledge sources.

However, direct BN can be intractable in some cases, due to
too many variables and/or computational complexity. The BN
directed graphs need to be decomposed into clusters of vari-
ables, on which the relevant computations can be performed,
to solve this problem. This can be done with the junction tree
algorithm [6], which is briefly described in the next section.

3. Junction Tree Decomposition
Several graphical transformations are applied to obtain a junc-
tion tree [6, 7]. We first construct a moral graph (an undirected
graph with a link between any pair of variables that have a com-
mon child). We then triangulate the moral graph (add links un-
til all cycles consisting of more than three links have a chord).
Figure 4 shows a moral and triangulated version of the BN from
Fig. 3.

Then, for each variable Zk in the triangulated graph with
Pa(Zk) �= 0, we form a subset containing Pa(Zk)

S
Zk

which is called a cluster/clique, and build a junction tree,
starting with clusters/cliques as the nodes, in which each link
between two cliques is labeled by using a separator of a non-
empty intersection between these cliques. However, we can
only obtain one cluster/clique from this triangulated graph with
the full set of variables {D, M , K1, and K2} and can not de-
compose it any further.

K2
K1 M

D

Figure 4: Moral and triangulated graph of Fig. 3
Fortunately, since K1, and K2 are assumed to be indepen-

dent, we could solve this problem by reversing some arrows to
obtain an equivalent graph, as in Fig. 5(a). Figure 5(b) shows
the moral and triangulated version of this graph. We can then
identify the clusters/cliques and obtain the junction tree in Fig.
5(c), where the cluster sets are represented by oval nodes and
the separator sets are represented by square nodes.
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Figure 5: (a) Equivalent BN topology of Fig. 3 (b) Moral and
triangulated graph of Fig. 5a (c) Junction tree of Fig. 5b.

The joint probability distribution is then defined as the
product of all cluster potentials, divided by the product of the
separator potentials [7] as

P (Z1, Z2, ..., ZK) =

Q
i φCiQ
j φSi

, (3)

where φCi is the cluster potential (the probability over cluster
Ci), and φSi is the separator potential (the probability over sep-
arator Si), respectively. Thus, according to Fig. 5(c), the joint
probability function, P (D, K1, K2, M), becomes

P (D, K1, K2, M) =
P (D, K1, M)P (D, K2, M)

P (D, M)
, (4)

Then, using Eqs. (2) and (4), we finally obtain

P (D|K1, K2, M) =
P (D|K1, M)P (D|K2, M)

P (D|M)
. (5)

This indicates a new way of representing probability function
P (D|K1, K2, M), as a composition of several local proba-
bility functions P (D|K1, M), P (D|K2, M), corresponding to
the probability of observation data, D, given the specific addi-
tional knowledge K1 and K2. The term, P (D|M), serves as a
normalization constant here.
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Now, it should be much easier to define, estimate and cal-
culate several simple P (D|Ki, M) than a single but complex
P (D|K1, ..., KN , M).

4. Incorporating Accents, Gender, and
Wide-Phonetic Context Information at

HMM Phonetic Model Level
We apply the theoretical framework described in Section 2 to
the problem of incorporating additional knowledge sources into
HMM. The model, M , is currently our HMM phonetic model
λ, and D is Xs = Xt, ..., Xt+s, an observation data segment
of length s.

We first incorporate additional wide-phonetic context
knowledge, where K1 represents preceding contexts CL and
K2 represents succeeding contexts CR. The topological struc-
ture is similar to the one in Fig. 3, and the probability func-
tion of HMM phonetic units is now represented by the BN joint
probability function, similar to Eq. (2)

P (Xs, CL, CR, λ)

= P (Xs|CL, CR, λ)P (CL|λ)P (CR|λ)P (λ). (6)

Our primary interest is now to calculate P (Xs|CL, CR, λ),
given input segment Xs. However, it is difficult to obtain a
simple functional form for this conditional PDF, because it in-
volves HMM model λ, segment Xs of variable duration, and
wide-phonetic context knowledge. We thus need to decompose
P (Xs|CL, CR, λ) with the junction tree algorithm described in
Section 3 in this case. It can be decomposed as

P (Xs|CL, CR, λ) =
P (Xs|CL, λ)P (Xs|CR, λ)

P (Xs|λ)
, (7)

according to Eq. (5). If we assume that λ is monophone unit
model /a/, and CL and CR are preceding and following context
unit models /a−/ and /a+/, we can thus define

P (Xs|CL, CR, λ) = P (Xs|[a−, a, a+]), (8)

and Eq. (8) becomes

P (Xs|[a−, a, a+]) =
P (Xs|[a−, a])P (Xs|[a, a+])

P (Xs|[a])
. (9)

This equation has the same factorization as the one proposed
in [8], where a triphone model is constructed from monophone
and biphone models and is known as a Bayesian triphone.

One simple way of representing the composition of a wider
phonetic context such as pentaphone /a−−, a−, a, a+, a++/ is
by setting λ to represent a monophone, /a/, and the second
preceding and succeeding contexts, CL and CR, to represent
/a−−, a−/ and /a+, a++/, respectively. We then obtain

P (Xs|[a−−, a−, a, a+, a++])

=
P (Xs|[a−−, a−, a])P (Xs|[a, a+, a++])

P (Xs|[a])
, (10)

which indicates that pentaphone P (Xs|[a−−, a−, a, a+, a++])
can be composed from a left/preceding-triphone-context unit
(L3), a right/following-triphone-context unit (R3), and a mono-
phone unit (C1). We call this composition C1L3R3 in this pa-
per.

We next extend C1L3R3 with other additional knowledge
variables, such as gender or accent information. We can ex-
tend it with gender information only, accent information only,
or with both accent and gender information. The BN topology
and its corresponding junction tree for the case with additional
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Figure 6: (a) BN topology. (b) Moral and triangulated graph.
(c) Corresponding junction tree.

accent and gender information becomes that shown in Fig. 6,
and the conditional probability function is obtained as

P (Xs|CL, CR, λ, A, G)

= P (Xs|λ, A, G)
P (Xs|CL, λ)

P (Xs|λ)

P (Xs|CR, λ)

P (Xs|λ)

=
P (Xs|CL, λ, A, G)P (Xs|CRλ, A, G)

P (Xs|λ, A, G)
. (11)

Thus, following the same setting as before, the pentaphone like-
lihood becomes

P (Xs|[a−−, a−, a, a+, a++], A, G)

=
P (Xs|[a−−, a−, a], A, G)P (Xs|[a, a+, a++], A, G)

P (Xs|a, A, G)
,

(12)

which indicates that P (Xs|[a−−, a−, a, a+, a++], A, G)
can be simplified by factorization into P (Xs|a, A, G),
P (Xs|[a−−, a−, a], A, G), and P (Xs|[a, a+, a++], A, G).

5. Experiments
We used the ATR accented English speech corpus of travel do-
main expressions, which consists of American (US) and Aus-
tralian (AUS) accents. The training data consisted of 90% of
the total data or about 40k utterances (80 speakers: 40 male
and 40 female). The test data included 200 randomly selected
utterances from the remaining 10% of all accent data. A sam-
pling frequency of 16 kHz, a frame length of a 20-ms Hamming
window, a frame shift of 10 ms, and 25 dimensional vectors
(12-order MFCC, Δ MFCC and Δ log power) were used as
feature extraction parameters. Three states were used as the ini-
tial HMM for each phoneme. A shared state HMnet topology
was then obtained using a successive state splitting (SSS) train-
ing algorithm based on the minimum description length (MDL)
optimization criterion [9]. A context-dependent triphone HMM
model (having a total of 2,126 states) and a pentaphone HMM
model (having a total of 2,202 states) were used as the base-
line. Incorporation of additional knowledge such as gender and
accents was also possible for the baseline models by training
gender and/or accent dependent acoustic models. Only an em-
bedded training procedure was carried out with the specific ac-
cent or gender training data so that all models had the same
topological structure.

All component of the Bayesian pentaphone model,
C1L3R3, were trained separately using the same amount of
training data and the same SSS training algorithm. There was
a total of 3,403 states (sum of C1: 132 st., L3: 1,645 st., R3:
1,626 st.). An embedded training procedure was then under-
taken for the extended C1L3R3 on specific accent or gender
training data.

The pentaphone HMM baseline and the proposed penta-
phone C1L3R3 models were applied to rescoring the N-best list
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generated from a standard and unmodified triphone ASR system
to simplify decoding, as we did previously [10]. The rescoring
was done using a 10-best list, and a 0.3 weight parameter α for
deleted interpolation was used, as in our previous study [10].

Figure 7: Comparing recognition accuracy rates of different
systems triphone HMM baseline, pentaphone HMM baseline,
and the proposed pentaphone models having the same 5,10,20
mixture components per state.

How well each of the models performed having the 5, 10,
20 mixture components per state is shown in Fig. 7. The
triphone baseline without any additional knowledge achieved
83.60% word accuracy for the 5 mixture components per state.
However, it decreased to 82.11% word accuracy for the accent-
gender-dependent models. This might be due to the size of
the training data, which is much smaller than that of the other
baseline models. Performance could be improved by rescor-
ing with a more precise pentaphone model. Of the pentaphone
models, the performance of the model we propose was always
better than that of conventional pentaphone HMM. This might
be because given the amount of training data, the training of
the conventional pentaphone model using the MDL-SSS algo-
rithm resulted in a model having a total of 2,202 states, which
is not that different from the total number of states in the tri-
phone HMM. As many different pentaphone contexts seemed

to share the same Gaussian components, the context resolution
was reduced. Thus, approximating a pentaphone model using
the composition of several less context-dependent models could
help to reduce the loss of context resolution and improve per-
formance. Performance did not decrease when gender and ac-
cent were incorporated, as in the case of the triphone baseline,
which is probably due to the use of deleted interpolation. The
best performance was obtained by the model that incorporated
additional knowledge of accent A, gender G, second preceding
context CL, and succeeding context CR. Overall, the results
revealed that, through different mixture components per state,
the proposed pentaphone models consistently outperformed the
standard HMM baseline.

6. Conclusion
We introduced a general framework to incorporate additional
knowledge sources into statistical HMM acoustic models. We
also demonstrated the implementation of this new framework
by integrating accents, gender, and wide-phonetic context in-
formation. The framework is based on a junction tree algorithm
and allows us to construct models with wider contexts from sev-
eral others with narrower contexts. As this leads to a reduction
in the number of context units to be estimated, the loss of con-
text resolution can be considerably reduced. We applied these
composition models at the post-processing stage with N-best
rescoring. Performance was evaluated on an LVCSR task us-
ing two different types of accented English speech data. The
experimental results revealed that our method improves word
accuracy with respect to standard HMM with or without addi-
tional knowledge sources. The best performance was obtained
by the model that incorporated additional knowledge of accent
A, gender G, second preceding context CL and succeeding con-
text CR.
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