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Abstract
The aim of the present study is to investigate some key 
challenges of the audio-visual speech recognition technology, 
such as asynchrony modeling of multimodal speech, 
estimation of auditory and visual speech significance, as well 
as stream weight optimization. Our research shows that the use 
of viseme-dependent significance weights improves the 
performance of state asynchronous CHMM-based speech 
recognizer. In addition, for a state synchronous MSHMM-
based recognizer, fewer errors can be achieved using 
stationary time delays of visual data with respect to the 
corresponding audio signal. Evaluation experiments showed 
that individual audio-visual stream weights for each viseme-
phoneme pair lead to relative reduction of WER by 20%. 
Index Terms: multimodal speech, audio-visual processing, 
Hidden Markov Models, asynchrony, significance weights

1. Introduction 
Audio and visual speech signals supplement each other and 
when combined, they are capable of improving the 
performance (accuracy and robustness) of automatic speech 
recognition systems. An open and important problem is the 
efficient fusion of the information conveyed by each signal. 
Optimization of weights assigned with every modality allows 
the system to efficiently adapt to any noisy environment. 

There are two well-known basic approaches for 
information fusion in audio-visual speech recognition (AVSR) 
systems: feature (early) fusion and decision (late) fusion. In 
the last decade, both these ways have been comprehensively 
studied and many methods based on Hidden Markov Models 
(HMM), which are extension of stochastic chains proposed by 
the Russian mathematician of St. Petersburg University 
A.A. Markov in 1900s, or Dynamic Bayesian Networks have 
been developed: Multi-Stream HMM (MSHMM), Factorial 
HMM, Coupled HMM (CHMM), etc. Currently, the best 
results have been achieved by those methods, which allow 
modeling of natural asynchrony between auditory speech 
signals and corresponding visually-observed motion of lips 
and other face mimics. The essence of the bimodal speech 
asynchrony problem is that the phoneme and viseme flows in 
natural speech are not completely synchronized in time. It is 
partially caused by the co-articulation phenomenon in the 
course of speech production that reveals itself differently on 
two speech modalities and causes an asynchrony between 
them. Thus, an efficient information fusion model has to be 
able to cope with the bimodal speech asynchrony challenge. 
Recently, some new HMM-based systems able to decode 
speech in a state asynchronous framework have been 
developed, for instance, Coupled HMMs [1] or asynchronous 
Multi-Stream HMMs [2]. In all of these models, the optimal 
modality weighting is the main challenge. 

In the last years, in order to increase the system’s 
robustness many approaches for estimation of audio-visual 
(AV) stream reliability and related weights were proposed. 
Some are based on an analysis of acoustic or/and visual 
conditions (signal-to-noise ratio - SNR) of the speech data [3]. 
Others use the maximum likelihood criterion with 
normalization [4]. Dynamic weighting techniques for on-line 
weight adaptation to changing environment based on entropy-
based modality confidence estimators have also been proposed 
[5]. However, these methods assign significance weight to the 
whole feature stream, though some data components (models 
of visemes and phonemes, for example) may have more 
influence on the recognition performance than others. The 
significance of each phone or viseme model and individual 
modality weights for the bimodal speech recognition process 
has not yet been thoroughly investigated. Preliminary studies 
on this topic, such as [6] or [7], have found some dependence 
of weights on speakers, utterances and AV models based on 
MSHMMs. In this paper, we attempt to fill the gap in this area 
and propose viseme-dependent modality weights. This 
approach was implemented in an audio-visual Russian speech 
recognizer, which is based on state asynchronous 2-stream 
Coupled Hidden Markov Models. 

2. CHMM-based AVSR system 
In this section, we describe a late fusion AV Russian speech 
recognizer that relies on CHMMs, which are transformed to 
equivalent left-to-right 2-stream HMMs with tied observation 
densities based on Gaussian mixtures. 

2.1. Fusion of speech modalities  
Coupled HMM is a collection of parallel HMM, one for each 
data stream, where the hidden states at time t for each HMM 
are conditioned by the hidden states at time t-1 for all the 
related HMMs [1]. One channel is provided for the audio 
stream and another for the video stream. There are two state 
variables in the joint AV model, and at any time t, the state of 
the model is determined by these multinomial variables. The 
advantage of such configuration is that it allows 
unsynchronized progression of the two chains, while 
encouraging the two streams to assert temporal influence on 
each other. The overall dynamics of the AV speech is 
determined by both the streams at one time. 

A simple way to transform the CHMM to an equivalent 
HMM that keeps all the properties of the former model was 
proposed in [8]. A similar approach is used in our recognition 
system as well. Transformed HMM for a AV speech unit 
contains all the combinations of parallel states of the 
corresponding CHMM. In the CHMM model, the two streams 
are independent, and the output distribution of a joint state is 
calculated by the output densities of both streams. In the 
equivalent 2-stream HMM, the output distribution is obtained 
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as a product of the two output densities. To avoid tripling of 
the output densities in the model, it is proposed to tie the 
appropriate output densities in the 2-stream HMM according 
to the CHMM-to-HMM conversion of the hidden states. The 
resulting 2-stream HMM is shown in Figure 1. We use 
CHMM with 3 emitting states per feature stream. Therefore, 
all their combinations produce 9 states in the equivalent left-
to-right HMM. Increment of the number of the states in 
comparison with the original CHMM increases the memory 
allocated for the model, but does not reduce the speed of 
decoding. The parameters of 2-stream HMMs are obtained by 
the Baum-Welch (expectation-maximization) algorithm with 
maximum likelihood estimation using bimodal training data. 

 

 
Figure 1: CHMM to 2-stream HMM transformation. 

2.2. Acoustic and visual speech feature extraction 
As acoustic features we used 12-dimentional Mel-Frequency 
Cepstral Coefficients (MFCC) calculated from 26 channel 
filter bank analysis of 20 ms long frames with 10 ms overlap. 
Thus, the frequency of audio feature vectors is 100 Hz. 
Cepstral Mean Subtraction is applied to audio feature vectors. 

The visual (articulatory) features used in the recognizer 
are based on the work [9] and for their extraction we utilized 
the source code of the Intel OpenCV-based AVCSR project. 
The visual parameters are calculated as a result of the 
following processing steps: multi-scale Haar-based face 
detection in frames of video data with 25 fps using a boosted 
cascade classifier; mouth region detection with two cascade 
classifiers (for mouth and mouth-with-beard) within the lower 
part of the face; normalization of detected mouth images to 
32×32 pixels; mapping to a 32-dimentional feature vector 
using the principal component analysis (PCA); up-sampling 
and interpolation of the vectors sequence to 100 Hz in order to 
correspond with the audio vectors frequency; visual feature 
mean normalization; concatenation of the consecutive feature 
vectors into one vector to store the dynamic information in the 
feature data; viseme-based linear discriminant analysis (LDA). 
This processing produces 10-dimentional articulatory visual 
feature vectors with the frequency of 100 Hz. In our previous 
study [10], this pixel-based visual feature set was compared 
with the proposed geometry-based visual features describing 
the shape and configuration of the lips. In those experiments, 
the word error rates were almost identical for both methods. 
For this study, we chose the pixel-based parameterization 
because it requires fewer computations. 

2.3. Viseme-dependent stream significance weights 
Each CHMM represents one phoneme-viseme pair, and to 
model audio speech signals, we need more HMMs than for the 
visual speech modeling only. This is because there are about 
10 to 15 visually distinguishable speech units (this quantity is 
language-dependent) only, while the number of acoustic 
phonemes is around 42 to 50. According to our previous 
studies [10], the best recognition results are achieved with 10 
visual units (see Table 1).  

Table 1. Viseme classes and phoneme-to-viseme mapping. 

Class Viseme type Corresponding phonemes 

V1 silence (neutral) sil (pause) 
V2 wide-opened mouth 

unrounded vowels  
a, a!, e! (stressed) 

V3 unrounded vowels e, i, i!, y, y! 
V4 rounded vowels o!, u, u! 
V5 labial consonants b, b’, p, p’, m, m’ (soft) 
V6 labio-dental cons. f, f’, v, v’ 
V7 alveolar fricatives sh, zh, ch, sch 
V8 alveolar sonorants l, l’, r, r’ 
V9 dental consonants d, d’,t, t’,n, n’,s, s’,z, z’,c 

V10 velar consonants g, g’, k, k’, h, h’, j 
 

In our system, as joint audio and visual unit models we 
use 48 CHMMs corresponding to all of the Russian phonemes. 
After tying the output densities of corresponding viseme 
models according to the mapping in Table 1 and Figure 1, we 
got 30 output densities for the visual data stream and 144 
untied output densities for the acoustical feature stream. 

The AVSR system processes acoustical and visual 
observations in parallel, and it has to weight the informativity 
of one speech modality over the other. In the standard 
MSHMM- or CHMM-based recognizers, this is made by 
setting AV stream weights and using them as exponents of the 
observation probabilities. However, we suppose that some 
phoneme and viseme models may be more reliable than others 
in varying environment and their contribution to the overall 
recognition performance may be bigger. It is proposed to 
assign individual modality significance weights to each 
phoneme-viseme model. In this case, the observation 
probabilities in hidden states of HMMs are calculated as: 
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where   is the audio-visual observation vector at time t, 
whereas      represents the observation vector of one (audio or 
visual) stream s at time t,            represents HMM parameters 
of a particular viseme-phoneme model, and           means the 
significance weight of visual/audio stream for the given AV 
speech unit model.

 

3. Evaluation experiments
In this section, we describe the setup and results of the 
experiments with our Russian AVSR system using different 
information fusion models, as well as stream- and viseme-
dependent importance weights.

3.1. Audio-visual Russian speech corpus 
No multimodal corpus is available, which contains segmented 
recordings of Russian speech. The audio-visual continuous 
speech database used in this study has been privately recorded 
in office environment and contains pronunciations of 
phonetically-balanced sentences uttered by 10 speakers, both 
men and women. All of them are native Russian speakers with 
normal articulation in the age of 20 to 70 years old (31 in 
average). The content was chosen to maximize the statistical 
coverage of context-dependent Russian phonemes and 
visemes. The recording session for each speaker lasted about 
20-30 minutes; altogether, the speakers uttered 1500 phrases. 
Sony DCR-PC1000 digital camcorder was used to capture 
video data with 720x576x25 fps (we are going to use a high-
speed video camera with fps � 100 in our future research) and 
Sony DC-50 microphone located at 15-20 cm from the 
speaker’s mouth was used for speech sound acquisition. We 

tO
s
tO

avunit�
s
avunit�

2679



have developed DirectShow-based software which guaranties 
the synchronization of the audio and video data streams. The 
audio data format is: 22 KHz sampling rate, mono, SNR � 
25 dB. For training, we selected 60% of each speaker 
utterances containing phonetically-balanced phrases (90 
sentences up to 8 words). The rest of the data consisting of 3 
to 6 connected digit long utterances were used for the testing. 

3.2. Comparison of audio and video fusion models 
Several multimodal and unimodal speech recognizers with 
different information fusion models have been implemented 
using the HTK toolkit and compared in terms of recognition 
accuracy. Babble noise (the so-called “cocktail party” noise) 
was added to the clean auditory signal with varying SNR in 
the range from 25 dB to 0 dB. Figure 2 shows the word 
recognition rates (WRR) for the audio-only recognizer, the 
video-only recognizer and two multimodal systems based on 
MSHMMs and CHMMs. These results show the advantage of 
the multimodal speech recognition systems in comparison with 
both unimodal recognizers. In AVSR system, we apply global 
stream weights such that their sum is equal to 2, 
i.e.: 0.2�� audio

str
video
str �� . They are automatically tuned to get 

the minimal extremum of the WER function in clean speech 
condition. For the original test data with SNR of 25 dB, the 
optimal stream significance weights were: 

4.1;6.0 �� audio
str

video
str �� . It can be seen that CHMM-based 

system outperformed the MSHMM-based one in all SNR 
conditions, with absolute improvement in word recognition 
rate varying from 0.4 to 6.8%. This advantage of the CHMM-
based system is explained by its ability to cope with the 
natural non-stationary asynchrony between the auditory and 
the visual speech cues (at least, within the model boundaries). 
However, the standard MSHMM assumes that audio and video 
observations are synchronous, although allows the audio and 
video components to have different importance coefficients to 
the overall observation likelihood. 
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Figure 2: WRR vs. SNR for four speech recognition models 
with optimal stream weights. 

It is known from previous studies [11], that visemes 
usually lead in phoneme-viseme pairs. Moreover, in the 
beginning parts of phrases, the visual units leave the 
corresponding phonemes behind more noticeably than in the 
rest of phrases. Thus, our next experiments were aimed at 
estimating the influence of the constant audio/video signal 
shifts (phasing) on the recognition accuracy. Figure 3 presents 
the results of experiments with the MSHMM-based system, 
where first the audio data (feature vectors) and then the video 
data were delayed relatively to the other modality stream by 
120/80/40 ms (duration of video frame), respectively. One can 
notice that the best results were achieved, when the stationary 

delay of the audio stream was 80 ms (V80A), and a bit lower 
results - for 40 ms delay (V40A). All other attempts resulted in 
speech recognition accuracy degradation. These experiments 
have demonstrated the asynchrony problem between auditory 
and visual speech features, and that a short shift of the video 
data can increase the WRR of the state synchronous AVSR 
system from 94.5 to 96.2%. Nevertheless, this is still worse 
than the CHMM-based approach, which has reached 
maximum recognition accuracy for clean speech data of 
96.6%. For the CHMMs, signal phasing could not improve the 
WRR because these models allow state asynchronous 
decoding and already account for this phenomenon.  
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Figure 3: Dependence of WRR variation on video/audio signal 

delays in AVSR (clean speech condition). 

3.3. Experiments on viseme-dependent optimization 
of audio-visual stream weights 
Next experiments were focused on the influence of the 
significance weights on the recognition performance. Firstly, 
we investigated how the WRR depends on the stream-
dependent weights. The results are summarized in Figure 4. 
Five solid-line curves show WRRs for the following global 
static AV weight pairs: 1.9:0.1, 1.4:0.6, 1.0:1.0, 0.5:1.5; 
0.1:1.9. The dashed-line curve shows the CHMM-based 
AVSR system with dynamic stream weights, which were 
adapted to audio data quality by varying the audio weight in 
the range from 0.0 to 2.0 with a step of 0.1 in order to 
minimize the WER value (20 weight pairs). Clearly, this curve 
intersects other curves at the point of best WRR for each SNR. 
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Figure 4: WRR vs. SNR for the CHMM-based recognizer with 
five static and one dynamic global stream weights. 

Previous experiments presented the results for the stream-
dependent weights only, i.e. for the case when one 
significance weight is set for the audio stream and another for 
the visual one. Below, we investigate the contribution of every 
visemic-phonemic HMM-based model and its significance by 
assigning individual weights to the CHMM streams. In these 
experiments, the optimal stream weights were determined by 
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consecutively changing the weight for each of the 10 viseme 
classes (see Table 1) with a discrete step of 0.1 in the range 
± 0.4 from the best dynamic stream weight video

str�  in order to 
minimize the WER. Table 2 presents the best WRRs for both 
viseme-dependent and stream-dependent weights (the baseline 
AVSR system). As the results show, by optimizing the 
viseme-dependent weights it is possible to achieve better 
WRR especially for low SNRs. 
 
Table 2. The best word recognition rates for the stream- and 

viseme-dependent significance weights.  

Model type \ SNR Word Recognition Rate, % 
5 dB 10 dB 25 dB 

Stream-dependent 
weights (baseline) 

62.6 
(0.5 : 1.5) 

79.4 
(1.0 : 1.0) 

96.6 
(1.4 : 0.6) 

Viseme-dependent 
weights (proposed) 

65.0 80.4 97.3 

 
Estimations of the best viseme-dependent weights for each 

visual unit (see Table 1) depending on the SNR are given in 
Figure 5. Dashed lines denote the optimal global video stream 
weights for each SNR. Some common tendencies can be 
observed after analysis of this chart:  
- At low SNR increasing importance of video data is efficient 
for rounded vowels, labial and labio-dental consonants, and 
wide-opened mouth vowels, i.e.: 

dBSNRifvideo
str

video
V 10,6,5,4,2 �	 ��                         

(2) 

- On the contrary, at high SNR it is better to decrease the video 
stream weights for all the visemes from the previous statement 
as well as for the alveolar fricatives, i.e: 

dBSNRifvideo
str

video
V 20,7,6,5,4,2 	� ��   (3)

 

- The video stream weight for the silence model should be 
reduced in any conditions: video

str
video
V �� �1 . This could be 

explained by the fact that the model corresponding to the 
pause is ambiguous: some human beings start speaking with 
the closed mouth, but others – with slightly or fully opened 
mouth as a neutral lips position. The silence in the acoustical 
sense is more or less invariant. 
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Figure 5: Optimal viseme-dependent weights of visual speech 
modality for SNR = 5/10/25 dB. 

The experiments with viseme-dependent weights show that the 
visemes, which exhibit significant lips motion have the biggest 
influence on the speech recognition accuracy. Besides, in 
noisy environment, these visemes contribute more than others, 
and it is easier to recognize them, because their models are far 
from “the average model”. Their negative contribution in clean 
speech condition is explained by the weakness of the visual 
features in comparison to the acoustic features, which can 
better distinguish between all the vowels and fricatives. In 

conditions with medium SNR (� 10 dB), viseme-dependent 
weights and word error rates are not much different from the 
optimal global stream weights. 

4. Conclusions 
In this paper, we presented experiments with viseme- and 
phoneme-dependent significance weights in an AVSR system 
based on both Coupled and Multi-Stream HMMs. The results 
of these experiments demonstrated the positive effect of using 
independent stream weights for each AV model, sustaining the 
hypothesis that setting the AV weights must to be done on a 
per-viseme basis, because some visemes are more important 
than others in high audio-noise environment. A number of 
common tendencies to discriminate weights for the visual 
classes and their influence on the AVSR accuracy were 
explored. The application of individual AV stream weights for 
each AV speech unit model provided relative WER reduction 
by 10-20% depending on acoustical environment. 
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