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Abstract

In this paper, we propose a noise robust speech recognition
system built using generalized distillation framework. It is as-
sumed that during training, in addition to the training data, some
kind of ”privileged” information is available and can be used to
guide the training process. This allows to obtain a system which
at test time outperforms those built on regular training data
alone. In the case of noisy speech recognition task, the privi-
leged information is obtained from a model, called ”teacher”,
trained on clean speech only. The regular model, called ”stu-
dent”, is trained on noisy utterances and uses teacher’s output
for the corresponding clean utterances. Thus, for this frame-
work a parallel clean/noisy speech data are required. We ex-
perimented on the Aurora2 database which provides such kind
of data. Our system uses hybrid DNN-HMM acoustic model
where neural networks provide HMM state probabilities dur-
ing decoding. The teacher DNN is trained on the clean data,
while the student DNN is trained using multi-condition (vari-
ous SNRs) data. The student DNN loss function combines the
targets obtained from forced alignment of the training data and
the outputs of the teacher DNN when fed with the correspond-
ing clean features. Experimental results clearly show that distil-
lation framework is effective and allows to achieve significant
reduction in the word error rate.
Index Terms: speech recognition, noise robustness, DNN-
HMM acoustic model, generalized distillation, privileged infor-
mation

1. Introduction
Recently, there has been a surge in studies of automatic speech
recognition (ASR) using DNN-HMM acoustic models, and they
have shown that such models can achieve much higher perfor-
mance than traditional GMM-HMM combination [1]. One par-
ticular challenge in ASR is robustness against environmental
noises and a lot of various techniques and methods have been
developed during the last decades. Naturally, with the increased
popularity of DNN, their noise robustness has also been investi-
gated. For example, Seltzer et.al.[2] reported that DNN obtains
comparable performance to the best GMM system with various
noise reduction, feature enhancement and model compensation
methods. This is attributed to the property of DNN to learn
higher level representation of the features which is inherently
less prone to environment variations [3]

In some studies, researchers try to apply noise robust meth-
ods developed for GMM-HMM systems in DNN based mod-
els. Thus, Abe et.al.[4] combines classical spectral subtraction
method before feeding feature vectors to the DNN. In addition,
they perform noise estimation and use it during DNN training.
This approach, called noise-aware training has been previously

proposed in [2] and [5]. A way to estimate noise robust fea-
tures using deep denoising autoencoders (DAE) is studied in
[6]. Such neural networks learn the mapping between noisy and
clean features. Robustness can also be improved by explicitly
modeling left and right temporal contexts in features windows
[7].

The paradigm of machines-teaching machines has been in-
vestigated in studies of Vapnik [8][9] and Hinton [10]. Moti-
vated by the principles of human education, authors incorporate
an ”intelligent teacher” into machine learning. It is assumed that
for each feature-label pair, there is an additional information
about it provided by a teacher to support the learning process.
However, teacher information will not be available at test time.
This framework is also known as learning using privileged in-
formation. Such approach allows to build a classifier which is
better than those built on the regular features alone. On the other
hand, Hinton proposed the concept of distilling the knowledge
in neural networks [10], where a simple machine learns a com-
plex task by imitating the solution of a more complicated and
flexible machine. This can be applied in cases when a fast or
real time operation is required, but using the flexible machine is
computationally prohibitive.

In a recent study [11], the learning using privileged infor-
mation and the distillation methods have been combined into a
Generalized Distillation framework which utilizes the strengths
of both methods. Here, the teacher who has access to the priv-
ileged information plays the role of the more complicated ma-
chine in the distillation process. After the simpler student is
learned through the distillation process, it is used for testing
when no privileged information is available. Generalized Dis-
tillation is closely related to applications in methods such as
semi-supervised learning, domain adaptation, transfer learning,
Universum learning [12] and curriculum learning [13].

In this study, we apply the Generalized Distillation in the
speech recognition task in order to improve the noise robust-
ness of the ASR system. As privileged information we utilize
clean speech data to learn the teacher machine. The student ma-
chine is learned on noisy speech and guided during the training
by the teacher which has access to the clean version of the same
speech. Our ASR system is a DNN-HMM hybrid where DNN
is used to predict HMM state probabilities. Such systems are
popular since they allow to utilize the high performance of the
DNN with the conventional and well established decoding and
language modeling methods. The HMM transition probabilities
are obtained from a traditional GMM-HMM acoustic model and
the DNN is learned using the above mentioned generalized dis-
tillation framework.

In our experiments, we used the Aurora2 database [14]
which is a popular corpus for researching noise robustness and
provides parallel clean / noisy speech utterances for training.
Previously, this database has been also utilized to investigate
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Figure 1: Student training block diagram.
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Figure 2: Testing with student DNN.

DNN robustness. In [15] and [16], Vinyals et.al have trained
DNN to predict phone posteriors which are further concatenated
with the MFCC features (Tandem features) and fed to a standard
GMM-HMM system. Various training approaches and DNN
structures are compared and big improvements are reported.

2. Generalized Distillation
Generalized distillation has been termed in [11] to frame two
techniques of Hinton’s distillation[10] and Vapnik’s privileged
information[9] that enable machines to learn from other ma-
chines. While a simple machine learns a complex task by imi-
tating the solution of a flexible machine in Hinton’s distillation,
a machine learns from other machines in Vapnik’s privileged
information. In the framework, an ”intelligent teacher”is incor-
porated into machine learning and the training data is formed
by a collection of triplets

(x1, x
∗
1, y1), . . . , (xn, x

∗
n, yn) ∼ Pn(x, x∗, y),

where xi, yi is a feature-label pair and x∗
i is additional informa-

tion about xi, yi provided by an intelligent teacher. The teacher
is assumed to develop a language that effectively communicates
information to help the student come up with better represen-
tation and to enable to learn characteristics about the decision
boundary which are not contained in the student samples.

The process is as follows:

1. Learn teacher ft ∈ Ft in eq. (1) using {(x∗
i , yi)}ni=1.

ft = arg min
f∈Ft

1

n

n∑
i=1

l(yi, σ(f(x
∗
i ))) + Ω(||f ||) (1)

Here, x∗
i ∈ Rd, yi ∈ ∆c, ∆c is the set of c-dimensional

probability vectors, Ft is a class of functions from Rd

to Rc, σ : Rc → ∆c is a soft-max function, l is a loss
function and Ω is an increasing function which serves as
a regularizer.

2. Compute teacher soft labels {σ(ft(x∗
i )/T}ni=1 using

temperature parameter T > 0.
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3. Learn student fs ∈ Fs in eq. (2) using {(xi, yi)}ni=1,
{(xi, si)}ni=1 and imitation parameter λ ∈ [0, 1].

fs = arg min
f∈Fs

1

n

n∑
i=1

[(1− λ)l(yi, σ(f(xi)))

+λl(si, σ(f(xi)))] (2)

si = σ(ft(xi)/T ) ∈ ∆c (3)

Here, Fs is a function class simpler than Ft.

In this paper, we utilize DNN to learn representation of both ft
and fs.

3. System Description
Our system is a hybrid DNN-HMM system, where DNN is used
to predict HMM state posterior probabilities given an input data
vector. These probabilities are converted to likelihoods using
state priors and standard decoding is performed to obtain the
recognition result.

We apply the Generalized Distillation framework for the
DNN training only. Targets for the DNN learning are obtained
by first training a conventional GMM-HMM system using only
clean data. Then, target states are identified by forced align-
ment.

Next, we learn the teacher DNN according to the first step
of the procedure described in the previous section. The train
data x∗

i are clean speech vectors and the targets yi are one-hot
vectors where the component corresponding to the target state
is 1 and all other components are set to 0. After training, the
parameters of the teacher DNN are fixed.

Student DNN learning procedure is illustrated in Fig.(1).
Outputs of the teacher DNN are used as soft targets si and to-
gether with the hard targets yi act as arguments of the student
DNN loss function as in Eq.(2). In addition, teacher DNN out-
puts are smoothed with the temperature parameter T according
to Eq.(3). The input training data for the student DNN are noisy
(mix of several SNRs and clean speech), and are fed in batches.
The corresponding clean data, also in batches, are given to the
teacher DNN input. However, only student DNN parameters
are updated during this procedure.

During the test, only student DNN is used and the state
probability predictions from the ”hard” output, i.e. the output
that was compared with the hard targets during training, are fed
to the HMM decoder as shown in Fig.(2).

4. Experiments
For experiments with the generalized distillation framework,
we adopted the Aurora2 database [14] which provides parallel
clean and noisy training data. There are 8440 clean speech utter-
ances from 55 male and 55 female speakers. They are equally
split into 20 subsets and 4 different noises (train, babble, car
and exhibition) at 5 different SNRs (20dB, 15dB, 10dB, 5dB
and clean condition) are added to each subset respectively. The
test data are divided into three sets, A, B and C. Set A has the
same types of noise as the training data and set B has four new
noises - restaurant, street, airport and train station. For set C,
there are only two noise conditions - train and street, but with
additional channel distortions. For all three test sets, the noise
SNR ranges from 0dB to clean, where only the 0dB condition
is not present in the training data.

Speech signal is processed in a standard way. We use 12
MFCC coefficients with power component and their first and

second derivatives. For comparison, FBANK features are ex-
tracted from 24 log filter-bank energies and their delta and delta-
delta coefficients. All feature vectors are mean and variance
normalized on per utterance level.

A conventional GMM-HMM is built using clean training
data according to the Aurora2 recipe. It uses word level HMMs
with 16 states and 3 Gaussians per state and the MFCC fea-
tures. The silence model has 3 states with 6 Gaussians each. In
total there are 179 states. The language model is a simple equal
probability digit loop network. This system achieves an average
WER of 0.87% for clean test data and 25.68% for the multi con-
dition data. Using the clean training data, with the GMM-HMM
system we generate frame level DNN training labels.

4.1. Teacher DNN

Selecting optimal DNN structure and training parameters can be
quite time consuming. Following some other studies [7] and [4],
we set the input window of 17 feature vectors, resulting in 663
or 1224 input nodes when using MFCC or FBANK features.
The output layer always has 179 nodes as the number of HMM
states. We varied the number of hidden layers from 3 to 5 and
the number of nodes in each hidden layer from 1024 to 3072.

In contrast to some other approaches, we don’t use layer-
wise pre- training. Weights in each layer are uniformly initial-
ized and the activation function is Rectifying Linear (ReLU).
The output layer uses SoftMax activation. Since the DNN oper-
ates in classification mode, the standard objective is Categorical
Cross-entropy. The optimization method is Stochastic Gradi-
ent Descent (SGD) with learning rate of 0.01 and momentum of
0.9. No learning rate decay is used and the training is stopped if
validation data (10% of the training data) loss starts increasing
or the maximum of 100 iterations is reached.

First, we tested the teacher DNN in frame level state clas-
sification mode. The number of hidden layers did not have big
effect on the accuracy which was around 83.5%. We found,
however, that dropout influences the performance and it is high-
est when 20%-30% of the nodes are removed.

Next, we did speech recognition experiment using teacher
DNN to provide the HMM state probabilities. For the clean
only test data, the average WER was only 0.33%, and for the all
multi-condition tests - 11.24%. This is 2 to 3 times better than
the GMM-HMM system.

We also compared the performance of MFCC and FBANK
features. Although it was quite similar, in most cases MFCC
gave little bit better results. Other studies have found FBANK
to be superior, but we didn’t observe such phenomenon. In all
the following experiments MFCC features were utilized.

4.2. Student DNN

The structure and training parameters of the student DNN are
similar to the teacher DNN. However, we found out that the
number of hidden layers and amount of dropout have bigger
influence on the student DNN frame level state classification
performance. Consequently, the variation of speech recognition
WER was bigger than the one from the teacher.

First, we learned the student DNN without distillation, i.e.
without the help of the teacher DNN. The dropout percentage
was set to 20%. All other training parameters were the same as
for the teacher DNN. As training data, we use the whole multi-
condition training set - 5 different SNRs and 4 different noise
types. The frame level HMM state classification rate of the
student was 74.6%, 78.0%, 79.7% and 80.1% for 3,4,5 and 6
hidden layers respectively. Table 1 shows the student DNN per-

2366



formance for different number of hidden layers and SNR con-
ditions averaged over all noise types.

Table 1: Student DNN performance on the test set in terms of
WER when trained alone.

SNR Number of hidden layers
3 4 5 6

clean 0.73 0.69 0.69 0.70
20dB 0.79 0.81 0.88 0.88
15dB 1.10 1.15 1.10 1.18
10dB 2.28 2.24 2.21 2.24
5dB 6.37 6.00 5.88 5.89
0dB 21.93 20.65 20.31 20.32

Average 5.53 5.26 5.18 5.20

Based on the results from this table, for the following exper-
iments with distillation, we choose student DNN with 5 hidden
layers. The temperature parameter in Eq.(3) was varied from 1
to 5 and the imitation value was changed from 0 to 1 in steps
of 0.2. Learning of the distilled student was performed as illus-
trated in Fig.1.

Since the teacher is trained on clean data and its perfor-
mance on noisy data has little meaning, we first compare the
results using the clean only part of all the test sets. Note that
for test C, even the clean data have channel distortion. Figure
3 shows the performance of the teacher, student and distillation
training. The dashed line shows the result of the student when
trained alone, so it doesn’t depend on the temperature or imita-
tion parameters. The teacher result serves as the higher bound
distilled student can achieve. As can be seen from the figure,
for T = 1 and λ = 0.8, distillation result is very close to the
teacher. Higher temperature values, however, perform worse
which can be explained with the smoothing effect they have on
the teacher output.

Figure 3: Results using only clean test data.

Of course, we are interested in the result of distillation on
noisy data. It is summarized in Fig.4, where the average per-
formance over all SNR conditions and noise types is shown.
Again, the result of the student when trained alone is denoted
with dashed line. The effect of distillation is clear in this case
as well. The best performance is again at T = 1 and λ = 0.8
and is 10.2% better than the result of the student alone.

Figure 4: Results on all multi-condition test sets.

5. Conclusions
In this work, we proposed a noise robust ASR system, where
acoustic model DNN is trained using the Generalized Distil-
lation framework. It is an example of the machines-teaching-
machines paradigm where machines learn from other machines.
The teacher DNN trained on ”good” clean data provides guid-
ance to the student which learns from noisy data. Using DNN in
the acoustic model provides big performance boost compared to
the conventional GMM-HMM systems and we have confirmed
this observation is our experiments as well. The student DNN
trained without distillation achieves 5.18% average WER, while
the GMM-HMM system result is 11.24%. When we applied the
distillation framework, additional 10.2% performance improve-
ment was achieved leading to WER as low as 4.65%.

This is the first attempt to apply the generalized distillation
framework for noisy speech recognition. We believe there are
other issued to be investigated within this framework including
the effect of the teacher performance on training data, more so-
phisticated ways of ”teaching”, not just linear combination of
loss functions, etc.
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