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ABSTRACT

In this paper we introduce Gaussian Process (GP) mod-
els for music genre classification. Gaussian Processes are
widely used for various regression and classification tasks,
but there are relatively few studies where GPs are applied
in the audio signal processing systems. The GP models are
non-parametric discriminative classifiers similar to the well
known SVMs in terms of usage. In contrast to SVMs, how-
ever, GP models produce truly probabilistic output and allow
for kernel function parameters to be learned from the training
data. In this work we compare the performance of GP models
and SVMs as music genre classifiers using the ISMIR 2004
database. Audio preprocessing is the same for both cases
and is based on Constant-Q spectrograms. The experimental
results using linear as well as exponential kernel functions
and different amounts of training data show that GP models
always outperform SVMs with up to 5.6% absolute difference
in the classification accuracy.

Index Terms— Music Genre Classification, Gaussian
Process, SVM, Machine Learning

1. INTRODUCTION

A lot of music data has become available recently either lo-
cally or over the Internet and in order for users to benefit
from them, an efficient music information retrieval technol-
ogy is necessary. It consists of various tasks such as genre
classification, artist identification, music mood classification,
cover song identification, fundamental frequency estimation,
melody extraction, etc. Each classification system consists of
minimum two blocks: feature extractor and classifier. Studies
in music genre classification have investigated various fea-
ture types and their extraction algorithms [1, 2, 3]. Carefully
crafted music features such as chroma vectors are mostly used
for specific tasks like music transcription or music scene anal-
ysis [4]. On the other hand, when it comes to classifying mu-
sic patterns, spectrum and its derivatives are also widely used.

Various methods for building music genre classifiers have
been studied ranging from conventional SVM to compres-
sive sampling models [5]. Learning algorithms include in-
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stances of supervised, semi-supervised [6], and unsupervised
[7] methods. However, parametric models are dominant in
most of the studies.

Gaussian Processes have been known as non-parametric
Bayesian models for quite some time, but just recently have
attracted attention of researchers from fields other than statis-
tics and machine learning [8]. One possible reason is the fact
that several extensions and new models based on GPs have
been developed lately. For example, the Gaussian Process
latent variable models (GP-LVM) were introduced for non-
linear dimensionality reduction [9], but have been also ap-
plied for image reconstruction [10] and human motion mod-
eling [11]. Another promising extension is the Gaussian Pro-
cess Dynamic Model (GPDM) [12]. It is a non-linear dynam-
ical system which can learn the mapping between two contin-
uous variables spaces. One of the first applications of GPDM
in audio signal processing was for speech phoneme classi-
fication [13]. Although the absolute classification accuracy
of the GPDM was not high, in certain conditions they out-
performed the conventional hidden Markov model (HMM).
In another recent work, GPDM is used as model for non-
parametric speech representation and speech synthesis [14].
Similar to GPDM is the GP based state-space model [15, 16].
It is essentially a non-linear Kalman filter and is very useful
for time series processing. Compared to some approximate
Gaussian filters such as the Extended Kalman filter (EKF)
and the Unscented Kalman filter (UKL), it gives exact ex-
pected values in the prediction and filter steps. When applied
for non-linear regression tasks, the Gaussian Processes allow
an analytic solution to be obtained for the output value dis-
tribution. This can be used for voice activity detection and
speech enhancement in the time domain [17]. For the GP
classification models, however, approximations are needed in
order to obtain class label probabilities [18, 19]. While GP
have been used in computer vision, for example, for object
categorization [20], we are unaware of any prior work on mu-
sic genre classification. In our system we use the GP models
as discriminative binary classifiers in a setting very similar to
how conventional SVM are used in such multi-class tasks. We
compare the performance of GP classification models with
SVMs in one-versus-all training mode using several different



amounts of training data.

2. GAUSSIAN PROCESS MODELS

By definition, the Gaussian Process is a collection of random
variables, any finite number of which have a joint Gaussian
distribution [8]. It is completely specified by its mean func-
tion and covariance function. Given a real process f(x), the
mean function m(xz) and the covariance function k(x;, x;)
are defined as

m(xz) = E[f(z)]
k(zi, ;) = E[(f(x:) — m())(f(z;) — m(z))]
and we can write the GP as
f(x) ~ N(m(z), k(z, x)). (1

In this case, the random variables represent the value of the
function f(x) at position .

Often, it is assumed that the mean is zero, i.e. m(x) = 0,
while the covariance function k(z, ) can be any appropriate
kernel function depending on the application.

2.1. Classification with GP

For binary classification, given training data vectors x; € R?
with corresponding labels y; € {—1,+1}, we would like to
predict the class membership probability for a test point @ ..
This is done using an unconstrained latent function f(x) dis-
tributed according to Eq.(1) and mapping its value into the
unit interval [0, 1] by means of a sigmoid shaped function
[19]. Common choice for such function is the logistic func-
tion or the cumulative density function of a standard Gaus-
sian distribution ®. When the sigmoid is point symmetric,
the likelihood p(y|x) can be written as sig(y - f(x)).

Let X = [z1,...,Zn] be the training data matrix,

= [y1,---,yn])T be the vector of target values, and
f = [f1,..., fa]T with f; = f(x;) be the vector of latent
function values. Given the latent function, the class labels are
assumed independent Bernoulli variables and therefore the
likelihood can be factorized as

n

p(ylf) = Hp (il ;) = [ [ sie(wi f3) ©))
i=1

Since our latent functions represent GP, their joint distri-
bution p(f|X) = N(f|m, K) is Gaussian with mean m
and covariance matrix K with elements k(x;, «;). Using the
Bayes’ rule, we can express the posterior distribution over the
latent values as

— pylf)p(fl1X)
P X) = Tl fIX)df
N(f|m, K)

%) H sig(vifi) ()

Unfortunately, both the likelihood p(y|f) and the marginal

p(y|X) are non-Gaussian and analytic calculation is impos-

sible. Approximations in this case are either based on a Gaus-
sian approximation to the posterior or Markov Chain Monte
Carlo (MCMC) sampling.

For a test vector x.,, we first find the predictive distribu-
tion for the corresponding latent variable f,. by marginalizing
over the training set latent variables

p(f*‘x*’an) = /p(f*|f7w*7
where the conditional prior
p(ful Frxe, X) =
N(fkTK ' k(xy, 2) — kT K 'E,)  (5)

is Gaussian and k, = [k(z1,x.),. .., k(z,, z.)]T.
Finally, the predictive class membership probability is ob-
tained by averaging out the test latent variable

X)p(fly, X)df 4

p(ys|ze, 9, X) / (sl f)p(ful sy, X)dfs

= /Sig(y*f*)}?(f*\w*,y»X)dfx (6)

A Gaussian approximation to the posterior of Eq.(3),
q(fly, X) = N(f|f,A) gives rise to an approximate
predictive distribution for test data, i.e. q(f«|z.,y,X) =

N (f«|pts, o2), with mean and variance
Py = sz_lf
0? = k(e ) —kI(K'-K'AK Yk, (7)

When the cumulative Gaussian density function ® is used
as a likelihood function, the approximate probability of x,
having label y. = +1 can be calculated analytically

/ AT

H
= O(——= (8)

( V1+ Uf)
The parameters f and A of the posterior approximation

can be found using either the Laplace’s method or the Expec-
tation Propagation (EP) algorithm [18].

2.2. Hyper-Parameter Learning

Until now, we have considered fixed covariance function
k(x;,x;), but in general, it is parameterised by some param-
eter vector 8. This introduces hyper-parameters to the GP,
which are unknown and, in practice, very little information
about them is available. A Bayesian approach to their estima-
tion would require a hyper-prior p(6) and the evaluation of
the following posterior

p(y|X,0)p(0)
pylX) [

p(y|X,0)p(6)
(y|X,0)p(0)d6

p(0ly, X) = )



where the likelihood p(y| X, 0) is actually the GP marginal
likelihood (evidence)

p(y|X,0) = / I fp(FIX,0)df  (10)

However, the evaluation of the integral in Eq.(9) can be dif-
ficult and as an approximation we may directly maximize
Eq.(10) w.r.t the hyper-parameters 6. This is known as max-
imum likelihood II (ML-II) type hyper-parameter estimation
and requires estimating the GP marginal likelihood. Again,
Laplace or EP approximation can be used. For the maximiza-
tion, good candidates are gradient based methods such as the
conjugate gradient optimization or the BFGS algorithm.

2.3. Relation to SVM

For the soft margin support vector machine, the optimization
problem is defined as

L, o =
in CY (1—wyifi 11
min oflw]|” + i:1( yifi) (11)
st.1—yf;i >0,1=1,....,n

where f; = f(x;) = wax; + wo and the solution has the form
w = Y. \yix; = »_, o;x;. Thus, the square norm of w
becomes
|w|?* = Zaiajwia:j (12)
i,

which in matrix form and using kernel k(x;, ;) instead of
T;T; is

lw|* = a" Koo = fTK™'f (13)
where f = K a. Then, substituting ||w||? in Eq.(11) we get
the following objective function

1 B n
SITK 1f+O;<1—yifi) (14)

st.1—y;fi >0,i=1,....n

On the other hand, in the GP classification, during the pos-
terior approximation we need to find the maximum a poste-
riori value f of p(f|y, X) by maximizing the log p(y|f) +
log p(f|X) which becomes

1 _ 1 n
logp(y|f) = ST K1 f — S log|K| = S log2r  (15)
when using zero mean GP prior N'(f]0, K). Since the last

two terms are constant when the kernel is fixed, it is equiva-
lent to minimizing the following quantity

1 n
SFTENf = logp(yilf:) (16)
i=1

Apparently, there is a strong similarity between the SVM
optimization problem and the MAP maximization of the GP

classifier. Thus, there is a close correspondence between their
solutions [8].

One big advantage of the GP classifier is that the output
it produces - the prediction for p(y = +1|x), is clearly prob-
abilistic. Furthermore, it provides a measure of uncertainty
for this prediction, i.e. the predictive variance of f(x). Al-
though, it is possible to give probabilistic interpretation to the
SVM outputs by wrapping them with sigmoid function, this
is rather ad hoc procedure which also requires tuning of the
sigmoid parameters [21].

3. EXPERIMENTS

3.1. Database and Feature Extraction

In these experiments we used the ISMIR 2004 audio corpus
[22]. Tt contains of 729 whole tracks for training, but since
the number of tracks per genre is non-uniform, the original
nine genres are usually mapped into the following six classes:
Classical, Electronic, Jazz-Blues, Metal-Punk, Rock-Pop and
World. Another 729 tracks are used for testing.

All audio data are divided into 5 sec. pieces which were
further randomly selected in order to make several training
sets with different amount of data, keeping the same number
of such pieces per genre. Table 1 summarizes the contents of
the training data sets. For example, IS-20 is a data set from
the training part of the ISMIR 2004 corpus consisting of 20
pieces per genre or 120 pieces in total. All sets are constructed
in such way that each larger set contains all the pieces from
the smaller set. There is only one test set and it consists of 250
pieces per genre randomly selected from the ISMIR 2004 test
tracks.

When it comes to feature extraction for music informa-
tion processing, in contrast to the case of speech, where the
MEFCC is dominant, there exists wide variety of approaches -
from carefully crafted multiple music specific tonal, chroma,
etc. features to plain and simple “don’t care about the con-
tent” spectrum. In our experiments, we used spectral repre-
sentation tailored for music signals, such as Constant-Q trans-
formed (CQT) FFT spectrum. The CQT can be thought of as
a series of logarithmically spaced filters having constant cen-
ter frequency to bandwidth ratio, i.e.

LI
Afi

where () is known as the transform’s “quality factor”. The
main property of this transform is the log-like frequency scale
where the consecutive musical notes are linearly spaced [23].

The CQT transform is applied to the FFT spectrum vec-
tors computed from 23.2ms (512 samples) frames with 50%
overlap in a way that there are 12 Constant-Q filters per oc-
tave resulting in a filter-bank of 89 filters which covers the
whole bandwidth of 11025 Hz. The filter-bank outputs of 20
consecutive frames are further stacked into a 1780 (89x20)
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dimensional super-vector which is used in the experiments.
This is the same as to have a 20 frame time-frequency spec-
trum image. There is a overlap of 10 frames between such two
consecutive spectrum images. This way, each 5 sec. music
piece is represented by 41 spectrum images or super-vectors.

Table 1. Data sets used in the experiments.

Data set | 5 sec. pieces | Total time (h)
1S-20 6 x 20 0.17
IS-50 6 x50 0.42
IS-100 6 x 100 0.83

3.2. SVM Baseline

As a baseline classifier we use the conventional SVM. For
each genre and each training data set we trained single SVM
model in one-versus-all multi-class setting. Input vectors
were scaled to fit the [0,1] range and the SVMs were trained
to produce probabilistic outputs. For each 5 sec. test sample,
logarithms of the SVM output for each of the 41 vectors were
aggregated and used as score for classification. Table 2 shows
the classification accuracy using both Linear and RBF kernel
for each training data set. Clearly, for this case, the RBF
kernel gives better performance.

Table 2. SVM Classification accuracy (%).

SVM Training data set
kernel | IS-20 | IS-50 | IS-100
Linear | 48.7 | 53.5 53.8
RBF 55.7 | 62.4 64.0

3.3. GP Evaluation

For the experiments with Gaussian Process classifiers we used
the GPML Toolbox package'. It provides wide variety of co-
variance and mean functions, several inference methods and
likelihood functions. After some preliminary experimenta-
tion, we found that in terms of speed and performance the
combination of logistic likelihood function and Laplace based
Gaussian approximation inference method gives the best re-
sults.

As GP mean function we used zero mean since choosing
any other available function either did not improve the perfor-
mance or caused stability problems. The main factors which
influence the GP performance are the form of the covariance
function and the values of its parameters. We found that most
suitable are the following covariance functions:

Uhttp://www.gaussianprocess.org/gpml/code/matlab/doc/index.html

e Linear with parameter [

E(x,x') = (xTx' +1)/1? (18)

Squared exponential with parameters ¢ and [

1

T (x — x’)T(x -x)) (19

k(x,x') = 0% exp(—

Rational quadratic with parameters o, o and [

E(x,x') =o%(1+ 2;7(x —xT(x—x"))™ (20)

Matérn with parameters o and [
k(x,x') = o*(147)exp(—r), (1)

= )

Training of the GP classification models, as explained in
Sec.2.2, consists in estimating the covariance (and mean)
function parameters. Since like SVMs the GPs are binary
discriminative classifiers, training set-up is the same - one GP
model per genre per dataset trained in one-versus-all mode.

In the case of GP classification, there are several ways of
computing test samples scores. As with the SVM, the score of
single 5 sec. test sample is an aggregation of the GP outputs
for each of the 41 feature vectors. However, the GP outputs
not only the probability ¢(y. = +1|x,, y, X) of input vector
x, having label y, = +1, but the mean ., and variance Uf
of y, as well. We found that using means pu., as scores, in
average, gives better results than using log probabilities.

The GP classification performance for each of the above
mentioned covariance functions is summarized in Table 3. As
in the case of SVM, the linear covariance function is much
worse than the non-linear ones. Among the non-linear covari-
ances, the Exponential one seems to be slightly better than the
others.

Table 3. Gaussian Process Classification accuracy (%).

Covariance Training data set
kernel IS-20 | IS-50 | IS-100
Linear 50.5 | 542 54.6
Exponential | 61.3 | 65.7 67.7
Rational 61.2 | 653 67.7
Matérn 60.9 | 65.0 67.6

3.4. SVM and GP model comparison

The way we use SVMs and GP models as binary classifiers is
very similar. In addition, the performance of both of them is



greatly influenced by the choice of the kernel function. How-
ever, the GP models have the advantage of producing truly
probabilistic outputs and ability to use prior with parameters
learned from the data. This is most probably the reason for
their superior performance. In Fig.1 and Fig.2 we compare
the SVM and GP models results using the same type of ker-
nels: Linear and Exponential. As can be seen, in both cases
GP models are better and the performance gap is bigger when
the Exponential kernel is used.
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Fig. 1. SVM versus GP classification performance using Lin-
ear kernels.
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Fig. 2. SVM versus GP classification performance using Ex-
ponential kernels.

4. CONCLUSION

In this paper, we presented and described a music genre clas-
sification system where each music genre class is represented
by a non-parametric Gaussian Process classification model.
The implementation of the GPs for classification is similar to
that of SVMs since they are too discriminative binary classi-
fiers. Thus, we used an SVM based system as a baseline for
performance comparison.

The evaluation experiments carried out using the ISMIR
2004 music database showed that GP models outperform the
SVM when the same class of kernels functions are used, i.e.
Linear or Exponential. This can be due to the fact that GP

models output true probabilities and that covariance kernel
function parameters can be learned from the training data.

GPs are not only good static classifiers, but also can be ex-
tended to model and discriminate temporal sequences, to rep-
resent non-linear mappings between two continuous spaces
as well as to study non-linear dynamical systems. This gives
opportunities for GPs to be used more widely in music and
speech processing research fields.
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