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ABSTRACT

It has been shown that by combining the acoustic and artic-
ulatory information significant performance improvements in
automatic speech recognition (ASR) task can be achieved. In
practice, however, articulatory information is not available
during recognition and the general approach is to estimate
it from the acoustic signal. In this paper, we propose a dif-
ferent approach based on the generalized distillation frame-
work, where acoustic-articulatory inversion is not necessary.
We trained two DNN models: one called “teacher” learns
from both acoustic and articulatory features and the other one
called “student” is trained on acoustic features only, but its
training process is guided by the “teacher” model and can
reach a better performance that can’t be obtained by regular
training even without articulatory feature inputs during test
time. The paper is organized as follows: Section 1 gives the
introduction and briefly discusses some related works. Sec-
tion 2 describes the distillation training process, Section 3 de-
scribes ASR system used in this paper. Section 4 presents the
experiments and the paper is concluded by Section 5.

Index Terms— speech recognition, articulatory features,
XRMB, DNN-HMM acoustic model, generalized distillation,
privileged information.

1. INTRODUCTION

Current state-of-the-art automatic speech recognition sys-
tems represent speech as a sequence of non-overlapping
phonetic units while implicitly assuming that speech can be
decomposed into a disjoint acoustic segment, which limits the
acoustic models ability to properly learn the underlying varia-
tions in spontaneous or conversational speech. Although such
systems perform fairly well for clearly articulated speech in
“controlled” conditions, they suffer from acoustic variabili-
ties in speech. Such variabilities can be due to background
noises, speaker differences, differences in recording devices
etc.

Many studies [1] [2] [3] [4] [5] have shown that articula-
tory information can improve the ASR performance and in-

crease its robustness against noise contamination and speaker
variation. It can also help model coarticulation in a more
systematic way rather than using tri- or quin-phone acous-
tic models that necessitate a large training database to create
all possible models of tri- or quin-phone units if some tri-
or quin-phone units are less frequent. Unfortunately, articu-
latory information is not available during recognition. One
direction of utilizing articulatory information is to generate
articulatory features given the corresponding acoustic speech
signal, known as acoustic-to-articulatory inversion [6]. Sev-
eral such methods have been attempted, such as, Gaussian
mixture model [7], feedforward neural networks [8], Bidirec-
tional LSTMs [9] [10]. Other approaches use articulatory data
at training time and attempt to embed the articulatory infor-
mation inside the model and leave it hidden (i.e., implicitly
predict it) at test time. For example, in [1] a hybrid HMM/BN
model is adopted, and [11] uses Dynamic Bayesian Network
to treat articulatory information as hidden variable. In [12], a
MULTI-VIEW method based on canonical correlation analy-
sis(CCA) is proposed, which finds pairs of maximally corre-
lated linear projections of data in two the views.

The paradigm of machines-teaching machines has been
investigated in studies of Vapnik et al. [13] [14] and Hinton et
al. [15]. Motivated by the principles of human education, au-
thors incorporate an “intelligent teacher” into machine learn-
ing. It is assumed that for each feature-label pair, there is an
additional information about it provided by a teacher to sup-
port the learning process. However, teacher information will
not be available at test time. This framework is also known as
learning using privileged information. Such approach allows
building a classifier which is better than those built on the reg-
ular features alone. On the other hand, Hinton proposed the
concept of distilling the knowledge in neural networks [15],
where a simple machine learns a complex task by imitating
the solution of a more complicated and flexible machine. This
can be applied in cases when a fast or real-time operation is
required, but using the flexible machine is computationally
prohibitive.

In a recent study [16], the learning using privileged in-
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formation and the distillation methods have been combined
into a Generalized Distillation framework which utilizes the
strengths of both methods. Here, the teacher who has access
to the privileged information plays the role of a more com-
plicated machine in the distillation process. After the sim-
pler student is learned through the distillation process, it is
used for testing when no privileged information is available.
Generalized Distillation is closely related to applications in
methods such as semi-supervised learning, domain adapta-
tion, transfer learning, Universum learning [17] and curricu-
lum learning [18].

In this paper, we apply the Generalized Distillation in the
speech recognition task in order to integrate articulatory in-
formation into speech recognition system in a way that recog-
nition uses the acoustic information only. As privileged in-
formation, we utilize both acoustic and articulatory data to
learn the teacher machine. The student machine is learned
on speech data only and during the training is guided by the
teacher which has access to the corresponding articulatory
measurements. Our ASR system is a DNN-HMM hybrid
where DNN is used to predict HMM state probabilities. Such
systems are popular since they allow to utilize the high perfor-
mance of the DNN with the conventional and well-established
decoding and language modeling methods. The HMM transi-
tion probabilities are obtained from a traditional GMM-HMM
acoustic model and the DNN is learned using the above men-
tioned generalized distillation framework.

In our experiments, when trained on both the acoustic and
articulatory features, the conventional GMM-HMM model
achieves about 10% absolute phoneme error rate (PER) re-
duction with respect to the acoustic only model, which is
similar to results from other papers [19] [20]. With the DNN-
HMM acoustic model, however, in all cases, 2 to 3 times
better PER were obtained.

2. GENERALIZED DISTILLATION

Generalized distillation has been termed in [16] to frame two
techniques of Hinton’s distillation [15] and Vapnik’s privi-
leged information [14] that enable machines to learn from
other machines. In the framework, an “intelligent teacher”
is incorporated into machine learning and the training data is
formed by a collection of triplets

(x1, x
∗
1, y1), . . . , (xn, x

∗
n, yn) ∼ Pn(x, x∗, y),

where xi, yi is a feature-label pair and x∗i is additional in-
formation about xi, yi provided by an intelligent teacher. The
teacher is assumed to develop a language that effectively com-
municates information to help the student come up with bet-
ter representation and to enable to learn characteristics about
the decision boundary which are not contained in the student
samples.

The process is as follows:

1. Learn teacher ft ∈ Ft in eq. (1) using {(x∗i , yi)}ni=1.

ft = arg min
f∈Ft

1

n

n∑
i=1

l(yi, σ(f(x∗i ))) + Ω(||f ||) (1)

Here, x∗i ∈ Rd, yi ∈ ∆c, ∆c is the set of c-dimensional
probability vectors, Ft is a class of functions from Rd

to Rc, σ : Rc → ∆c is a soft-max function, l is a loss
function and Ω is an increasing function which serves
as a regularizer.

2. Compute teacher soft labels {σ(ft(x
∗
i )/T}ni=1 using

temperature parameter T > 0.

3. Learn student fs ∈ Fs in eq. (2) using {(xi, yi)}ni=1,
{(xi, si)}ni=1 and imitation parameter λ ∈ [0, 1].

fs = arg min
f∈Fs

1

n

n∑
i=1

[(1− λ)l(yi, σ(f(xi)))

+ T 2λl(si, σ(f(xi)))] (2)

si = σ(ft(xi)/T ) ∈ ∆c (3)

Here, Fs is a function class simpler than Ft.

In this paper, we utilize DNN to learn representation of both
ft and fs.

3. SYSTEM DESCRIPTION

Our system is a hybrid DNN-HMM system, where DNN is
used to predict HMM state posterior probabilities given an
input data vector. These probabilities are converted to likeli-
hoods using state priors and standard decoding is performed
to obtain the recognition result.

We apply the Generalized Distillation framework for the
DNN training only. Targets for the DNN learning are ob-
tained by first training conventional GMM-HMM systems us-
ing both articulatory and acoustic features. Then, target states
are identified by forced alignment.

Next, we learn the teacher DNN according to the first step
of the procedure described in the previous section. The train
data x∗i are concatenated acoustic and articulatory vectors and
the “hard” targets yi are one-hot vectors where the component
corresponding to the target state is 1 and all other components
are set to 0. After training, the parameters of the teacher DNN
are fixed.

The student DNN learning procedure is illustrated in
Fig.1. Outputs of the teacher DNN are used as soft targets si
and together with the hard targets yi act as arguments of the
student DNN loss function as in Eq.(2). In addition, teacher
DNN outputs are smoothed with the temperature parameter
T according to Eq.(3). The input training data for the student
DNN are acoustic features only and are fed in batches. The
corresponding concatenated acoustic and articulatory data,



Fig. 1. Student training block diagram.

also in batches, are given to the teacher DNN input. How-
ever, only student DNN parameters are updated during this
procedure.

During the test, only student DNN is used and the state
probability predictions from the “hard” output, i.e. the out-
put that was compared with the hard targets during training,
are fed to the HMM decoder as shown in Fig.2. Unlike the
articulatory inversion approach, during the test, DNN model
trained using distillation approach doesn’t need extra compu-
tational cost and can test as fast as the standard DNN-HMM
system.

Fig. 2. Testing with student DNN.

4. EXPERIMENTS

We experimented with the University of Wisconsin X-ray mi-
crobeam database (XRMB) [21] which consists of simultane-
ously recorded acoustic and articulatory measurements from
47 American English speakers (22 males, 25 females). Each
speaker’s recordings comprise at most 118 tasks whose type
can be number sequence, TIMIT sentences, isolated word se-
quence, paragraph as well as non-speech oral motor. Only
normal speed sentences and number sequence tasks were used
in our experiments. The articulatory measurements are hori-

zontal and vertical displacements of 8 pellets on the tongue,
lips, and jaw as shown in Fig.3 [21].

Fig. 3. Placement of the 8 pellets on T1,T2,T3,T4,MANm,
MANi,UL,LL points.

We downsampled the acoustic signal from 21.74 kHz to
16 kHz, and our acoustic features are 13-dimensional Mel-
frequency cepstral coefficients (MFCCs) computed every
10ms over a 25ms window, along with their first and sec-
ond derivatives, resulting in 39-dimensional frames. We also
downsampled the articulatory data from the original rate of
145.7Hz to 100Hz to match the frame rate of acoustic fea-
tures and use the x,y coordinates of the 8 articulators along
with their first and second derivatives as articulatory feature
vectors of 48 dimensions. Including the first and second
derivatives of the articulatory data is helpful since the move-
ment itself can’t tell apart speech pause from other phones.
Finally, all feature vectors are mean and variance normalized
on per utterance basis.

Due to limitations in the recording technologies, articu-
latory measurements contain missing data when individual
pellets are mistracked. Though there are methods to recon-
struct missing data [20], we decided to use only complete
data. Phoneme alignment was done using the Penn Phonet-
ics Lab Forced Aligner [22] and the missing entries, as well
as data that are not consistent with orthographic transcripts,
were cut off. Utterances are split into files, each containing
only one sentence with silence parts of at the beginning and
end reduced to 150ms. We split our data into several subsets
as shown in Table.1.

We built two conventional GMM-HMM recognizers. One
uses only acoustic features (39D), and the other one uses both
MFCCs and articulatory features (87D). They are both stan-
dard 3-state left-to-right monophone HMM models. The
phoneme language models is a simple bi-gram trained on
data transcriptions including the paragraph task. We use 39
distinct phoneme and one silence HMMs. In total, there are
120 states. For this acoustic model, the best results were
achieved with 38 Gaussian components per state. The recog-



Table 1. Details of the datasets.

Train Test Validation Total
Speakers 36 5 4 45
Female 19 3 2 24
Male 17 2 2 21

Utterances 3040 379 256 3675
Words 33883 4167 2758 40808

Phonemes 144863 17815 11580 174258
Hours 2:33:14 19:46 12:16 3:05:16

nition results (phone error rate%) are summarized in Table.2.
With this GMM-HMM system, we generated frame level
DNN training targets.

Table 2. Phone error rates for conventional GMM-HMM sys-
tem.

LM weight/penalty MFCC MFCC+ART
0/0 29.95 12.01

7.0/2.0 18.85 9.67
7.0/1.0 18.73 9.72

4.1. Teacher DNN

Following some other studies [23] [24] and [25], we set the
input window of 17 feature vectors, resulting in 663 or 1479
input nodes when using MFCC or MFCC+ART features. The
output layer always has 120 nodes as the number of HMM
states.

In contrast to some other approaches, we don’t use layer-
wise pre-training. Weights in each layer are uniformly initial-
ized and the activation function is Rectifying Linear (ReLU).
The output layer uses SoftMax activation. Since the DNN
operates in classification mode, the standard objective is Cat-
egorical Cross-entropy. We also compared several optimiza-
tion methods such as SGD+Nesterov Momentum(0.9) [26],
rmsprop [27] as well as Adam [28], but found no significant
differences in results. Adam and Rmsprop are faster, but the
initial learning rate has to be smaller than SGD’s. For the
following experiments, we choose Adam optimization, where
the learning rate starts from 1e-4 and is multiplied with 0.1 if
validation data loss doesn’t go down for 3 epochs. The entire
training procedure is stopped when the learning rate is smaller
than 1e-6 or the maximum of 100 iterations is reached. We
varied four parameters to select optimal DNN structure, the
number of hidden layers [3,5,6], the number of hidden nodes
[1024,2048,3072], batch size [128,256,512] as well as drop
out probability [0.1,0.2,0.3,0.4]. In total 144 DNN models
were trained. We found that more layers and nodes increase
the model’s learning power, whereas smaller batch size and
higher dropout probability tend to prevent the model from

over-fitting. The best results we got are from the models that
are well-balanced between this two trends.

First, we tested the teacher DNN in frame level state clas-
sification mode. The number of hidden layers did not have a
big effect on the accuracy which was around 82%. We found,
however, that the dropout influences the performance. Sev-
eral training configurations and the corresponding frame level
state classification accuracies, as well as the phoneme error
rates for a DNN trained with 256 batch size, are shown in
Table.3. The best PER result of 4.56% was achieved with 5
hidden layers, 3072 nodes, and 40% dropout. Compared with
the GMM-HMM system, this performance is 2 to 3 times bet-
ter. Thus, we chose this DNN as our teacher model.

Table 3. Training conditions and performance of the teacher
DNN with 256 batch size

Layers Nodes Drop PER% Acc%
3 2048 0.3 5.13 82.2
3 3072 0.3 5.19 82.3
3 2048 0.4 4.96 82.4
3 3072 0.4 4.98 82.6
4 2048 0.3 4.86 82.3
4 3072 0.3 5.01 82.4
4 2048 0.4 4.69 82.0
4 3072 0.4 4.71 82.5
5 2048 0.3 4.82 82.2
5 3072 0.3 5.03 82.1
5 2048 0.4 4.67 81.8
5 3072 0.4 4.56 82.4
6 2048 0.3 4.78 81.9
6 3072 0.3 4.61 82.3
6 2048 0.4 4.75 81.8
6 3072 0.4 4.90 81.5

4.2. Student DNN

The structure and training parameters of the student DNN are
similar to the teacher DNN. Based on the results of teacher
model, we set the batch size to 256. Both teacher and student
PER were obtained using the MFCC+ART HMM model.

First, we learned the student DNN without distillation, i.e.
without the help of the teacher DNN. As training data, we
use only MFCC features. Table 4 shows the student DNN
training conditions and performance for the different number
of hidden layers and nodes.

Based on the results from this table, for the distillation
training experiments, we choose student DNN with 4 hidden
layers, 2048 hidden layer nodes, 40% dropout. The tempera-
ture parameter in Eq.(3) was varied from 1 to 5 and the imita-
tion value was changed from 0 to 1 in steps of 0.2. Learning
of the distilled student was performed as illustrated in Fig.1.
The results in terms of PER are summarized in Fig.4. The



Table 4. Training conditions and performance of the student
DNN when learned alone, i.e. without distillation.

Layers Nodes Drop PER% Acc%
3 2048 0.3 9.18 79.5
3 3072 0.3 9.11 79.4
3 2048 0.4 8.50 80.0
3 3072 0.4 8.68 79.9
4 2048 0.3 9.02 79.5
4 3072 0.3 8.98 79.5
4 2048 0.4 8.18 79.7
4 3072 0.4 8.46 79.7
5 2048 0.3 8.43 79.7
5 3072 0.3 8.92 79.2
5 2048 0.4 8.23 79.6
5 3072 0.4 8.34 79.4

blue dashed line shows the result of the student when trained
alone, so it doesn’t depend on the temperature or imitation
parameters. The teacher result serves as the lower bound dis-
tilled student can achieve. As can be seen from the figure, for
T = 1 and λ = 0.6, distillation result is 6.74% PER, which
is 17.6% better than the result of the student alone. For the
temperature T = 2, the performance is still better than the
student alone, but not as good as temperature T = 1 . Tem-
peratures of 10 and higher, however, performed worse which
can be explained by the smoothing effect they have on the
teacher output.
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Fig. 4. Results of distillation training

5. CONCLUSIONS

In this work, we proposed an ASR system with integrated
articulatory and acoustic features, where the acoustic model

DNN is trained using the Generalized Distillation frame-
work. It is an example of the machines-teaching-machines
paradigm where machines learn from other machines. The
teacher DNN trained on “rich” data and provides guidance
to the student which learns from acoustic data only. Us-
ing DNN in the acoustic model provides big performance
boost compared to the conventional GMM-HMM systems
and we have confirmed this observation is our experiments as
well. The student DNN trained without distillation achieves
8.18% average PER, while the GMM-HMM system’s result
is 18.73%. When we applied the distillation framework, addi-
tional 17.6% performance improvement was achieved leading
to PER as low as 6.74%.

This is the first attempt to apply the generalized distil-
lation framework for integration of articulatory and acoustic
data for ASR. The results are encouraging, though we ex-
pected a higher gain in the performance. We believe there are
other issues to be investigated within this framework includ-
ing the effect of the teacher performance on training set, more
sophisticated ways of “teaching”, not just linear combination
of loss functions, as well as utilizing other sophisticated DNN
structures such as deep Long-Short Term Memory (LSTM)
networks.
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