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ABSTRACT
Automatic emotion recognition from text is an important task in
the field of natural language processing (NLP) with applications
in data mining, e-learning, information filtering systems, human-
computer interaction, and internet services. Recent advances in
machine learning and deep neural networks have boosted the NLP
systems’ performance tremendously. The availability of large pre-
trained language models has simplified the feature extraction and
facilitated the building of systems from small amounts of data by
transfer learning. In this study, we investigate and compare various
methods of sentence embedding including simple embeddingmatrix
as well as sophisticated models such as BERT. The recognition back-
end consists of standard SVR or Feed-Forward DNN regressors. In
our experiments, we used the EmoBank corpus where each sentence
is labeled with Valence-Arousal scores. The results clearly show
the benefits of the transfer learning and fine-tuning of pre-trained
models with respect to classical model training from scratch.
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1 INTRODUCTION
With the recent popularity of social media, data from sources such
as audio, text, images, or video became available for conducting
studies in various areas of human life and behavior. Social media
posts, micro-blogs, news articles, etc., are useful resources for min-
ing and collecting text data for analysis and predicting people’s
personality traits and emotions. Analyzing emotions is helpful in
many different domains. One such domain is human-computer in-
teraction. With the help of emotion recognition, computers can
make better decisions to help users or provide better social services.
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Figure 1: Two dimensional (Valence-Arousal) affective space
of emotions [4]. Different regions correspond to different
categorical emotions.

With the increase in the popularity of robotic research, emotion
recognition will also help make human-robot interaction more
natural

Affective computing [5, 7] is science under which methods are
being developed that can process, identify and understand human
emotions. For the last three decades, a large number of methods
are continuously being devised to facilitate emotion analysis; from
manual methods such as questionnaires elaborated by psychologists
to methods involving computers and AI models [16].

Most of the automatic systems for text emotion recognition are
based on emotion representation which can be either categorical
or dimensional [2, 15, 18]. Categorical approaches involve finding
emotional descriptors, usually adjectives, which can be arranged
into groups. Given the perceptual nature of human emotion, it is
difficult to come up with an intuitive and coherent set of adjectives
and their specific grouping. To alleviate the challenge of ensuring
consistent interpretation of mood categories, some studies propose
to describe emotion using continuous multi-dimensional metrics de-
fined in low-dimensional spaces. Most widely accepted is Russell’s
two-dimensional Valence-Arousal (VA) space [14] where emotions
are represented by points in the VA plane. Figure 1 shows the space
where some regions are associated with distinct mood categories.

Previous research on affective computing has merely utilized
methods from traditional machine learning, while recent advances
from the field of deep learning have just made an inroad in the latest
studies. Lexicon-based approaches utilize pre-defined lists of terms
that are categorized according to different affect dimensions [11].
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Figure 2: Block diagram of the emotion recognition system.

On the one hand, these lexicons are often compiled manually, a fact
that can later be exploited for keyword matching. For instance, the
Harvard IV dictionary (inside the General Inquirer software) and
LIWC provide such lists with classification by domain experts [17].

Recent approaches based on deep neural networks usually apply
LSTM models to capture the sentence context [8, 9]. However,
transfer learning and large language models such as BERT have
been used lately with great success [1]. In this work, we study
and compare the performance of word-level and sentence-level
embedding methods using model architectures including LSTM
and several BERT variants.

2 SYSTEM DESCRIPTION
Our system takes as an input one sentence, i.e. a sequence of words
𝑤1,𝑤2, ...,𝑤𝑛 and predicts the Valence and Arousal scores for that
sentence. The block diagram of the system is shown in Fig. 2. It
consists of two main parts: front-end sentence encoder and back-
end regression models, one for the Valence and one for the Arousal
prediction. The sentence encoder transforms the input words into
a single vector which is then passed to the back-end models.

The focus of this study is the performance of several different
sentence embedding methods which have recently gained popu-
larity among researchers. They can be broadly divided into two
categories: 1) word embedding-based methods, and 2) direct sen-
tence embedding methods. The approach in the first category is to
obtain embedding vectors for each word in a given sentence and
then combine those vectors into one. In contrast, in the second
category of methods, the whole sentence is directly transformed
into a vector using some language model. To provide a fair and
unbiased comparison of all those methods, as a back-end we use
simple SVR and Feed-Forward DNN models.

2.1 Word embedding based methods
Transforming words into vectors is the basis of all current natural
language processing methods. This procedure embeds each word

Figure 3: Sentence embedding using word Embedding Matrix
or Word2Vec and Linear or LSTM neural network layers.

into a high dimensional space and the way this space is constructed
depends on the particular transformation method. One of the first
andmost popular approaches is theWord2Vec [10] where the model
is trained to predict a word from its neighbors using the Contin-
uous Bag-of-Words (CBoW) technique. Word vectors can also be
derived from the Skip-gram model where the surrounding words
are predicted from a given word. These models are usually trained
from a large text corpus, but the problem is that even in that case,
the vocabulary, i.e. the set of words that can be embedded may not
cover all the words for some downstream tasks. One solution is
to train the Word2Vec on the text data for the task at hand which,
however, are not always large enough to build a good model. In our
study, we train our model since the size of our corpus is moderately
large.

Another way to transform words into vectors is to use the so-
called embedding matrix. Each word representation as the one-hot
vector is multiplied by this matrix to produce the desired word
embedding vector. Vectors from all the words in the sentence are
then fed to some neural network model and its parameters are
trained jointly with the matrix weights. In our study, we used
feed-forward (Linear) or LSTM recurrent network layer(s) which is
designed to produce a single vector representing thewhole sentence.
This approach is schematically shown in Fig. 3.

2.2 Direct sentence embedding methods
Since the introduction of large-scale language models based on the
transformer architecture such as BERT [6], many NLP tasks have
seen a big boost in the performance. Trained on a large amount of
text data collected from the Internet, BERT is capable of extracting
information from the input text that older language models could
not. The main advantage of the transformer-based models is the
use of a multi-head self-attention mechanism coupled with deep
multi-layer architecture. Input words are first tokenized using a
model-specific tokenizer. It contains several special tokens, such
as [CLS] and [SEP] which are used at the beginning of each input
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Figure 4: Sentence embedding
using BERT’s [CLS] token

Figure 5: Sentence em-
bedding using Sentence
Transformer model

word sequence and between sentences if there is more than one.
Because of the self-attention mechanism, the output corresponding
to the [CLS] token holds information about all the input words and,
thus can be used as a representation of the whole sentence. This is
shown in Fig. 4 and is the first method we use for direct sentence
embedding.

Recently, an improved version of BERT, specially designed for
sentence embedding called Sentence Transformer [13] was intro-
duced. The model structure is similar to BERT, but the training
scheme is different. Two BERT models are coupled in a Siamese
network and trained using two separate sentences with known
relations: contradiction, entailment, and neutral. This improves the
model performance in both classification and regression tasks. We
use the Sentence Transformer in a way shown in Fig. 5.

Although BERT is trained on a large amount of training data,
for some specific tasks such as emotion recognition, it is often
beneficial to fine-tune it on in-domain data, i.e. data especially
collected for that task. It is possible to use the dataset we utilized in
this study for fine-tuning BERT, but that would make specific for
this dataset and the performance could be biased. A better approach
is to use different in-domain datasets for fine-tuning and evaluation.
In our system, we used the BERT model fine-tuned on the emotion
classification task with data from several other publicly available
databases. The sentence embedding procedure, in this case, is the
same as in Fig. 4 and we refer to this model as "fine-tuned BERT".

3 EXPERIMENTS
3.1 Dataset
In this study, we use the EmoBank dataset [3], a corpus of 10k multi-
genre English sentences manually annotated with dimensional
sentiment metadata in the Valence-Arousal-Dominance (VAD) rep-
resentation format. It has a bi-perspectival design, i.e. labels are
provided for both the writer’s and reader’s emotions. Each sen-
tence’s sentiment data consists of integer scores in the range from
1 to 5 for each VAD dimension.

In our experiments, we used only the Valence-Arousal (VA) labels
of the reader’s perspective. The dataset is divided into a training
set of 8062 sentences, a development set of 1000 sentences, and a
test set of 1000 sentences.

Table 1: Evaluation results for Valence prediction scores us-
ing word embeddings and Feed-Forward DNN back-end.

Sentence Aggregation method
Embedding Linear LSTM
Method R2 MAE R2 MAE
Emb. Matrix 0.0116 0.2458 0.0671 0.2429
Word2Vec 0.0015 0.2459 0.0052 0.2466

3.2 Evaluation metrics
For regression tasks, there exist several evaluation metrics, such
as the coefficient of determination (𝑅2), root mean squared error
(RMSE) or mean absolute error (MAE). Each metric estimated the
prediction performance from a different point of view and is often
used in conjunction with others. The 𝑅2, for example, is a measure
of goodness of fit. It is the proportion of variance in the dependent
variable that is explained by the model and is defined as

𝑅2 = 1 −
∑𝑛
𝑖=1 (𝑦𝑖 − 𝑦𝑖 )2∑𝑛
𝑖=1 (𝑦𝑖 − 𝑦𝑖 )2

(1)

where𝑦𝑖 and𝑦𝑖 are the true and and predicted output values, and𝑦𝑖
is the mean of the true output values. The better regression output
fits the true data, the closer is 𝑅2 to 1.

The RMSE and MAE metrics measure the closeness of the pre-
dicted outputs to their corresponding true values. They are calcu-
lated by

𝑅𝑀𝑆𝐸 =

√√
1
𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖 )2 (2)

𝑀𝐴𝐸 =
1
𝑛

𝑛∑︁
𝑖=1

|𝑦𝑖 − 𝑦𝑖 | (3)

In our experiments, we use the 𝑅2 and MAE as system evaluation
metrics.

3.3 Results
First, we experimented with word embedding-based methods. As
described in Section 2.1, we use Embedding Matrix and Word2Vec
methods for obtaining word embedding vectors. After some pre-
liminary experiments, we set the embedding vectors’ dimension to
256. All the word vectors are then aggregated into a single sentence
vector using either a Linear or recurrent (LSTM) network layer.
The size of the sentence vectors is kept the same - 256. As for the
back-end, in this case, only Feed-Forward DNN is feasible, since
the whole system has to be trained end-to-end with the Back Prop-
agation algorithm. The other back-end model, SVR, uses a different
training algorithm and cannot be coupled with this front-end. Using
the validation dataset we tuned the DNN back-end model hyper-
parameters such as the number of layers, layer size, activation
function, learning rate, batch size, etc. The final model architecture
is as follows: 3 layers with sizes 128, 32, and 1, ReLU activation and
learning rate of 0.0005 batch size of 16. In Table 1 and Table 2, we
provide the results in terms of 𝑅2 and MAE for Valence and Arousal
scores respectively.
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Table 2: Evaluation results for Arousal prediction scores us-
ing word embeddings and Feed-Forward DNN back-end.

Sentence Aggregation method
Embedding Linear LSTM
Method R2 MAE R2 MAE
Emb. Matrix 0.1108 0.1904 0.0082 0.1887
Word2Vec 0.0013 0.1898 0.0036 0.1909

Table 3: Evaluation results for Valence prediction scores us-
ing sentence embeddings and both the Feed-Forward DNN
and SVR back-ends.

Sentence Back-end
Embedding DNN SVR
Method R2 MAE R2 MAE
BERT 0.3359 0.2092 0.2791 0.2726
Sent.Transformer 0.4806 0.1932 0.4721 0.2671
Fine tuned BERT 0.0370 0.2683 0.5413 0.2660

As can be seen from these tables, both the Embedding Matrix and
Word2Vec methods have very similar performance with either the
Linear or LSTM-based word vector aggregation approaches. The
low values of 𝑅2 coefficient suggest almost no correlation. However,
the more important metric for this task is the MAE which is about
0.24 and 0.19 for the Valence and Arousal respectively.

Next, we evaluated the direct sentence embedding methods de-
scribed in Section 2.2. In all the cases we used pre-trained language
models freely available on the Internet. There are several versions
of the BERT model to choose from, so we selected the DistilBERT
version which is s a small, fast, cheap, and light model trained by dis-
tilling BERT base. It has 40% fewer parameters and runs 60% faster
while preserving over 95% of BERT’s performance. The Sentence
Transformer model we utilized was the default multilingual model
from the "SentenceTransformers" package [12]. The last model we
tried is a DistilBERT fine-tuned on the "GoEmotions" dataset. It is
a corpus of 58k carefully curated comments extracted from Reddit,
with human annotations to 27 emotion categories or Neutral. Al-
though this dataset is designed for the emotion classification task,
we expect that the fine-tuning will be beneficial for the regression
task as well.

The output vectors of all BERT-based models have a size of 768,
which in our case is the sentence embedding vector dimension.
Thus, the structure of the DNN back-end regression model is 768-
256-64-32-16-1 in terms of layer sizes. For the SVR back-end, we
found that the rbf kernel is better and the best value of 𝐶 is 1. We
summarise the results we obtained with direct sentence embedding
models in Table 3 and Table 4 for the Valence and Arousal scores
respectively.

In terms of MAE, there is no clear winner among the different
methods, but compared with the word level embedding approaches,
direct sentence embedding is better, especially for the Valence pre-
diction scores. Both the DNN and SVR back-ends achieve compa-
rable results for Arousal scores, but the DNN is better for Valence.
As for the 𝑅2 metric, there is some variability in the performance
of the BERT-based methods, however, their goodness of fit, i.e. the

Table 4: Evaluation results for Arousal prediction scores us-
ing sentence embeddings and both the Feed-Forward DNN
and SVR back-ends.

Sentence Back-end
Embedding DNN SVR
Method R2 MAE R2 MAE
BERT 0.0903 0.1748 0.0542 0.1867
Sent.Transformer 0.2017 0.1814 0.1138 0.1808
Fine tuned BERT 0.0858 0.1854 0.2163 0.1731

𝑅2 values are much higher than those from the word embedding
approaches.

4 CONCLUSION
In this study, we investigated the performance of several word and
sentence level text embedding methods for the task of predicting
emotion Valence and Arousal scores. To assure a fair comparison,
we used the same regression models as back-ends such as Feed-
Forward DNN and SVR.

At the word-level, we applied Embedding Matrix and Word2Vec
models and used Linear or LSTM layers to aggregate word vectors
into a single sentence embedding vector. On the other hand, lan-
guagemodels based on the BERT architecture can produce sentence-
level embedding directly. Our experiments involved three different
BERT versions: DistilBERT, SentenceTransformer, and DistilBERT
fine-tuned on the GoEmotion dataset.

We compared the performance of all sentence embedding meth-
ods in terms of 𝑅2 and MAE metrics using the EmoBank database.
The results show that on average, the BERT-based approaches per-
form better than word-level embeddings, which is expected because
the languagemodels are trained on amuch larger amount of data de-
spite being from different domains. Fine-tuning on in-domain data
seems to be helpful, but not significantly. To confirm the obtained
results, we plan to experiment with other emotional databases as
well.
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