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ABSTRACT 

 
In this paper, we propose a novel language model for 
Russian large vocabulary speech recognition based on 
sequence memoizer modeling technique. Sequence 
memoizer is a long span text dependency model and was 
initially proposed for character language modeling. Here, 
we use it to build word level language model (LM) in ASR. 
We compare its performance with recurrent neural network 
(RNN) LM, which also models long span word 
dependencies. A number of experiments were carried out 
using various amounts of train data and different text data 
arrangements. According to our experimental results, the 
sequence memoizer LM outperforms recurrent neural 
network and standard 3-gram LMs in terms of perplexity, 
while RNN LM achieves better word error rate. The lowest 
word error rate is achieved by combining all three language 
models together using linear interpolation. 
 

Index Terms  sequence memoizer, advanced 
language modeling, inflective languages 
 

1. INTRODUCTION 
 
Although the underlying speech technology is mostly 
language-independent, differences between languages with 
respect to their structure and grammar have substantial 
effect on the automatic speech recognition (ASR) systems 
performance. Research in the ASR area has been 
traditionally focused on several main languages, such as 
English, French, Spanish, Chinese or Japanese, and some 
other languages, especially eastern European languages, 
have received much less attention.  

The Russian language belongs to the Slavic branch of 
the Indo-European group of languages, which are 
characterized by complex mechanism of word-formation 
and flexible word order. Word relations within a sentence 
are marked by inflections and grammatical categories such 
as gender, number, person, case, etc. [1]. Sentence structure 
is not restricted by hard grammatical rules as in the English, 
German or Arabic languages. These two factors greatly 
reduce the predictive power of the conventional n-gram 
language models (LMs). 

Nevertheless, in current Russian large vocabulary 
continuous speech recognition (LVCSR) systems 

conventional n-grams are usually used [2-6]. An improved 
bi-gram model was proposed in [7] where the counts of 
some existing n-grams are increased after syntactic analysis 
of the training data. Long-distance dependencies between 
words are identified and added as new bi-gram counts for 
building 2-gram and 3-gram LMs. This allowed to reduce 
the word error rate of a speech recognition system with 
dictionary of 204K words from 27.5% to 26.9%.  

In conventional n-gram language models, prediction of 
the next word is usually conditioned just on a few preceding 
words, which is clearly insufficient to capture semantics. 
Recently, recurrent neural network (RNN) LM was 
proposed for better predicting sequential data using longer 
context dependency [8].   

RNN LM allows effective processing of arbitrary length 
word sequences, which overcomes the main n-gram 
drawback - dependency on only few consecutive words. In 
[9], performance of this model was compared with many 
other state-of-the-art language models such as structured 
LM, random forest LM and several types of neural network 
LMs for the English language. It significantly outperforms 
all of them both in terms of perplexity and WER. In [10], 
RNN LM was implemented in Russian LVCSR system. 
Using 40M words training corpus, standalone RNN LM 
showed better performance than factored language model 
and baseline 3-gram LM. The best relative WER reduction 
of 7.4% was achieved using interpolation of all 3 models. 

 The Sequence memoizer (SM), proposed in [11], is a 
hierarchical Bayesian model that is able to capture long 
range dependences and power-law characteristics. The next 
word in this model is conditionally dependent on all 
previous words in a given sequence. Here, models are built 

 (space) as word 
-end symbol. Performance 

of the SM language model was evaluated by perplexity 
using APNews dataset, which consists of 14M words and 
has vocabulary size of about 18K words. It showed 
improvement over standard 4-gram, hierarchical Pitman-Yor 
4-gram and conventional neural network LMs. To our 
knowledge,  language model in a 
speech recognition task. 

This paper describes our implementation of the 
sequence memoizer for Russian LVCSR with vocabulary of 
100K words. We investigated the influence of different 
training corpora sizes and text data arrangement on the 
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language model performance. It is compared with the RNN 
LM, which also allows to model unbounded-depth 
sequences. Both language modeling techniques are 
implemented using n-best re-scoring. While SM LM 
achieved the lowest perplexity, best, in terms of WER, was 
the interpolation of the conventional 3-gram LM with both 
the SM and RNN LMs. 
 

 2. SEQUENCE MEMOIZER 
 
Formulation of the sequence memoizer is based on an 
unbounded-depth hierarchical Pitman-Yor process. 
Hierarchical Bayesian language models have succeeded to 
achieve a comparable performance to the state-of-the-art n-
gram LMs smoothed with modified Kneser-Ney (MKN) 
smoothing. A hierarchical Pitman-Yor Process (HPYP) LM, 
initially introduced in [12], is a type of Bayesian language 
model based on the Pitman-Yor (PY) process that has been 
shown to improve the perplexity over the MKN smoothed n-
gram LM.  

In the HPYP LM, given context u consisting of a 
sequence of n previous words, let Gu(w) be a distribution 
over word w having Pitman-Yor process as a prior: 

                    (1) 
where du  is a discount parameter, u is a strength 
parameter, u) is a context of u consisting of (n-1) previous 
words. Since base distribution G u) is unknown either, its 
prior is recursively placed over it in (1) with parameters 
(d u); (u);G u))). This recursion is repeated until we get 

, that is a distribution of the current word given an empty 
context . The prior for this distribution is given following 
form 
                                              (2) 
where the base distribution G0 is assumed to be uniform 
over the vocabulary. 

 Sequence memoizer is essentially an implementation 
of such unbounded-depth HPYP LM, where  [13]. In 
this case, strength parameter u is equal to 0. Then, 
predictive distribution of a word given its previous context u 
takes form 

 

where cu(w) is a count of draws with the context being u of 
word w; cu is a count of context being u; tu(w) is a count of 
draws with the context of word w being u and recursion, 
using u) shorter suffix of the context, G u) was applied; tu 
is a count of draws with the context being u and recursion 
G u) was applied. If context u  the context 
tree, then the longest suffix of u is used, u) or ( u)) and 
so on.  

When building model over very long sequences, large 
number of recursion of form (1) might be required, which 

rises the computational cost a lot. To reduce the size of the 
model all non-branching, non-leaf nodes are integrated out 
leaving a finite number of nodes in a compact context tree. 

Figure 1 shows the graphical model instantiated by the 
sequence of integers 01212. Note that in this SM compact 
context tree, nodes that are not branching nodes and are not 
associated with observed data are already integrated out. For 
instance, in our example  path in non-compact 
tree will take form . In this case, parameters 
in form (1) are changed to . 

Inference in the SM model is performed by recursive 
application of the Chinese restaurant process in the same 
way as for the HPYP LM. In [14], a detailed inference 
scheme of the model discount parameter du and word 
arrangement variables cu(w), cu, tu(w), tu. is described. 

To calculate perplexity for this model, predictive 
distribution of the form (3) is used as probability of a word 
given context P(w|u). 

 
3. EXPERIMENTS 

 
 3.1. Databases and feature extraction 
 Our text corpus contains 41M words with vocabulary size 
of about 100K words. This corpus was assembled from 
recent news articles published by freely available Internet 
sites of several on-line Russian newspapers for the years 
2006-2011. We split our corpus into 40M words train set 
and a test set consisting of 1M words. For experiments with 
different corpus sizes, we separated 10M, 20M and 30M 
words from the full train set and used them as smaller train 
sets. 

Figure 1 Sequence memoizer compact context tree 
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 In our ASR experiments, we used the SPIIRAS [16] 
and GlobalPhone [3] Russian speech databases. Speech data 
are collected in clean acoustic conditions. In total, there are 
28671 utterances pronounced by 165 speakers (86 male and 
79 female) with duration of about 38 hours. Speech test data 
consist of 10% of the GlobalPhone recordings pronounced 
by 5 male and 5 female speakers not used for acoustic 
model (AM) training. 

The speech signal was coded with energy and 12 
MFCCs and their first and second order derivatives. The 
AM consists of 5342 tied states with 16 mixture GMMs as 
output models. Our speech decoder (Julius ver. 4.2 [17]) 
produces 500-best hypothesis list, which we use for re-
scoring by the SM and RNN LMs. 

The SM LMs were built using the java version of the 
Sequence memoizer toolkit [18] and the RNN LMs were 
implemented using the RNNLM toolkit (v.0.3b) [15]. 
 
3.2. Experimental results 
When modeling long span word dependencies across 
sentence boundaries, sequence modeling would strongly 
depend on the sentence order in the training data. In many 
cases text corpus consists of unconnected by meaning 
sentences, because after data pre-processing some sentences 
are eliminated. Thus, we can assume that our initial data are 
shuffled. To find out how performance of the model 
depends on train data order, we built models using shuffled 
and sorted data. Here, we used random shuffling and sorting 
by sentence length in increasing and decreasing order. 

Our sequence memoizer model is built using word as 
atomic unit, unlike previous attempts built using symbols. In 
this case, vocabulary size of the model increases 
significantly from 128 to 100K. Because of the high 

sampling iterations as probably be necessary for more 
efficient parameter estimation. Changing sampling number 
up to the model 
performance, while the computation time increased a lot. 
Thus, we used one sampling iteration for building our SM 
models.  

For RNN LM evaluation we used optimal parameters 
identified in [10], 150 hidden nodes and 1000 classes. We 
used train data sorted in increasing order of sentence length 

in all experiments with RNN, since the performance did
vary significantly depending on train data order. 
 
3.2.1. Test sequence length experiment  
In this experiment, we used small train set of 10M words. 
From the rest of text data, we selected test sets of 1M words 
each so that average sentence length in these sets is 
different. In total, all test sets contain 2.8M words.  

Our baseline 3-gram was trained using 10M word train 
set as it is. RNN LM was trained using same set sorted in 
increasing order of sentence length (RNN-fs).  In order to 
investigate effect of sentence order on the SM LM 
performance, we randomly shuffled the training set 6 times 
(SM-1  SM-6), as well as sorted it in increasing order (SM-
fs) and decreasing order (SM-bs). Perplexity, obtained using 
all test sets is summarized in Table 1. Performance of SM 
varies in very wide range depending on train data order. 
Shuffled models SM-1, SM-5 and sorted in decreasing order 
model SM-bs outperform both 3-gram and RNN LMs over 
all test sets.  For all models, perplexity improves as the 
average sentence length increases.   
 
3.2.2. Performance with increasing size of the train corpus 
In [19] it was reported, that with lots of training data, 
improvements provided by many advanced modeling 
techniques almost disappear.  

To investigate influence of increasing amount of train 
data, we used 4 train sets of 10, 20, 30 and 40 millions of 
words and test set as described in Section 3.1.  We chose 
both models built using sorted data and two SM LMs built 
using shuffled data, which showed better performance in the 
previous experiment;   SM-1 and SM-5. In the same manner, 
we built SM LMs using 20M and 30M train sets. Full size 
models were trained using sorted 40M train data. RNN LMs 

Table 1. Perplexities obtained using test sets with various average sentence length and train set of 10M words  
Average 
length 

Model name 
SM-1 SM-2 SM-3 SM-4 SM-5 SM-6 SM-fs SM-bs RNN-fs 3-gram 

9 495 3273 1307 5073 710 857 779 572 1237 733 
13 420 2208 880 3306 540 642 640 484 938 571 
17 409 1944 793 2883 492 583 617 472 794 518 
21 398 1755 730 2584 458 540 595 458 717 483 
           

all 414 2134 855 3191 526 625 644 479 902 550 

Table 2. Perplexities of models built using various sizes of train 
sets 
Train 
set 
size 

SM-1 SM-5 SM-
fs 

SM-
bs 

RNN-
fs 

3-
gram 

Relative 
improve-
ment, % 

10M 407 480 611 468 780 504 19 
20M 236 267 328 170 422 327 48 
30M 155 160 243 115 323 282 59 
40M - - 205 117 320 257 54 
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were built using each train set separately with same 
parameters identified in Section 3.2.  

 Perplexities obtained using various model sizes are 
summarized in Table 2. In the last column, relative 
improvement in perplexity obtained by SM LM with the 
lowest perplexity over baseline 3-gram is presented. We can 
observe that relative improvement does
increasing size of train data; it keeps on the same level for 
20M, 30M and 40M words train sets. The lowest 
perplexities were obtained by SM-bs model, built with data 
sorted in decreasing order of sentence length, using train 
sets of 20M, 30M and 40M words. 

  
3.2.3. Speech recognition evaluation of interpolated models 
Next, we evaluated speech recognition performance using 
models trained with 40M data set, based on perplexity 
evaluation results in the previous experiment. In Table 3, 
speech recognition performance is presented for SM, RNN 
and 3-gram LMs as well as for their linear interpolations. 
Although SM outperform both 3-gram and RNN in terms of 

perplexity, its standalone speech recognition performance is 
worse than RNN and 3-gram ones. Nevertheless, WER 
relative improvement of 5.3% was achieved using linear 
interpolation of all 3 models. 

 
3.2.4. Random sentence generation from the SM, RNN and 
3-gram LMs 
For testing model ability to generate valid sentences, we 
used SM-bs, RNN-fs and 3-gram models trained using 40M 
train set. Table 4 demonstrates example data generated from 
each LM with their approximate translation, because 
possible to make unambiguous translation of grammatically 
incorrect, meaningless sentences. It is easy to see that 
examples generated by SM LM are grammatically correct 
with appropriate choice of words. Note that RNN LM 
generated very long sentences, failing in splitting word 
sequences into sentences of appropriate length. 
  
3.2.5. Training time comparison for SM and RNN LMs. 
Finally, we compared SM and RNN LMs in terms of 
training time using different size of text data sets. Here, we 
used train data sorted in descending order to train SM. 
Figure 2 shows that SM training time increases almost 
linearly, which is optimistic result for further experiments 
with more data. 

 
Figure 2. Training time of SM and RNN LMs built using 
various train sets 

4. CONCLUSION 
 

As far as we know, this is the first attempt to apply 
sequence memoizer language model for speech recognition 
task. Similar to [11], we observed reduction in perplexity 
using sequence memoizer language model. Nevertheless, it 

LM. Experiments with interpolation with other models show 
negligible improvement, when SM scores are also included. 
Also, our experiment with data generation shows that SM is 
able to capture dependencies within sentence and produce 
grammatically correct and meaningful sentences. More 
work needs to be done to determine whether the SM model 
can be successfully applied to the ASR task. 

Table 3 WERs of standalone and interpolated models 
built using 40M train set 
Model SM-fs SM-bs RNN-fs 3-gram 
SM/RNN/3-gram 38.8 38.7 33.9 34.5 
SM + RNN 33.7 33.7 - - 
SM/RNN + 3-gram 34.5 34.4 32.7 - 
SM + RNN + 3-gram 32.7 32.6 - - 

Table 4. Examples of data generated by models trained 
on 40M train set.  
Model Generated data 

SM 

 (Team of thirty firemen is trying to 
extinguish fire.) 

(One hundred 
eighty thousand rubles were assigned to conduct 
the campaign this year.) 

RNN 

 

 (Do not repeat 
that in Geneva could not keep the past and intends 
to finally his work essay  motorcycles which he 
can happen now ) 

3-gram 

 (Support 
region Russian threat of a new level of 
complexity it goes together.) 

(However others fired joint his 
predecessor we have economic sanctions.) 
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