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Abstract

Speech is the most natural way of human communication and in order to achieve convenient and efficient human–computer interac-
tion implementation of state-of-the-art spoken language technology is necessary. Research in this area has been traditionally focused on
several main languages, such as English, French, Spanish, Chinese or Japanese, but some other languages, particularly Eastern European
languages, have received much less attention. However, recently, research activities on speech technologies for Czech, Polish, Serbo-Cro-
atian, Russian languages have been steadily increasing.

In this paper, we describe our efforts to build an automatic speech recognition (ASR) system for the Russian language with a large
vocabulary. Russian is a synthetic and highly inflected language with lots of roots and affixes. This greatly reduces the performance of the
ASR systems designed using traditional approaches. In our work, we have taken special attention to the specifics of the Russian language
when developing the acoustic, lexical and language models. A special software tool for pronunciation lexicon creation was developed.
For the acoustic model, we investigated a combination of knowledge-based and statistical approaches to create several different phoneme
sets, the best of which was determined experimentally. For the language model (LM), we introduced a new method that combines syn-
tactical and statistical analysis of the training text data in order to build better n-gram models.

Evaluation experiments were performed using two different Russian speech databases and an internally collected text corpus. Among
the several phoneme sets we created, the one which achieved the fewest word level recognition errors was the set with 47 phonemes and
thus we used it in the following language modeling evaluations. Experiments with 204 thousand words vocabulary ASR were performed
to compare the standard statistical n-gram LMs and the language models created using our syntactico-statistical method. The results
demonstrated that the proposed language modeling approach is capable of reducing the word recognition errors.
� 2013 Elsevier B.V. All rights reserved.
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1. Introduction

First automatic speech recognition systems built in early
1950s were capable of recognizing just vowels and conso-
nants. Later their capabilities advanced to syllables and
isolated words. Nowadays, ASR systems are able to recog-
nize continuous, speaker-independent spontaneous speech.
Nevertheless, there are still a lot of possibilities to increase
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their accuracy, speed, robustness, vocabulary and useful-
ness for the end-user. Research in the ASR field have been
traditionally focused on several main languages, such as
English, French, Spanish, Chinese, and Japanese, while
many other languages, particularly African, South Asian,
and Eastern European, received much less attention. One
of the reasons is probably the lack of resources in terms
of appropriate speech and text corpora. Recently, research
activities for such under-resourced European languages,
including inflective Slavic languages like Czech, Polish,
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Serbo-Croatian, Russian, and Ukrainian have been stea-
dily increasing (Karpov et al., 2012).

Russian, Belarusian and Ukrainian are the East Slavic
languages of the Balto-Slavic subgroup of the Indo-Euro-
pean family of languages. There are certain common fea-
tures for all East Slavic languages, such as stress and
word-formation. Stress is moveable and can occur on any
syllable, there are no strict rules to identify stressed syllable
in a word-form (people keep it in mind and use analogies;
proper stressing is a big problem for learners of the East
Slavic languages). These languages are synthetic and highly
inflected with lots of roots and affixes including prefixes,
interfixes, suffixes, postfixes and endings; moreover, these
sets of affixes are overlapping, in particular one-letter
grammatical morphemes set (‘a’, ‘o’, ‘y’). Nouns and pro-
nouns are identified with certain gender classes (masculine,
feminine, common, neuter), which are distinguished by dif-
ferent inflections and trigger in syntactically associated
words. Nouns, pronouns, their modifiers, and verbs have
different forms for each number class and must be inflected
to match the number of the nouns/pronouns to which they
refer. Another grammatical category that is characteristic
for these languages is case: Russian and Belorussian have
6 cases and Ukrainian has 7 (Ukrainian is the only modern
East Slavic language, which preserves the vocative case).
Conjugation of verbs is affected by person, number, gen-
der, tense, aspect, mood, and voice. One of the Slavic lan-
guage features is a high redundancy, e.g. the same gender
and number information can be repeated several times in
one sentence. Russian is characterized by a high degree
of grammatical freedom (but not completely free grammar;
random permutation of words in sentences is not allow-
able); however, the inflectional system takes care of keep-
ing the syntax clear; semantic and pragmatic information
is crucial for determining word order.

Russian is not the only language on the territory of the
Russian Federation. There are up to 150 other languages
(e.g., Tatar, Bashkir, Chechen, Chuvash, Avar, Kabardian,
Dargin, Yakut, etc.) spoken by different peoples (Potap-
ova, 2011). In addition, the Russian language has many
dialects and accents because of the multi-national culture
of the country. There exist essential phonetic and lexical
differences in Russian spoken by Caucasian or Ukrainian
people caused by the influence of their national languages.
Major inner dialects of the standard Russian are North,
Central and South Russian in the European part. The
North Russian dialect is characterized, for example, by
clear pronunciation of unstressed syllables with vowel /o/
(without typical reduction to / a/), the so-called “okanye”,
some words from the Old Russian are used as well. On the
contrary, the South Russian dialect has more distinctions
including so called “akanye” (no difference between
unstressed vowels /o/ and /a/) and “yakanye” (unstressed
/o/, /e/, /a/ after soft consonants are pronounced as /�/
instead of /i/ as usually) (Smirnova, 2011), voiced velar
fricative /c/ is used instead of the standard /g/ (like in
Belarusian and Ukrainian), semivowel is often used
in the place of /v/ or final /l/, etc. The Central Russian
(including the Moscow region) is a mixture of the North
and South dialects. It is usually considered that the stan-
dard Russian originates from this group.

In order to create a large recognition vocabulary, a rule-
based automatic phonetic transcriber is usually used.
Transformation rules for orthographic to phonemic text
representation are not so complicated for the Russian lan-
guage. The main problem, however, is to find the position
of the stress (accent) in the word-forms. There exist no
common rules to determine the stress positions; moreover,
compound words may have several stressed vowels.

The International Phonetic Alphabet (IPA) is often used
as practical standard phoneme set for many languages. For
Russian it includes 55 phonemes: 38 consonants and 17
vowels. In comparison, the IPA set for American English
includes 49 phonemes: 24 consonants and 25 vowels and
diphthongs. The large number of consonants in Russian
is caused by the specific palatalization. All but 8 of the con-
sonants occur in two varieties: plain and palatalized, e.g.
hard /b/ and soft /b’/, as in ‘co,op’ (cathedral) and ‘,o,ëp’
(beaver). This is caused by the letter following the conso-
nant and appears as secondary articulation by which the
body of the tongue is raised toward the hard palate and
the alveolar ridge during the articulation of the consonant.
Such pairs make the speech recognition task more difficult,
because they increase consonant confusability in addition
to the fact that they are less stable than vowels and have
smaller duration. Russian IPA vowel set includes also pho-
neme variants with reduced duration and articulation.
There are 6 base vowels in Russian phonology (in the
SAMPA phonetic alphabet), which are often used as
stressed and unstressed pair, for example /a!/ and /a/. All
unstressed syllables are subject to vowel reduction in dura-
tion and all but /u/ to articulatory vowel reduction tending
to be centralized and becoming schwa-like (Padgett and
Tabain, 2005). Thus, unstressed /e/ may become more cen-
tral and closer to unstressed /i/, and unstressed vowel /o/ is
always pronounced as /a/ except in the case of a few for-
eign words such as ‘palbo’ (radio) or ‘rarao’ (cacao).

Although, the underlying speech technology is mostly
language-independent, differences between languages with
respect to their structure and grammar have substantial
effect on the recognition system’s performance. The ASR
for all East Slavic languages is quite difficult because they
are synthetic inflective languages with a complex mecha-
nism of word-formation, which is characterized by a com-
bination of a lexical morpheme (or several lexical
morphemes) and one or several grammatical morphemes
in one word-form. For large vocabulary continuous speech
recognition (LVCSR) of Russian it is necessary to use a
lexicon several times larger than for English or French
ASR because of the existence of many types of prefixes,
suffixes and endings, that in turn decreases both the accu-
racy and speed of recognition. Baseline grammatical dictio-
nary of Russian (Zaliznjak, 2003) contains more than 150
thousand lemmas. Applying word formation rules to this
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dictionary leads to a lexicon of over 2 million correct word-
forms. For instance, a verb can generate up to two hundred
word-forms, which have to be taken into account in the
ASR process. Besides, most word-forms of the same lexeme
differ only in endings, which when pronounced spontane-
ously are not as clear as the beginning parts of the words.
This often results in misrecognition and reduces the ASR
system performance.

Because of the complicated word-formation mechanism
and multiple inflection rules, in practice, the size of the
vocabulary increases a lot, which results in large number
of out-of-vocabulary (OOV) words. In terms of OOV rates,
Russian is comparable to some other morphologically rich
European languages, such as Finnish, Hungarian, Lithua-
nian or Turkish (Ircing et al., 2006; Kurimo et al., 2006;
Vaiciunas, 2006). But compared to some analytical lan-
guages like English, the OOV percentage can be up to 10
times higher. As can be seen from Table 1, using the same
size text corpora of about 100 million words, OOV rate for
the Russian 400 K vocabulary LM is still higher than for
the English 65 K one.

Word order in Russian sentences is not restricted by
hard grammatical constructions, like in modern English
or German. While the English sentence has a strict struc-
ture: subject–verb–object, in Russian, words can change
their place without significantly influencing the sentence
meaning. This complicates the creation of statistical LMs
and substantially decreases their predictive power. N-gram
LMs for Russian are by orders of magnitude larger than
English ones. As shown in Table 1, changing the vocabu-
lary size from 100 K to 400 K words increases the English
model perplexity by 5.8% relatively, while the Russian
model perplexity increases by as much as 39.5%. This sug-
gests that more sophisticated pronunciation and language
models are needed to reach the performance level of the
English ASR.

In this paper, we propose several approaches to adapt
the general speech recognition process for the Russian lan-
guage. The pronunciation and acoustic modeling are
improved by including Russian language specifics into the
pronunciation vocabulary and phoneme set creation pro-
cesses. We designed several phoneme sets based on the
analysis of the phoneme confusion matrix in combination
with phonological knowledge. In addition, to some extent,
the flexibility of the word order in Russian is taken into
account by combining syntactic and statistical information
in the LM training. Syntactical analysis of the training
Table 1
Perplexity and OOV rates comparison for Russian and English tr

Vocabulary size (# of words) Russian

Perplexity

65 K 413
100 K 481
200 K 587
400 K 671
data, which takes into account the long-distance grammat-
ical relations between words, is performed and new word
bi-grams are created and pooled together with the regular
bi-grams obtained the usual way.

This paper is organized as follows: Section 2 reviews the
state-of-the-art technologies focused mainly on the Slavic
languages. Section 3 presents our acoustic modeling
approach. In Section 4, the pronunciation modeling is
briefly described. Section 5 explains our language modeling
method and the creation of the syntactico-statistical LM
for the Russian language. Section 6 presents the experimen-
tal setup, obtained results and discussion. Conclusions and
directions for further research are given in Section 7.
2. Related work

2.1. Language modeling using syntactic analysis

One of the most efficient natural LMs is the statistical
word n-gram model aimed to estimate the probability of
any word sequence W = (w1,w2, .... wm) The n-gram is a
sequence of n elements (for example, words), and the n-
gram LM is used for prediction of an element in a sequence
containing n � 1 predecessors (Bellegarda, 2004; Moore,
2001). Stochastic LMs based on purely statistical analysis
of some training text data are efficient for many languages
with rather strict grammatical structure, but for languages,
which have more freedom in the sentence formation (like
Russian and most of the Slavic languages), such models
are less efficient.

One way to account for the long-span word dependen-
cies is to use syntactical text analysis. In recent ASR sys-
tems, it is sometimes embedded into various processing
levels: language modeling, on-line speech decoding, N-best
list re-scoring, post-processing of the ASR output for spo-
ken language understanding tasks, etc.

In (Szarvas and Furui, 2003), a stochastic morpho-syn-
tactical LM for Hungarian ASR is introduced. This model
describes the valid word-forms (morpheme combinations)
of the language. The stochastic morpho-syntactic LM
decreased the morpheme error rate by 17.9% compared
to the baseline tri-gram system. The morpheme error rate
of the best configuration was 14.75% in a 1350 morpheme
dictation task. For Turkish, it was proposed to incorporate
some syntactic information (POS, grammatical features,
head-to-head dependency relations) into discriminative
morph-based LM (Arisoy et al., 2010). It is a feature-based
i-gram LMs (Whittaker, 2000).

English

OOV, % Perplexity OOV, %

7.6 216 1.1
5.3 224 0.65
2.6 232 0.31
1.2 237 0.17
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approach that re-ranks the ASR output with discrimina-
tively trained feature parameters. Sub-lexical units are first
utilized as LM units in the baseline recognizer; then, sub-
lexical features were used to re-rank the sub-lexical hypoth-
eses. In order to obtain those features all the words in the
N-best lists were analyzed with a morphological analyzer.
POS tags were utilized in order to obtain class-based gen-
eralizations that can capture well-formed tendencies.
Head-to-head dependency relations were used since pres-
ence of a word or morpheme may depend on the presence
of another word or morpheme in the same sentence and
this information is represented in the dependency relations.
The usage of morpho-syntactical features resulted in addi-
tional 0.4% word error rate (WER) reduction over the sub-
lexical n-gram features.

Syntactically enhanced latent semantic analysis
(SELSA) has been investigated in Kanejiya et al. (2003).
It integrates both the semantic and syntactic information
(part-of-speech – POS). A model, which characterizes a
word’s behavior across various syntactic and semantic con-
texts, is proposed. This model assumes that a word with
different preceding syntax occurs in different semantic con-
texts. The preliminary results on WSJ corpus showed that
SELSA decreases the bi-gram perplexity by 32%.

Recently, syntactic n-grams (sn-grams) were proposed
(Sidorov et al., 2012). In this work, the neighbors are taken
by following the syntactic relations in syntactic trees, and
not by their position in the text. In the paper, sn-grams
were applied for authorship attribution only, but it is sug-
gested to apply sn-grams for speech recognition and
machine translation tasks as well.

Syntactic parsing for N-best list rescoring is studied in
Kuo et al. (2009). The syntactic features include exposed
head words and their non-terminal labels both before and
after the predicted word. Artificial neural networks are
used for the language modeling. Experiments performed
on Arabic broadcast news and conversational speech show
5.5% WER improvement compared to the baseline system
(WER was 6.2–11.5% depending on the test corpus).

On the other hand, in Roark (2002), N-best list rescor-
ing is performed by an incremental statistical parsing algo-
rithm which uses a Markov assumption. Results presented
in the paper show that a low order Markov assumption
leads to the same accuracy as parsing with no Markov
assumption, but with large efficiency gain in terms of com-
putational complexity.

In (Chelba and Jelinek, 2000), a structured LM based on
syntactic structure analysis capable of extracting meaning-
ful information from the word history is developed. In this
model, syntactical analysis is applied during speech decod-
ing for partial parsing (and tagging) of the recognition out-
put. Syntactical tree is constructed dynamically as the
recognition progresses. The model enables the use of
long-distance dependencies between words and allows pre-
dicting next word based not only on the previous few lexi-
cal tokens, but also on the exposed head words. An
improvement over the standard tri-gram modeling for
English was reported. This model is suitable for analytical
languages with a strict grammatical structure such as Eng-
lish. However, for languages with more free grammar, only
full utterance parsing is reasonable, not just part of the rec-
ognition output, because grammatically connected words
can be located in the sentence quite far from each other.
Syntactical analysis is also applied for post-processing of
the recognition hypotheses in Rastrow et al. (2012), where
a sub-structure sharing, which saves duplicate work in pro-
cessing sets with redundant hypothesis structures, is pro-
posed. The syntactic discriminative LM was trained using
dependency parser and part-of-speech (POS) tagger, which
results in significant decoding speedup and WER reduc-
tion. Also, in Huet et al. (2010), a syntactic analyzer was
used for N-best list rescoring and selection of the best
hypothesis. Morphologic and syntactic post-processing of
the N-best lists in French ASR system is applied according
to grammatical correctness criteria. This method relies on
POS and morphological information; the N-best list is
automatically tagged and each hypothesized word is
referred to its morpho-syntactic class. Then morpho-syn-
tactic scores are computed and combined with acoustic
and language scores. New score including morpho-syntac-
tical one is used to re-order the N-best lists.

A joint decoding approach to speech recognition with
syntactic and semantic tagging is proposed in Deoras
et al. (2012). In this work, two types of discriminative mod-
els sure as the Maximum Entropy model and Conditional
Random Fields are used. In (Bechet and Nasr, 2009), a
syntactic parser for spontaneous speech recognition out-
puts is used for identification of verbal sub-categorization
frames for dialogue systems and spoken language under-
standing tasks. The processing is performed in two steps:
in the first step, generic syntactic resources are used to
parse the output of an ASR system represented as a lattice
of words; the second step is re-ranking of all possible
dependency analyses produced by the parser for each word
in the lattice. In (Oparin et al., 2008), some morphological
features (part-of-speech, word stem, morphological tag,
inflection), which are used during syntactical analysis, were
also applied for construction of a morphological decision
tree for modeling inflectional languages (Czech).

In our work, we use a syntactic text analysis in order to
detect grammatically connected word-pairs in the training
data. The syntactic parser allows us to find long-span
dependent words, which did not appear as regular bi-grams
in the training corpus because of data sparseness. The
inclusion of such new potential bi-grams into an n-gram
LM results in increased n-gram coverage with respect to
the same training data and hence leads to WER reduction.
However, since the structure of the n-gram LM stays the
same a standard speech decoder can be used without any
modifications.

At present, there exist several syntactic analyzers for
Russian: Treeton (Starostin and Mal’kovskiy, 2007), ana-
lyzer of the ETAP-3 machine translator (Iomdin et al.,
2012), dependency parser SyntAutom (Antonova and Mis-
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yurev, 2012), ABBYY syntactic and semantic parser (Ani-
simovich et al., 2012), Dictum (Skatov et al., 2012), syntac-
tic analyzer SMART (Leontyeva and Kagirov, 2008), and
AOT Synan analyzer (Sokirko, 2004). The latter one is
used in this work because it has several advantages: it is
open source and its databases permit modifications; it pro-
vides relatively high speed of text data processing, and uses
constantly updated grammatical database based on the
baseline grammatical dictionary (Zaliznjak, 2003).

2.2. Existing Russian speech recognition systems

Many small vocabulary ASR systems for Russian have
been developed for voice command, incoming phone calls
routing, and other similar applications (Vazhenina et al.,
2012). For instance, one of the first ASR systems was
developed in 1960s by T. Vintsyuk, who is considered as
one of the Russian speech recognition pioneers (Vintsyuk,
1968). He proposed the use of dynamic programming
methods for time alignment of speech utterances.

However, there are only a few systems for large vocab-
ulary tasks. In order to dictate and recognize spoken Rus-
sian (and especially spontaneous speech) one has to utilize
recognition vocabulary of several hundred thousand words
(>100 K word-forms). Until recently such vocabularies
were considered as very large (Whittaker and Woodland,
2001).

Researchers at IBM have developed one of the first Rus-
sian LVCSR systems (Kanevsky et al., 1996). The training
and testing were carried out on the TASS news texts.
Vocabulary size of the system was 36 thousand (36 K)
words. About 30 K phrases pronounced by 40 speakers
were used for acoustic model training as with 47 phoneme
lexicon. A tri-gram LM was trained from texts consisting
of 40 million (40 M) words. The WER was about 5%,
but just for short read sentences. In this work, LM with
word segmentation into stem and ending was also
investigated.

Detailed comparison of LMs for the English and Rus-
sian is presented in Whittaker (2000). It has been shown
that a 430 K vocabulary is needed for Russian to achieve
the same vocabulary coverage as a 65 K English vocabu-
lary. Two types of class-based LMs (two-sided and one-
sided) as well as particle-based LM were considered for
the modeling of both languages. In the two-sided symmet-
ric class model, the same word classification function is
used to map both the current and the predecessor words.
In the one-sided model, mapping to a class is used for
the predecessor words only, and the current word is not
mapped. It was shown that combined word, one-sided class
and particle-based models provide 19% improvement of the
perplexity for Russian.

In (Viktorov et al., 2009), a Russian ASR system for
broadcast news recognition is described. A text corpus con-
sisting of 129 M words for LM training was collected from
the Internet. Three frequency vocabularies were created:
general frequency vocabulary, frequency vocabulary of
proper names, and frequency vocabulary of common
names. A vocabulary of 213 K words was selected to cover
98% of the training text data, but the coverage of the test
data was not reported. Standard statistical n-grams
(n = 1 � 3) were used as LMs. The amount of the speech
data for the acoustic model training exceeded 200 h; 3280
speakers have taken part in the corpus collection. Recogni-
tion accuracy was 60–70% depending on the sound files
quality.

Another large vocabulary Russian speech recognition
system is presented in Oparin and Talanov (2005). In this
work, a model based on separating words into stems and
endings is used. The resulting vocabulary consists of 85 K
stems and 4 K endings that cover 1300 K word-forms;
however, the morpheme-based LM and lexicon did not
bring any reduction of the WER. In (Pylypenko, 2007), a
two-pass algorithm for Extra Large Vocabulary Continu-
ous Speech recognition based on Information Retrieval
(ELVIRCOS) was studied for Ukrainian and Russian. This
algorithm decomposes the recognition process into two
passes, where the first pass builds a word subset for the sec-
ond pass recognition.

Since Russian is a language with an alphabetic script
and close grapheme-to-phoneme relation, another suitable
approach is to use grapheme-based acoustic modeling (Stü-
ker and Schultz, 2004). Graphemes have the advantage
over phonemes that they make the creation of the pronun-
ciation vocabulary easier. However, it complicates the cre-
ation of the acoustic model, because graphemes are
generally less related to pronunciation, than phonemes.
To solve this problem, enhanced tree clustering approach
is used, which allows flexible parameter sharing across
the acoustic units. The system is evaluated using the Glob-
alPhone corpus. For training, 17 h of speech are used and
two sets of 1.6 h and 1.3 h are selected for testing. The sys-
tem achieves WER of 32.8% using trigraphemes with
enhanced tree clustering. In comparison, WER of 33%
was obtained for triphone recognizer and 36.4% for trigra-
pheme recognizer with CART (classification and regression
tree) clustering. It was hypothesized that the rich morphol-
ogy of the Russian language is one major source of errors.
Later, this grapheme-based method was used for multilin-
gual speech recognition system (Stüker, 2008). In this
work, multilingual ASR for 4 languages (English, German,
Spanish and Russian) was implemented. Graphemes that
are common to one language share the same model and
are treated as identical in the other systems. All informa-
tion about which language a grapheme belongs to, is dis-
carded in the system and the data from all languages for
this grapheme are used for training. The WER for Russian
was 41.9% on the GlobalPhone evaluation test data.

Most recently, a large vocabulary continuous speech
recognizer that uses syllable-based LM was described in
Zablotskiy et al. (2012). A method for concatenation of
the recognized syllables and error correction is proposed.
The syllable lexicon has about 12 K entries. The final sen-
tence is constructed from the recognized syllables by the



Table 2
Differences between the English and Russian phonetic decision tree
question sets.

Removed questions New questions

Is left/right vowel long? Is left/right vowel stressed?
Is left/right vowel short? Is left/right vowel unstressed?
Is left/right vowel diphthong?
Is left/right vowel reduced?
Is left/right consonant syllabic? Is left/right consonant soft?
Is left/right consonant continuant? Is left/right consonant hard?

Is left/right consonant trill?
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designed co-evolutionary asymptotic probabilistic genetic
algorithm (CAPGA).

Another recent work (Lamel et al., 2012) studies the
conversational telephone Russian speech transcription
task. For the system training about 8 h of conversational
Russian speech were used, and about 1 h was used for
development. The pronunciation lexicon was created using
grapheme-to-phoneme conversion rules. Texts for the LM
training were taken from the Web, and transcriptions of
broadcast and conversational telephone speech data. The
total size of the training text corpus was 297 M words.
Vocabulary of the system contained up to 500 K words
and the WER was 50–60% (for real conversational speech
data) depending on the used acoustic models and the type
of LM training corpus. Another collaborative work (Lamel
et al., 2011) of the same authors summarizes the experi-
mental results on speech transcription for 9 European lan-
guages (including Russian). Those results were obtained by
ASR systems used for the Quaero 2010 and 2011 evalua-
tions campaigns (test data contained various broadcast
data including news and conversations). The WER of Rus-
sian ASR was 19.2% in 2010 and 18.3% in Quaero 2011
(among 9 European languages only Portuguese ASR sys-
tem had higher WER).

Finally, for automatic voice search in the Internet, Goo-
gle Inc. has developed the on-line Voice Search service
(Schalkwyk et al., 2010), which uses speech recognition
technology. This service allows users to find necessary
information in the Internet pronouncing a word or a
phrase. For the LM creation, written queries to Google
search engine were used. This technology is also applied
to other Google services, for example, Google maps, where
it is possible to do voice request for searching a place on the
map. For short and common sentences it works pretty well,
but it fails for conversational Russian speech.

Any modern ASR system requires at least three types of
models in order to recognize speech: acoustic, pronuncia-
tion and language model. These models for our LVCSR
of spoken Russian are presented in the following sections.

3. Acoustic modeling

The first step, we are faced with in developing any
speech recognition system, is choosing appropriate units
for acoustic modeling. Phoneme set size determines the
number of context-independent models and also influences
the number of context-dependent models and the amount
of data needed for training. If it is too large, the complexity
of the phoneme hypotheses lattice will increase signifi-
cantly, making the decoding process computationally more
expensive. If it is too small, recognition performance may
degrade because of low acoustic space resolution.

3.1. Development of Russian phonetic decision tree

Depending on the task and the availability of training
data, an inventory of sub-word units has to be defined,
which could consist of word particles, syllables, phonemes,
or phonemes in context. The advantage of introducing con-
text for phonemes is its potential to model the effects of co-
articulation between adjacent speech units. For this reason,
in the modern speech recognition systems, context-inde-
pendent (CI) models, also called monophones, are most
often replaced with context-dependent (CD) models (tri-
phones). If two phones have the same identity, but different
left and/or right contexts, they are considered as different
triphones.

Introducing uncontrolled context-dependency causes
training data sparsity, because for each model we need
enough observations of each phone type to train and not
all possible triphones can be seen in the training data.
The complexity of the phoneme hypotheses lattice will
increase significantly, making the decoding process compu-
tationally more expensive. The most common way to
reduce data sparsity is by clustering some of the contexts
and by tying together states whose context falls in the same
cluster.

Contexts are usually clustered using phonetic decision
trees (Young et al., 1994; Young et al., 2009). Questions
used in such trees ask whether the context phoneme to
the left or right has a certain phonetic feature (e.g. whether
the left/right context phoneme is voiced). Using multiple
questions set allows us to increase context dependency
degree. We used English phonetic decision tree (Odell,
1995) as basis for the development of a new Russian pho-
netic decision tree. In addition to the general questions like
place of articulation during pronunciation, specifics of the
Russian phonology were also included in the question set
such as whether the left/right context phoneme is soft (pal-
atalized), or whether the left/right context phoneme is
stressed. Some questions specific to English were removed
from the set. Table 2 summarizes the main differences
between the English and Russian phonetic decision tree
question sets.

3.2. Best phoneme set selection

Phoneme set size determines the number of context-
independent models, and also influences the number of
context-dependent models. There are two main approaches
to determine phoneme set for acoustic modeling: knowl-
edge-based and statistical.



Fig. 1. Flowchart of the phoneme selection method for Russian ASR.
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For the Russian language, knowledge-based phoneme
sets (alphabets) are often used. They are manually designed
by human experts according to some linguistic and phono-
logical rules (Cubberley, 2002). The rules for transforma-
tion from orthographic text to phonemic representation
are not very complicated for Russian. In (Psutka et al.,
2005), 43 phoneme set was used, which consists of the stan-
dard Russian SAMPA phoneme set plus additional conso-
nant /V/ because of the data specificity. On the other hand,
direct spelling conversion produces 49 phoneme set, which
was developed for comparison with grapheme recognizer
introduced in Stüker and Schultz (2004). For Russian
LVCSR, a 59 phoneme set was proposed in Tatarnikova
et al. (2006), but no results were reported. In most cases,
researchers use extended sets of vowels including their
stressed and unstressed variants (Stüker and Schultz,
2004; Tatarnikova et al., 2006; Ronzhin and Karpov, 2004).

For other languages, however, there are studies, where
statistical information is utilized for the phoneme set deri-
vation, such as data-driven sub-word unit sets selection
(Singh et al., 2002) or usage of the mutual information
between the word tokens and their phoneme transcriptions
in the training text (Zhang et al., 2008).

In our work, we combine the two conventional
approaches described above: knowledge-based and statisti-
cal. Information from phonological knowledge and statis-
tics from the phoneme confusion matrix is combined in
our method. Phonological knowledge includes pronuncia-
tion rules and phonological alternation information. This
allows us to determine acoustically close phonemes. Confu-
sion matrix allows us to determine most frequently mis-
matched phonemes. Combining these information
sources, we can make a decision how to select the pho-
nemes in the set. First, we begin with largest phoneme set
available and then gradually reduce its size by deleting or
merging some phonemes.

Phoneme selection workflow, shown on Fig. 1, includes
the following steps:

(1) First, from the IPA set, we select phoneme set P0
applying phonological pronunciation rules.

(2) For further merging, we define phoneme pair candi-
dates according to the language phonology specifics.
Those include both soft/hard consonant and
stressed/unstressed vowel pairs.

(3) Using P0 set, we perform phoneme recognition and
obtain phoneme confusion matrix. For the selected
pairs, we calculate the confusion rate (CR), which is
defined as follows:

CR ¼ M1 þM2

H 1 þM1 þ H 2 þM2

� 100% ð1Þ

where H1 is the number of correctly recognized occurrences
of the first phoneme in the pair, e.g. /a/ recognized as /a/,
H2 is the number of correctly recognized occurrences of the
second phoneme in the pair (e.g., /a!/ recognized as /a!/),
M1 is the number of misrecognized occurrences of the first
phoneme in the pair, e.g. /a/ recognized as /a!/, and M2 the
is number of misrecognized occurrences of the second pho-
neme in the pair, e.g. /a!/ recognized as /a/. The higher con-
fusion rate, the more phonemes are mismatched within the
pair, which makes it a likely candidate for merging.

(4) Phoneme pairs are sorted by decreasing confusion
rates.

(5) Finally, we select top N phoneme pairs and by merg-
ing them obtain a new phoneme set.

Different choices of N produce different phoneme sets.
The best phoneme set can be found by evaluating its speech
recognition performance in terms of recognition accuracy
and speed. The speech recognition results and discussion
on the best phoneme set selection are reported in Section 6.2.
4. Pronunciation modeling

One important challenge in the development of spoken
Russian ASR is the grapheme-to-phoneme conversion (or
orthographic-to-phonemic transcription) of all the words
in the recognition vocabulary. The aim of the grapheme-
to-phoneme conversion is to automatically generate pro-
nunciation lexicon from the vocabulary represented in the
orthographic form. There are some problems at this step:
grapheme-to-phoneme mapping is not one-to-one: stress
position in word-forms is floating, substitution of graph-
eme ‘ë’ (always stressed) by ‘e’ in the most of printed and
electronic text data, phoneme reductions and assimilations
in continuous and spontaneous speech, and a lot of
homographs.

The main common feature of all the East Slavic lan-
guages is the Cyrillic alphabet, which is shared by Russian,
Ukrainian, Belarusian and some other Slavic languages
(Serbian, Bulgarian and Macedonian) as well as some
non-Slavic languages of the former Soviet Union (Kazakh,
Kyrgyz, Tajik, etc.).

In the grapheme-to-phoneme conversion for Russian,
the following positional changes of speech sounds are pos-



1 http://www.aot.ru.
2 http://starling.rinet.ru
3 http://ruscorpora.ru.
4 http://www.narusco.ru.
5 www.ng.ru, www.smi.ru, www.lenta.ru, www.gazeta.ru.
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sible (Shvedova et al., 1980): (1) changes of vowels in pre-
stressed syllables; (2) changes of vowels in post-stressed syl-
lables; (3) positional changes of consonants:

– At the end of a word or before unvoiced fricative
consonant voiced fricatives are devoiced.

– Before voiced fricatives (excluding /v/ and /v’/)
unvoiced fricatives become voiced.

– Before the palatalized dentals /t’/ and /d’/ the pho-
nemes /s/and /z/ become palatalized, as well as
before /s’/ and /z’/, the consonants /s/and /z/ disap-
pear (merged into one phoneme).

– Before the palatalized dentals /t’/, /d’/, /s’/, /z’/ or /
ch/, /sch/ the hard consonant /n/ becomes
palatalized.

– Before /ch/ the consonant /t/ (both for the graph-
emes ‘n’ and ‘l’) disappears.

– Before /sh/ or /zh/ the dental consonants /s/ and /z/
disappear (merged).

– Two identical consonants following each other are
merged into one.

– Some frequent combinations of consonants are chan-
ged: /l n c/! /n c/, /s t n/! /s n/, /z d n/! /z n/, /v
s t v/! /s t v/, /f s t v/! /s t v/, /n t g/! /n g/, /n d
g/! /n g/, /d s t/! /c t/, /t s/! /c/, /h g/! /g/, /s
sch /! /sch/, etc.

The method for automatic grapheme-to-phoneme con-
version operates in two cycles, consisting of the following
steps (Kipyatkova et al., 2012):

(1) Stress positions are identified using the morphologi-
cal database.

(2) Hard consonants before graphemes ‘b’, ‘e’, ‘ë’, ‘⁄’, ‘z’
become palatalized (if possible) and these graphemes
are converted into phonemes /i/, /j e/, /j o!/, /j u/, /j a/
in the case, when they are located at the beginning of
a word or after a vowel, otherwise they are trans-
formed into /i/, /e/, /o!/, /u/, and /a/ correspondingly.

(3) A consonant before grapheme ‘m’ gets palatalization
(getting soft) and this grapheme is deleted (it has no
corresponding phoneme).

(4) Transcription rules for positional changes of conso-
nants (Karpov et al., 2012) are applied.

(5) Transcription rules for positional changes of vowels
in pre-stressed and post-stressed syllables (Karpov
et al., 2012) are applied.

(6) Steps (4)–(6) are repeated once more, because some
changes may lead to other changes in the preceding
phonemes.

(7) Grapheme ‘]’ is deleted (it has no corresponding pho-
neme; it only shows that the preceding consonant is
hard).

For the grapheme-to-phoneme conversion, we apply an
extended morphological database, consisting of more than
2.3 M word-forms with the symbol ‘!’ indicating stressed
vowels. This database is a fusion of two different morpho-
logical databases: AOT1 and Starling.2 The former one is
larger and has more than 2 M entries, but the latter one
contains information about secondary stress for many
compound words, as well as words with grapheme ‘ë’,
which is always stressed, but usually replaced with ‘e’ in
official texts that leads to loosing required information on
the stress position.

5. Language modeling

5.1. Collection and analysis of the training text corpus

At present, there are several large commercial text cor-
pora of Russian, for instance, the Russian National Cor-
pus3 and the Corpus of Standard Written Russian,4 which
mainly contain text material of the end of the 20th century.
These corpora include different types of texts: fiction, polit-
ical essays, scientific, etc. They also contain a few shorthand
reports in spoken language. For the LM creation, we col-
lected and automatically processed a new Russian text cor-
pus of on-line newspapers. This corpus was assembled from
recent news published in freely available Internet sites of
four on-line Russian newspapers for the years 2006–
2011.5 The database contains text data that reflect contem-
porary Russian including some spoken language.

Automatic pre-processing of the collected text data is car-
ried out as follows. At first, texts are divided into sentences.
Then, text written in any brackets is deleted, and sentences
consisting of less than five words are excluded. Further,
punctuation marks are deleted and the symbols “No” and
“#” are replaced by the word ‘yovep’ (number). All numbers
and digits are combined in a single class that is denoted by
the symbol “No” in the resulting text. A group of digits,
which can be divided by point, comma, space or dash sign
is considered as a single number. The symbol “No” also
denotes Roman numbers, which are a combination of the
Latin letters I, V, X, L, C, D, and M, which can be divided
by space or dash. Internet links and E-mails are replaced by
the symbols “hi” and “h@i” respectively. If a word begins
with an uppercase letter, it is changed to lowercase. When
the whole word is written with uppercase letters, such
change is made only if the word exists in the vocabulary.

The size of the corpus after the text normalization and
the deletion of double and short (less than 5 words) sen-
tences is over 110 M words, and it has about 937 K unique
word-forms. The frequency distribution of these word-
forms is shown in Fig. 2. This plot shows that there are a
lot of rare words in the corpus. More than 350 K words
occurred only once in the training corpus; these words
are mainly personal names and some misprints as well.

http://ruscorpora.ru
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Based on this text corpus, stochastic LMs were created
using both statistical and syntactic automatic analyzers.
5.2. Language modeling with syntactic analysis

Our syntactico-statistical language modeling approach
takes advantage of both the statistic and syntactic text
analyses. Fig. 3 illustrates the process of stochastic LM cre-
ation for Russian using some syntactic analysis elements.
The training text corpus is processed in parallel discovering
regular n-grams and syntactic word dependencies in sen-
tences. Then, results of both analyzers are processed to
obtain count files and calculate two stochastic LMs, at
the final step these LMs are linearly interpolated to create
an LM of the required order. So, our method allows build-
ing integral n-gram language model as the result of joint
statistical and syntactical text analysis at the training stage
without the need to do syntactical parsing during decoding.
Such simultaneous statistical and syntactical processing
may discover more bi-grams from the same training data
(that is important in the case of data sparseness for
under-resourced languages and languages with nearly free
word ordering like Russian) and produce an enhanced
LM with improved coverage.

Both analyzers complement each other very well: the
syntactic one is used to find long-distance grammatical
dependencies between words (potential bi-grams unseen
in the training data), but not the relations between the
adjacent words, which are discovered by the statistical ana-
lyzer. For the statistical text analysis we use the SRI Lan-
guage Modeling Toolkit (SRILM) Stolcke et al., 2011,
while the software “VisualSynan” from the AOT project
Fig. 2. Word frequency distribution for the text corpus.
(Sokirko, 2004) is used for the syntactic analysis. The latter
parses the input sentences and produces a graph of syntac-
tical dependencies between the pairs of lexical units.

The main goal of the syntactical analysis is to extract
syntactical groups in a sentence (Nozhov, 2003; Sokirko,
2004). Syntactical groups are defined as the following
sequence: a group type, a pair of syntactically connected
words, and grammemes. Group type is a string constant,
for example: “GPBK_CEO” (adjective-noun), “GU” (prep-
ositional phrase), etc. Group grammemes are the morpho-
logical characteristics of words, which determine behavior
and compatibility of the elements in other groups. There
are 32 different types of syntactic groups in the analyzer
in total, but we extract only 9 of them, which can describe
long-distance (more than one word) relations between pairs
of words. The types of syntactic groups that are selected
during the syntactic analysis are presented in Table 3.

Moreover, words of the syntactic groups (2), (3), (7), (8),
(9), and group (1), but without subordinate attributive
clauses starting with words ‘which’, ‘who’, etc., are commu-
tative in Russian and each such syntactic dependence pro-
duces two bi-grams with direct and inverse word order.
Fig. 4 shows an example of the syntactic analysis of one
Russian phrase (‘In the very expensive show, military and
civilian aircrafts, which arrived yesterday and today in
the airport of our little town, are involved’) from the train-
ing corpus. It demonstrates some types of long-distance
dependences, whereas all the adjacent word pairs are mod-
eled by statistical bi-grams. Commutative groups are
denoted by the dark red double-sided arrows. Thus, syntac-
tic parsing of this sentence produces 13 long-distance word
pairs additionally to the statistic processing, which gives 18
bi-grams. N-gram likelihoods are calculated after merging
the results (the counts) of both analyzers based on their fre-
quency in the training data.

After the normalization of the text corpus, statistical
processing is carried out and a list of bi-grams with their
frequency of occurrence is created. Then, syntactic analysis
of the text corpus is performed and grammatically con-
nected pairs of words (syntactic groups), which were sepa-
rated in the text by other words, are detected. Then the list
of bi-grams obtained by the statistical analysis and the list
of grammatically connected pairs of words, which were
extracted during the syntactical analysis, are merged (bi-
gram counts are added). Finally, this model is linearly
interpolated with the conventional statistical n-gram LM
serving as a baseline model. The optimal interpolation
weight in syntactico-statistical LM was 0.27 for syntacti-
cally derived bi-grams.

During LMs creation we used the Kneser–Ney discount-
ing method, and did not apply any n-gram cutoff. After the
statistical analysis of the collected text corpus we obtained
19.1 M bi-grams. As a result of the syntactical analysis we
added more than 2.7 M new bi-grams. Thus, the total num-
ber of bi-grams in the extended LM is 21.8 M, and conse-
quently the size of the syntactico-statistical LM increased
by 14% compared with the statistical model. The inclusion
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Fig. 3. Flowchart of the syntactico-statistical n-gram LM creation for Russian.

Table 3
Types of extracted syntactic groups.

# Syntactic group An example in Russian An example in English

1 Subject–predicate vs eë ye We did not her
2 Adjective–noun e;euolysq dorakmysq An annual vocal
3 Direct object peibnm 'ny cko;yy⁄ To solve this complicated
4 Adverb–verb byoula naroe Sometimes this
5 Genitive pair nevoq neryoeuo b ckely⁄oeuo A topic of the present and next
6 Comparative adjective–noun voë ckodo cbkmyee k⁄,ouo My word is stronger than any
7 Participle–noun lov, arrypanyo House, carefully
8 Noun–dangling adjective in a postposition wekm, locnanoxyo The aim is rather
9 Verb–infinitive vs [onbv 'no gonov We want it later

Fig. 4. An example of syntactic phrase analysis (long-span syntactic dependencies are shown by arrows).
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of such new bi-grams into the n-gram LMs results in
increased n-gram coverage with respect to the same train-
ing data and consequently, in WER reduction. Also, in
the Russian language, each word-form itself yields unique
grammatical information (POS, gender, tense, etc.) and
there is no necessity to additionally incorporate any syntac-
tic tags into LM.

In order to compare LMs we created, their perplexity
and n-gram hit rates (summarized in Table 4) were calcu-
lated using text data consisting of phrases (33 M words in
total) from another online newspaper ‘Uoynayra.ru’.6 Per-
plexity is given with two different normalizations: counting
all input tokens (PPL) and excluding end-of-sentence tags
(PPL1). In Table 4, we present the n-gram hit rates in the
6 www.fontanka.ru.
form of SRILM output, for 3-gram LMs it shows both
3-gram hit rate and 2-gram hit rate independently. It means
that 3-gram hit rate is calculated at first, and then 2-gram
hit rate is estimated for text data not covered by 3-grams.

We have tried several vocabulary sizes and the best one
in terms of performance/OOV trade-off has 204 K words;
its OOV rate for the given test set is 4.1%. These parame-
ters have quite large values for Russian LMs, which is a
great challenge for the LVCSR.
6. ASR experimental results and discussion

6.1. Russian speech databases

There are several Russian speech corpora collected in quiet
office environment without any background noise: Global-
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Phone (Schultz and Waibel, 1998), STEL (Shirokova, 2007),
CORPRES (Skrelin et al., 2010), SpeechOcean Russian cor-
pora and others. There are also some telephone speech cor-
pora: ISABASE (Arlazarov et al., 2004), RuSpeech
(Kouznetsov et al., 1999), SpeechDat(E), TeCoRus, LDC
RuSTeN Russian speech corpora, etc. Other speech corpora
include various background environments, which represent
typical surroundings such as: home, car, public place, etc.

In our speech recognition experiments, we combined the
speech data from two databases. The first one is the Glob-
alPhone Russian speech corpus, which was developed in
the framework of the multilingual GlobalPhone project
(Schultz and Waibel, 1998). The speech data were collected
in ordinary, but quiet rooms. The data is recorded with
16 kHz sampling rate, 16-bit audio quality. The surround-
ing noise level ranges from quiet to loud. The database con-
tains records of Russian newspaper articles (12,321
meaningful utterances) read by 115 speakers (61 men and
54 women). The number of utterances per speaker varies
from 19 to 228. In total, the recordings’ duration is about
26 h. All utterances with disfluencies and loud noise level
are excluded. The rest of the recordings are split into train-
ing set (15 h 25 min) and test set (1 h 40 min), which con-
tains recordings from 5 male and 5 female speakers.

The second database is the SPIIRAS Russian speech
database, which was developed in the framework of the
EuroNounce project (Jokisch et al., 2009). The speech data
were collected in clean acoustic conditions, with 44.1 kHz
sampling rate, 16-bit audio quality. The signal-to-noise
ratio (SNR) is about 35 dB. For the recognition experi-
ments, all recordings were down-sampled to 16 kHz. The
database consists of 16,350 utterances pronounced by 50
native Russian speakers (25 men and 25 women). Each
speaker pronounced the same set of 327 phonetically bal-
anced and meaningful phrases and texts. The total duration
of the SPIIRAS speech corpus is more than 21 h. Record-
ings from 5 male and 5 female speakers are selected for test-
ing and the rest are used for acoustic model training.
Additionally, 30 min of continuous Russian speech were
recorded from 1 male and 1 female speaker for the task
of Russian LVCSR system evaluation; these data contain
meaningful phrases of 6–20 words each.

6.2. Best phoneme set selection experiments

6.2.1. Experimental setup

We used the HTK toolkit (Young et al., 2009) for our
acoustic models training. The acoustic signal was coded
with energy and 12 MFCCs (Mel Frequency Cepstral Coef-
Table 4
Characteristics of the LMs.

LM type

Statistical bi-gram model
Syntactico-statistical bi-gram model
Statistical tri-gram model
Statistical tri-gram model interpolated with syntactico-statistical bi-gram
ficients), calculated from 26-channel filter bank analysis of
20 ms long frames with 10 ms overlap, and their first and
second order derivatives, which results in a 39-dimension
feature vector. Phone models were represented by 3 state
HMMs with left-to-right topology except the silence
model, which also has transition from the third to the first
state. Probability distribution function in each state was
modeled with 16 component Gaussian mixture. Triphones
were clustered by phonetic decision tree state tying using
the question set described earlier in Section 3.1.

For each phoneme set we created, we built one mono-
phone based phoneme recognition system and three differ-
ent triphone based word recognition systems, which share
the same acoustic model, but have different vocabulary size
and LM. In all cases, the acoustic model was trained using
both the GlobalPhone and SPIIRAS training data.

The first system uses closed form bi-gram LM trained on
all the SPIIRAS speech transcriptions. The vocabulary size
is 1,146 words and the text perplexity is 241. The SPIIRAS
test data are used for this system evaluation. Next system is
similar, but uses the GlobalPhone transcripts for the bi-
gram LM training. The vocabulary consists of about 20
thousand words and the perplexity of the text data is
137. The test set for this system is the GlobalPhone test
set. The third system uses the baseline bi-gram LM with
vocabulary size of 204 K words trained for the LVCSR
experiments. This system was also tested with GlobalPhone
test set, for which the LM has perplexity of 844 and the
OOV rate is 3.41%.

6.2.2. Phoneme sets creation process
Based on the phonological specifics of the IPA pho-

nemes, set P0 (Table 5) was obtained by the following steps
(Vazhenina and Markov, 2011):

� Stressed /a/, /�/ and /A/ were merged because they are
very close acoustically and differ only depending on
place within the word.
� Unstressed / a/ and /E/ were merged because their pro-

nunciations differ just slightly depending on the distance
from the stressed syllable. The same is the reason for
merging /‹/ and /u/.
� /„/ is very similar to the combination of sounds /j/ and /o/

and was split accordingly.
� Consonants /�/ and /V/ were excluded, because they are

used only in some dialects.

In total, it includes 47 phonemes: 6 stressed and 5
unstressed vowels except unstressed /o/, because of its rare
# n-grams, M PPL PPL1 n-gram hit rate, %

19.1 938 1541 79.4
21.8 946 1555 79.8
49.6 (+19.1 bi-grams) 672 1078 38.0 (+41.3 bi-grams)
49.6 (+21.8 bi-grams) 652 1043 38.0 (+41.8 bi-grams)



Fig. 5. Confusion rates for all phoneme pairs sorted in descending order.
P2 and P3 show the N-best threshold for appropriate phoneme sets.
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occurrences, and 36 consonants. As candidates for merg-
ing, the hard and soft consonants pairs were selected,
because of their small differences. In addition, stressed
and unstressed vowel pairs were chosen because their main
difference is in the duration. Vowel reduction is already
embedded in the pronunciation lexicon word forms.

Using the set P0, we built a phoneme recognition system
and performed phoneme recognition experiment. From the
resulting confusion matrix we made a list of all candidate
phoneme pairs sorted by their confusion rates. These pairs,
sorted by confusion rates, are shown in Fig. 5. As can be
seen, the most confusable pairs are the vowel pairs. All
of them are in the top five. Therefore, we first merge all
vowel pairs and obtain phoneme set P1.

Next we look at the consonant pairs and see that the con-
fusion rates of the pairs /n/–/n’/, /z/–/z’/, /s/–/s’/, /r/–/r’/
and /t/–/t’/ are much higher than for the other pairs. In
addition, the difference in confusion rates between /s/–/s’/
and /r/–/r’/ pairs is quite big. Therefore, we make two
new sets P2 by merging pairs /n/–/n’/, /z/–/z’/, /r/–/r’/
and P3 by additionally merging pairs /s/–/s’/ and /t/–/t’/.
Finally, we merged all candidate pairs in P4. Summary of
all the phoneme sets is given in Table 6.

6.2.3. Phoneme set performance evaluation results

In addition to the system based on P0, we trained 4
more systems using phoneme sets P1-P4. Phoneme recogni-
tion rates (accuracy) of these systems using monophone
models are shown in the top of the Table 7. The LM is sim-
ple phoneme bi-gram trained on the phoneme transcrip-
tions of both the databases. The test sets were pooled
together as well. The best accuracy was achieved by the
P2 set. The big difference between the results of P0 and
all others can be explained by the absence of the highly
confusable vowel pairs. Slightly worse performance of P4
suggests that too many consonants have been merged
resulting in decreased phonetic space resolution. Phoneme
recognition experiments showed that candidate pairs were
chosen correctly and their merging gives better results.

Next, word recognition experiments were performed
using cross-word triphone models. In order to reduce as
much as possible the errors due to the LM and focus on
the acoustic differences between the different phoneme sets,
bi-gram LMs were trained on both the training and test
transcriptions. Thus, our system uses a closed set LM.
Acoustically, however, the training and the test sets are dif-
ferent. Word recognition results are presented in the bot-
tom of Table 7. As can be seen, the performance of both
systems is quite similar with slight advantage of the set
Table 5
Phoneme set P0. Symbol ‘!’ means that vowel is stressed, while symbol ‘’’ den

Class of phonemes List of phone

Consonants Hard /b/, /v/, /g/,
Soft /b’/, /v’/, /g’/

Vowels Stressed /a!/, /e!/, /i!/,
Unstressed /a/, /e/, /i/, /
P0. Higher accuracies for the SPIIRAS test set are due to
the same lexical content of each speaker’s utterances. The
number of CD triphones for each phoneme set is shown
in Table 8. It also presents the number of tied states of
the corresponding acoustic model.

Since the difference in word recognition accuracy of the
systems with various phoneme sets for SPIIRAS test set
was quite small (less than 1% in absolute), an additional
experiment to measure the real-time factor (RTF) was con-
ducted and the results are presented in Fig. 6. For RTF of
1.2 and less, P3 phoneme set shows better recognition accu-
racy, while for larger RTF values, P0 phoneme set is more
effective.

The high word accuracy results in Table 7 are biased due
to the closed set bi-gram LM usage. To obtain unbiased
performance we used the large vocabulary statistical bi-
gram model (see Section 5.2) with the GlobalPhone test
set. Speech recognition results for CD triphone models pre-
sented in Table 9. Although much lower, they show similar
tendency in the word accuracy differences, as in the previ-
ous experiments.

Thus, for our next large vocabulary language model
evaluation with triphone acoustic models, we selected the
P0 phonemic alphabet consisting of 47 phonemes.
6.3. Syntactico-statistical language model performance
evaluation results

In this experiment, we used the tied state triphone acous-
tic model built for the phoneme set selection investigations.
otes the soft (palatalized) version of a consonant.

mes

/d/, /zh/, /z/, /k/, /l/, /m/, /n/, /p/, /r/, /s/, /t/, /f/, /h/, /c/, /sh/
, /d’/, /z’/, /j/, /k’/, /l’/, /m’/, /n’/, /p’/, /r’/, /s’/, /t’/, /f’/, /h’/, /ch/, /sch/
/o!/, /u!/, /y!/

u/, /y/



Fig. 6. Word recognition accuracy depending on RTF for the SPIIRAS
test set.
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In this case, however, the recognition engine was the open-
source large vocabulary decoder Julius ver. 4.2 (Lee and
Kawahara, 2009).

For the language scale and word insertion penalty opti-
mization, we selected 4 speakers’ data (40 min, 318 utter-
ances) from the GlobalPhone test set and used them as a
development set. The rest of the test data were combined
with the additional SPIIRAS test set. Thus, in total, for this
test we used speech from 8 speakers (4 male, 4 female) with
total duration of 1 h 30 min.

Table 10 summarizes the speech recognition results in
terms of word error rate (WER), letter (includes all the let-
ters and the white-space between words) error rate (LER)
as well as perplexity (PPL) and n-gram hit ratios for speech
test set transcriptions. All LMs were built using the same
vocabulary of 204 K words. The OOV rate for the com-
bined test set is 2.5%. The best WER and LER results were
obtained with the statistical tri-gram model linearly inter-
polated with the proposed syntactico-statistical bi-gram
Table 6
Desciption of the created phoneme sets.

Phoneme
set

Number of
phonemes

Description

P0 47 See Table 5
P1 42 P0 without /a!/, /e!/, /i!/, /u!/, /y!/
P2 39 P1 without /n’/, /s’/, /z’/
P3 37 P2 without /r’/, /t’/
P4 27 P3 without /b’/, /g’/, /d’/, /k’/, /l’/,

/m’/, /p’/, /f’/, /h’/

Table 7
Speech recognition performance of the obtained phoneme sets using
closed set LMs.

Test set P0 P1 P2 P3 P4

Phoneme recognition accuracy (%)
SPIIRAS + GlobalPhone 48.92 52.43 53.2 53.06 52.93

Word recognition accuracy (%)
SPIIRAS 96.64 96.55 96.41 96.62 96.4
GlobalPhone 80.92 80.35 80.67 79.82 78.52

Table 8
Number of triphones and states pool sizes for different phoneme sets.

Phoneme set Number of triphones Number of states

P0 112849 5342
P1 81314 5356
P2 65562 5359
P3 56279 5335
P4 22709 5342

Table 9
Word recognition accuracy (%) of the systems built using obtained
phoneme sets and open set language model.

Test set P0 P1 P2 P3 P4

GlobalPhone 67.07 66.78 66.53 65.93 65.28
LM with the optimal (in terms of minimal WER using
the development set) interpolation coefficient of 0.27.
RTF was less than 2.0 for the speech decoder installed on
a desktop PC with multi-core Intel Core i7-3770K
3.5 GHz processor.

6.4. Discussion of the experimental results

Various phoneme sets performance evaluation was con-
ducted separately for two databases, and the obtained
results were consistently similar. This suggests that they
can be accepted with high confidence. The differences in
the word recognition accuracy between the different pho-
neme sets are not significant except for the highly reduced
set P4. For an off-line ASR system, where recognition accu-
racy is the most important feature, phoneme set P0 could
be recommended to achieve the best possible result. In
some real-time systems, however, where the trade-off
between the recognition accuracy and the decoding speed
is crucial, phoneme set P3 may provide some advantage.
Word recognition results using both the small (closed set)
and large vocabulary bi-gram LMs showed similar trends
of performance change depending on the phoneme set.

In the large vocabulary Russian speech recognition task,
the proposed syntactico-statistical language modeling
approach demonstrated an advantage in comparison with
the baseline n-gram models. Depending on the training
data, the amount of bi-grams newly discovered by the syn-
tactical analysis may vary, but we expect it to grow with the



Table 10
Summary of the results on Russian LVCSR using various LMs.

LM type PPL n-gram hit rate, % WER, % LER, %

Statistical bi-gram model 750 82.7 30.5 9.5
Syntactico-statistical bi-gram model 758 83.2 30.0 9.4
Statistical tri-gram model 569 39.2 (+43.5 bi-grams) 27.5 8.6
Statistical tri-gram model interpolated with syntactico-statistical bi-gram model 549 39.2 (+44.0 bi-grams) 26.9 8.5
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size of the corpus. In addition, the counts for part of the
regular bi-grams increase as well. This means that our
method will always produce more robust models, which
will have better coverage.

Relatively high WERs can be explained by the inflective
nature of the Slavic language, where each stem corresponds
to tens or even hundreds of endings. In continuous speech,
they are usually pronounced not as clearly as the beginning
parts of the words. Additionally, some different ortho-
graphic word-forms have identical phonemic representa-
tions. In order to account for the recognition errors
resulting from such cases, we also applied the inflectional
word error rate (IWER) measure Bhanuprasad and Sven-
son, 2008; Karpov et al., 2011. It assigns weight kinf_1 to
all “hard” substitution errors S1, where the lemma of the
word-form is wrong, and weight kinf_2 to all “weak” substi-
tution errors S2, when the lemma of the recognized word-
form is right, but its ending is wrong:

IWER ¼ I þ Dþ kinf 1S1 þ kinf 2S2

N
� 100% ð2Þ

where I is the number of word insertions, D is the number
of word deletions, and N is the total number of words in
the reference utterances.

In our experiments, the IWER measure with kinf_1 = 1.0
and kinf_2 = 0.5 was 24.34% for the best tri-gram LM inter-
polated with the syntactico-statistical bi-gram LM. It turns
out that in total, about 37% of the substitution errors were
caused by misrecognized word endings. An automatic
lemmatizer from the AOT linguistic software (Sokirko,
2004) was used to get the lemma for each word-form in
the hypotheses. In practice, some of the recognition errors
are due to reference transcription mistakes and misses in
the pronunciation lexicon. However, the most of the errors,
which can be attributed to LM, occur because of the rather
high perplexity, low n-gram hit values, and high number of
out-of-vocabulary words, all of which are consequence of
the Russian language specifics.

7. Conclusions

In this paper, we presented several approaches to
improve the efficiency of the ASR for inflected Slavic lan-
guages with practically free order of words in sentences
and studied these approaches in application to the Russian
language. During the acoustic model development, we
developed new phonetic decision tree for triphone state
tying taking into account the specifics of the Russian
phonology. A combination of knowledge-based and statis-
tical information approaches was used to create several dif-
ferent phoneme sets. Experimentally we found that the best
in terms of word recognition performance is the set P0,
which consists of 47 phonemes. To some extend, this find-
ing is in accordance with the common ASR experience in
acoustic models development for various other languages.
We also proposed a method for syntactico-statistical lan-
guage modeling. Syntactical parsing of the training text
data allows us to reveal grammatically connected word
pairs, which are not neighbor words in the sentence. Com-
bining these word pairs with the statistically derived n-
grams results in an increased number of n-grams, better
n-gram coverage and hence an improvement of the speech
recognition accuracy. The experiments with Russian
LVCSR (>200 K word-forms) have demonstrated the
advantage of the syntactico-statistical LM with respect to
the standard n-gram language modeling achieved without
any noticeable change in the decoding speed and without
change in the speech decoder. Using our original syntacti-
co-statistical LM method, we obtained 26.9% WER, hav-
ing 0.6% absolute and 2.2% relative improvement with
respect to the standard n-gram LMs.

With a few modifications, the proposed approaches can
be applied to the other East Slavic languages (Belarusian
and Ukrainian) and further to some more synthetic lan-
guages with high freedom of language grammar.

Our future work will be focused on the implementation
and evaluation of some other types of LMs: with embedded
morphological characteristics (part-of-speech, grammatical
features, etc.) in order to decrease the perplexity, as well as
lemma-based models and LMs with partial semantic anal-
ysis of the training text data.

Acknowledgements

This research is supported by the Ministry of Education
and Science of Russia (contract No. 07.514.11.4139), by the
grant of the President of Russia (project No. MK-
1880.2012.8), by the Russian Foundation for Basic Re-
search (project No. 12-08-01265) and by the Russian
Humanitarian Scientific Foundation (project No. 12-04-
12062).

References

Anisimovich, K., Druzhkin, K., Minlos, F., Petrova, M., Selegey, V.,
Zuev, K., 2012. Syntactic and semantic parser based on ABBYY



A. Karpov et al. / Speech Communication 56 (2014) 213–228 227
Compreno linguistic technologies. In: Proc. Dialogue-2012, Moscow,
Russia, vol. 2, pp. 91–103.

Antonova, A., Misyurev, A., 2012. Russian dependency parser SyntAu-
tom at the Dialogue-2012 parser evaluation task. In: Proc. Int. Conf.
Dialogue-2012, Moscow, Russia, vol. 2, pp. 104–118.

Arisoy, E., Saraclar, M., Roark, B., Shafran, I., 2010. Syntactic and sub-
lexical features for Turkish discriminative language models. In: Proc.
Int. Conf. ICASSP’2010, Dallas, USA, pp. 5538–5541.

Arlazarov, V., Bogdanov, D., Krivnova, O., Podrabinovich, A., 2004.
Creation of Russian speech databases: design, processing, development
tools. In: Proc. Int. Conf. SPECOM’2004, St. Petersburg, Russia, pp.
650–656.

Bechet, F., Nasr, A., 2009. Robust dependency parsing for spoken
language understanding of spontaneous speech. In: Proc. Inter-
speech’2009, Brighton, UK, pp. 1039–1042.

Bellegarda, J.R., 2004. Statistical language model adaptation: review and
perspectives. Speech Commun. 42, 93–108.

Bhanuprasad, K., Svenson, M., 2008. Errgrams – a way to improving
ASR for highly inflective Dravidian languages. In: Proc. 3rd Int. Joint
Conf. on Natural Language Processing IJCNLP’2008, India, pp. 805–
810.

Chelba, C., Jelinek, F., 2000. Structured language model. Comput. Speech
Lang. 10, 283–332.

Cubberley, P., 2002. Russian: A Linguistic Introduction. Cambridge
University Press.

Deoras, A., Sarikaya, R., Tur, G., Hakkani-Tur, D., 2012. Joint decoding
for speech recognition and semantic tagging. In: Proc. Inter-
speech’2012, Portland, Oregon, USA.

Huet, S., Gravier, G., Sebillot, P., 2010. Morpho-syntactic postprocessing
of N-best lists for improved French automatic speech recognition.
Comput. Speech Lang. 24 (4), 663–684.

Iomdin, L., Petrochenkov, V., Sizov, V., Tsinman, L., 2012. ETAP parser:
state of the art. In: Proc. Dialogue-2012, Moscow, Russia, vol. 2, pp.
119–131.

Ircing, P., Hoidekr, J., Psutka, J., 2006. Exploiting linguistic knowledge in
language modeling of Czech spontaneous speech. In: Proc. Int. Conf.
on Language Resources and Evaluation LREC’2006, Genoa, Italy, pp.
2600–2603.

Jokisch, O., Wagner, A., Sabo, R., Jaeckel, R., Cylwik, N., Rusko, M.,
Ronzhin, A., Hoffmann, R., 2009. Multilingual speech data collection
for the assessment of pronunciation and prosody in a language
learning system. In: Proc. SPECOM’2009, St. Petersburg, Russia, pp.
515–520.

Kanejiya, D.P., Kumar, A., Prasad, S., 2003. Statistical language
modeling using syntactically enhanced LSA. In: Proc. TIFR Work-
shop on Spoken Language Processing, Mumbai, India, pp. 93–100.

Kanevsky, D., Monkowski, M., Sedivy, J., 1996. Large vocabulary
speaker-independent continuous speech recognition in Russian
language. In: Proc. SPECOM’1996, St. Petersburg, Russia, pp.
117–121.

Karpov, A., Kipyatkova, I., Ronzhin, A., 2011. Very large vocabulary
ASR for spoken Russian with syntactic and morphemic analysis. In:
Proc. Interspeech’2011, Florence, Italy, pp. 3161–3164.

Karpov, A., Kipyatkova, I., Ronzhin, A., 2012. Speech recognition for
East Slavic languages: the case of Russian. In: Proc. 3rd International
Workshop on Spoken Languages Technologies for Under-resourced
Languages SLTU’2012, Cape Town, RSA, 2012, pp. 84–89.

Kipyatkova, I., Karpov, A., Verkhodanova, V., Zelezny, M., 2012.
Analysis of long-distance word dependencies and pronunciation
variability at conversational Russian speech recognition, In: Proc.
Federated Conference on Computer Science and Information Systems
FedCSIS-2012, Wroclaw, Poland, pp. 719–725.

Kouznetsov, V., Chuchupal, V., Makovkin, K. Chichagov, A., 1999.
Design and implementation of a Russian telephone speech database.
In: Proc. SPECOM’1999, Moscow, Russia, pp. 179–181.

Kuo, H.-K.J., Mangu, L., Emami, A., Zitouni, I., Lee, Y.-S., 2009.
Syntactic features for Arabic speech recognition. In: Proc. Interna-
tional Workshop ASRU’2009, Merano, Italy, pp. 327–332.
Kurimo, M. et al., 2006. Unlimited vocabulary speech recognition for
agglutinative languages. In: Proc. Human Language Technology
Conference of the North American Chapter of the ACL, New York,
USA, pp. 487–494.

Lamel, L. et al., 2011. Speech recognition for machine translation in
Quaero. In: Proc. International Workshop on Spoken Language
Translation IWSLT’2011, San Francisco, USA, pp. 121–128.

Lamel, L., Courcinous, S., Gauvain, J.-L., Josse, Y., Le, V.B., 2012.
Transcription of Russian conversational speech. Proc SLTU’2012.
Cape Town, RSA, pp. 156–161.

Lee, A., Kawahara, T., Recent development of open-source speech
recognition engine julius. In: Proc. Asia-Pacific Signal and Information
Processing Association Annual Summit and Conference (APSIPA
ASC 2009), Sapporo, Japan, pp. 131–137.

Leontyeva, A., Kagirov, I., 2008. The module of morphological and
syntactic analysis SMART. In: Proc. Int. Conf. on Text, Speech and
Dialogue TSD’2008, LNAI 5246, Brno, Czech Republic, pp. 373–380.

Moore, G.L., 2001. Adaptive Statistical Class-based Language Modelling.
PhD thesis, Cambridge University.

Nozhov, I., 2003. Realization of automatic syntactic segmentation of a
Russian sentence. PhD thesis, p. 140 (in Russian). http://www.aot.ru/
docs/Nozhov/msot.pdf.

Odell, J., 1995. The use of context in large vocabulary speech recognition,
PhD thesis, Cambridge Univ.

Oparin, I., Talanov, A., 2005. Stem-based approach to pronunciation
vocabulary construction and language modeling for Russian. In: Proc.
SPECOM’2005, Patras, Greece, pp. 575–578.

Oparin, I., Glembek, O., Burget, L., Cernocky, J., 2008. Morphological
random forests for language modeling of inflectional languages. In:
Proc. IEEE Spoken Language Technology Workshop SLT’2008, Goa,
India, pp. 189–192.

Padgett, J., Tabain, M., 2005. Adaptive dispersion theory and phonolog-
ical vowel reduction in Russian. Phonetica 62 (1), 14–54.

Potapova, R., 2011. Multilingual spoken language databases in Russia. In:
Proc. International Conference Speech and Computer SPECOM’2011,
Kazan, Russia, pp. 13–17.

Psutka, J., Ircing, P., Psutka, J.V., Hajic, J., Byrne, W.J., Mirovsky, J.,
2005. Automatic transcription of Czech, Russian, and Slovak spon-
taneous speech in the MALACH project. In: Proc. Interspeech’2005,
Lisbon, Portugal, pp. 1349–1352.

Pylypenko, V., 2007. Extra large vocabulary continuous speech recogni-
tion algorithm based on information retrieval. In: Proc. Inter-
speech’2007, Antwerp, Belgium, pp. 1809–1812.

Rastrow, A., Dredze, M., Khudanpur, S., 2012. Fast syntactic analysis for
statistical language modeling via substructure sharing and uptraining.
In: Proc. 50th Annual Meeting of Association for Computational
Linguistics ACL’2012, Jeju, Korea, pp. 175–183.

Roark, B., 2002. Markov parsing: lattice rescoring with a statistical parser.
In: Proc. 40th Annual Meeting of the Association for Computational
Linguistics ACL’2002, Philadelphia, USA, pp. 287–294.

Ronzhin, A., Karpov, A., 2004. Automatic system for Russian speech
recognition SIRIUS. In: Proc. SPECOM’2004, St. Petersburg, Russia,
pp. 291–296.

Schalkwyk, J., Beeferman, D., Beaufays, F., Byrne, B., Chelba, C., Cohen,
M., Kamvar, M., Strope, B., 2010. Google search by voice: a case
study. In: Advances in Speech Recognition: Mobile Environments,
Call Centers and Clinics, pp. 61–90.

Schultz, T., Waibel, A., 1998. Development of multilingual acoustic
models in the GlobalPhone project. In: Proc. TSD’1998, Brno, Czech
Republic, pp. 311–316.

Shirokova, A., 2007. STEL speech database for speaker recognition and
multispeaker segmentation. In: Proc. SPECOM’2007, Moscow, Rus-
sia, pp. 877–881.

Shvedova, N. et al., 1980. Russian Grammar, vol. 1, Moscow, p. 783 (in
Russian).

Sidorov, G., Velasquez, F., Stamatatos, E., Gelbukh, A., Chanona-
Hernández, L., 2012. Syntactic dependency-based n-grams as classi-
fication features. In: LNAI, 7630. Springer, Mexico, pp. 1–11.

http://refhub.elsevier.com/S0167-6393(13)00094-0/h0005
http://refhub.elsevier.com/S0167-6393(13)00094-0/h0005
http://refhub.elsevier.com/S0167-6393(13)00094-0/h0010
http://refhub.elsevier.com/S0167-6393(13)00094-0/h0010
http://refhub.elsevier.com/S0167-6393(13)00094-0/h0015
http://refhub.elsevier.com/S0167-6393(13)00094-0/h0015
http://refhub.elsevier.com/S0167-6393(13)00094-0/h0020
http://refhub.elsevier.com/S0167-6393(13)00094-0/h0020
http://refhub.elsevier.com/S0167-6393(13)00094-0/h0020
http://refhub.elsevier.com/S0167-6393(13)00094-0/h0025
http://refhub.elsevier.com/S0167-6393(13)00094-0/h0025
http://refhub.elsevier.com/S0167-6393(13)00094-0/h0025
http://www.aot.ru/docs/Nozhov/msot.pdf
http://www.aot.ru/docs/Nozhov/msot.pdf
http://refhub.elsevier.com/S0167-6393(13)00094-0/h0030
http://refhub.elsevier.com/S0167-6393(13)00094-0/h0030
http://refhub.elsevier.com/S0167-6393(13)00094-0/h0035
http://refhub.elsevier.com/S0167-6393(13)00094-0/h0035
http://refhub.elsevier.com/S0167-6393(13)00094-0/h0035


228 A. Karpov et al. / Speech Communication 56 (2014) 213–228
Singh, R., Raj, B., Stern, R., 2002. Automatic generation of subword units
for speech recognition systems. IEEE Trans. Acoust. Speech Signal
Process. 10 (2), 89–99.

Skatov, D., Okat’ev, V., Patanova, T., Erekhinskaya, T., 2012. Dictascope
Syntax: the Natural Language Syntax Parser, http://dialog-21.ru/
digests/dialog2012/materials/pdf/Cranod.pdf.

Skrelin, P., Volskaya, N., Kocharov, D., Evgrafova, K., Glotova, O.,
Evdokimova, V., 2010. CORPRES – Corpus of Russian professionally
read speech. In: Proc. TSD’2010, Brno, Czech Republic, pp. 392–399.

Smirnova, J., 2011. Compound systems of pretonic vocalism after
palatalized consonants in Russian dialects: a synchronic and dia-
chronic analysis. In: Proc. 17th Int. Cong. of Phonetic Sciences
ICPhS’2011, Hong Kong, pp. 1870–1873.

Sokirko, A., 2004. Morphological modules on the website www.aot.ru. In:
Proc. Dialogue-2004, Protvino, Russia, pp. 559–564 (in Russian).

Starostin, A., Mal’kovskiy, M., 2007. Algorithm of syntax analysis
employed by the “Treeton” morpho-syntactic analysis system. In: Proc
Int. Conf. “Dialogue-2007, Moscow, Russia, pp. 516–524 (in Russian).

Stolcke, A., Zheng, J., Wang, W., Abrash, V., 2011. SRILM at sixteen:
update and outlook. In: Proc. IEEE Automatic Speech Recognition
and Understanding Workshop ASRU’2011, Waikoloa, Hawaii, USA.
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