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Abstract

When the reference speakers are represented by Gaussian mixture model (GMM), the conventional approach is to

accumulate the frame likelihoods over the whole test utterance and compare the results as in speaker identi®cation or

apply a threshold as in speaker veri®cation. In this paper we describe a method, where frame likelihoods are trans-

formed into new scores according to some non-linear function prior to their accumulation. We have studied two fam-

ilies of such functions. First one, actually, performs likelihood normalization ± a technique widely used in speaker

veri®cation, but applied here at frame level. The second kind of functions transforms the likelihoods into weights ac-

cording to some criterion. We call this transformation weighting models rank (WMR). Both kinds of transformations

require frame likelihoods from all (or subset of all) reference models to be available. For this, every frame of the test

utterance is input to the required reference models in parallel and then the likelihood transformation is applied. The

new scores are further accumulated over the whole test utterance in order to obtain an utterance level score for a given

speaker model. We have found out that the normalization of these utterance scores also has the e�ect for speaker ver-

i®cation. The experiments using two databases ± TIMIT corpus and NTT database for speaker recognition ± showed

better speaker identi®cation rates and signi®cant reduction of speaker veri®cation equal error rates (EER) when the

frame likelihood transformation was used. Ó 1998 Elsevier Science B.V. All rights reserved.

ReÂsumeÂ

Quand les locuteurs de r�ef�erence sont repr�esent�es par un mod�ele de m�elange de gaussiennes, l'approche convention-

nelle est d'accumuler les probabilit�es de trame sur l'�enonc�e de test entier et de comparer les r�esultats pour l'identi®cation

du locuteur ou d'appliquer un seuil pour la v�eri®cation du locuteur. Dans cet article, nous d�ecrivons une m�ethode dans

laquelle les probabilit�es de trame sont transform�ees, avant d'être somm�ees, en de nouveaux scores, suivant une certaine

fonction non-lin�eaire. Nous avons �etudi�e deux familles de fonctions. La premi�ere e�ectue de fait une normalisation des

probabilit�es ± une technique largement utilis�ee en v�eri®cation du locuteur ±, mais qui est appliqu�ee ici au niveau des
�etats. Le deuxi�eme type de fonctions transforme les probabilit�es en poids, suivant un certain crit�ere. Nous appelons

cette transformation ``Weighting Models Rank'' (WMR). Les deux types de transformations requi�erent de pouvoir dis-

poser de tous (ou d'un sous-ensemble de tous) les mod�eles de r�ef�erence. Pour obtenir ceci, chaque trame de l'�enonc�e
d'entr�ee est incorpor�ee en parall�ele dans les mod�eles de r�ef�erence requis, puis la transformation des probabilit�es est

appliqu�ee. Les nouveaux scores sont ensuite accumul�es sur l'ensemble de l'�enonc�e pour obtenir un score de l'�enonc�e
pour un mod�ele de locuteur donn�e. Nous avons trouv�e que la normalisation de ces scores d'�enonc�es est �egalement
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e�cace pour la v�eri®cation du locuteur. Des exp�eriences ont �et�e men�ees sur deux bases de donn�ees ± TIMIT et la base

de donn�ees de NTT pour la reconnaissance du locuteur. Les r�esultats montrent des taux d'identi®cation du locuteur

plus �elev�es et une r�eduction notable du taux d'�egale erreur (EER) en v�eri®cation du locuteur quand les transformations

des probabilit�es de trames sont utilis�ees. Ó 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

Speaker recognition has been a research topic
for many years and various types of speaker mod-
els have been studied. Hidden Markov models
(HMM) have become the most popular statistical
tool for this task. The best results have been ob-
tained using continuous HMM (CHMM) for
modeling the speaker characteristics (Savic and
Gupta, 1990; Furui, 1991; Rosenberg et al.,
1991, 1994; Matsui and Furui, 1992). For the
text-independent task, where the temporal se-
quence modeling capability of the HMM is not re-
quired, one state CHMM, also called a Gaussian
mixture model (GMM), has been widely used as
a speaker model (Tseng et al., 1992; Reynolds
and Rose, 1995; Gish and Schmidt, 1994; Bimbot
et al., 1995; Matsui and Furui, 1995). In accor-
dance with (Matsui and Furui, 1992) our previous
study (Markov and Nakagawa, 1995) showed that
GMM can perform even better than CHMM with
multi-states.

The objective of the speaker identi®cation is to
®nd a speaker model ki given the set of reference
models K � fk1; . . . ; kNg and sequence of test vec-
tors (or frames) X � fx1; . . . ; xTg which gives the
maximum a posteriori probability P �kjX �. This re-
quires the calculation of all P �kjjX �; j � 1; . . . ;N ;
and ®nding the maximum among them. In speaker
veri®cation, only the claimant speaker's model kc

is used and P �kcjX � is compared with a predeter-
mined threshold in order to accept or reject X as
being uttered from the claimant speaker.

In most of the tasks, it is possible to use the like-
lihood p�X jk� instead of P �kjX � which does not re-
quire prior probabilities P �k� to be known.
Another simplifying assumption is that the se-
quence of vectors, X ; are independent and identic-
ally distributed random variables. This allows to
express p�X jk� as (Duda and Hart, 1973)

p�X jk� �
YT

t�1

p�xtjk�; �1�

where p�xtjk� is the likelihood of single frame xt giv-
en model k. This is a fundamental equation of sta-
tistical theory and is widely used in speech
recognition. Generally speaking, p�X jk� is an utter-
ance level score of X given model k obtained from
frame level scores p�xtjk� using Eq. (1). Obviously,
another ways of de®ning such scores can exist.

Our approach is based on the following de®ni-
tion of the utterance level score:

Sc�X jk� �
YT

t�1

Sc�xtjk� �
YT

t�1

f �p�xtjk��; �2�

where f � � is some function of frame likelihoods
p�xtjk� that transforms them into new scores
Sc�xtjk�. Actually, when this function is of the type
f �x� � x, Eq. (2) becomes equivalent to Eq. (1).
As it will be discussed in Section 6.1 any linear
type of f � � does not lead to reduction of the rec-
ognition errors. That is why we have considered
non-linear likelihood transformations.

The ®rst family of such functions we have ex-
perimented with essentially performs likelihood
normalization, but now applied at the frame level.
The likelihood normalization approach has been
successfully used at the utterance level for speaker
veri®cation (Reynolds, 1995a; Rosenberg et al.,
1992; Matsui and Furui, 1995; Higgins et al.,
1991) but is usually not used for speaker identi®-
cation purposes. This is simply because, as shown
in Section 6.2, when applied only once at the
utterance level likelihoods, it is a meaningless
operation. Gish and Schmidt (1994) have shown
that when the speaker scores are computed over
relatively short time intervals (segments of the ut-
terances) likelihood normalization may be success-
ful. In their system each speaker is represented by
multiple uni-modal Gaussian models (a special
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case of a GMM) trained on data from di�erent ses-
sions, and only the best model's score for each
speaker over a given segment is taken into ac-
count. The segment scores are further normalized
in order to obtain meaningful comparison between
segments. Our method, however, di�ers from this
study in two main points. First, in our system each
speaker is represented by only one GMM and, sec-
ond, likelihood normalization is done on each
frame instead of short time intervals.

The second family of likelihood transformations
converts the frame likelihood p�xtjk� into one of a
set of predetermined weights wj; j � 1; . . . ;N . This
type of transformation requires likelihoods from
all reference models p�xtjkj� given the current frame
to be calculated and sorted. Here we introduce the
variable rk called rank of the model, which corre-
sponds to the position of its likelihood in the sorted
list and is an integer number ranging from 1 to N .
Weights are function of the ranks rk,

w�rk� � g�rk�; �3�
where g� � is some function of integer argument.
Obviously, we can calculate all possible weights
w in advance knowing the form of g� � and the
number of reference speakers N . Since weights
and models ranks are involved in this type of like-
lihood transformation, we call it the weighting
models rank (WMR) technique.

The rest of the paper is organized as follows.
Section 2 gives brief description of the GMM we
used. Section 3 provides details of speaker identi®-
cation and veri®cation tasks. Section 4 explains in
detail our likelihood transformation approach.
Section 5 describes our speech databases and sum-
marizes our experimental results. In Section 6 we
present some discussions and analysis of our meth-
od. Finally, we draw some conclusions in Section 7.

2. Gaussian mixture model

A GMM is a weighted sum of M component
densities and is given by the form (Reynolds and
Rose, 1995)

p�xjk� �
XM

i�1

cibi�x�; �4�

where x is a d-dimensional random vector,
bi�x�; i � 1; . . . ;M , is the component density and
ci; i � 1; . . . ;M , is the mixture weight. Each com-
ponent density is a d-variate Gaussian function
of the form

bi�x�

� 1

�2p�d=2jRij1=2
exp ÿ 1

2
�xÿ li�TRÿ1

i �xÿ li�
� �

;

�5�
with mean vector li and covariance matrix Ri. The
mixture weights satisfy the constraint thatXM

i�1

ci � 1: �6�

The complete Gaussian mixture model is pa-
rameterized by the mean vectors, covariance ma-
trices and mixture weights from all component
densities. These parameters are collectively repre-
sented by the notation

k � ci; li;Rif g; i � 1; . . . ;M : �7�
In our speaker recognition system, each speaker

is represented by such a GMM and is referred to by
his/her model k. GMM parameters are estimated
using the standard maximum likelihood estimation
(MLE) method via the expectation maximization
(EM) algorithm (Dempster et al., 1979).

For a sequence of T test vectors X � x1; x2;
. . . ; xT , the standard approach is to calculate the
GMM likelihood as in Eq. (1) which can be writ-
ten in the log domain as

L�X jk� � log p�X jk� �
XT

t�1

log p�xtjk�: �8�

3. Speaker recognition tasks

3.1. Speaker identi®cation

Given a sample of a speech utterance, speaker
identi®cation is to decide to whom of a group of
N known speakers this utterance belongs. In the
closed set problem, it is assured that it belongs to
one of the registered speakers.
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As mentioned in Section 1, in the identi®cation
task, the aim is to ®nd the speaker i� whose model
ki� maximizes a posteriori probability
P �kijX �; 16 i6N ; which according to the Bayes'
rule is

P �kijX � � p�X jki�P �ki�
p�X � : �9�

Furthermore, due to lack of prior knowledge, we
assume equal-likely speaker models. That is, the
prior probabilities P �ki� are set equal:

P �ki� � 1

N
; 16 i6N : �10�

The term p�X � is actually the unconditional likeli-
hood of the occurrence of the utterance X and is
the same for all speakers. Therefore,
maxi p�X jki� will maximize a posteriori probabili-
ty and the identi®cation decision can be simpli®ed
to

i� � arg max
i

p�X jki�; �11�

where i� is the identi®ed speaker.
Usually, a speaker identi®cation system consists

of collection of reference speaker models ki, front-
end analysis and decision modules. The digitized
speech utterance S�n� is transformed into a se-
quence of feature vectors X and after that the like-
lihoods p�X jki�, corresponding to each of the
speaker models, are calculated. The best one is de-
termined in the decision module and identi®es the
unknown speaker.

Since our likelihood transformation method re-
quires frame likelihoods from all reference to be
available for each frame, the structure of the
speaker identi®cation system has to be modi®ed.
Fig. 1 shows the structure of our speaker identi®-
cation system (Markov and Nakagawa, 1996b).
In this system, input speech is analyzed and trans-
formed into a feature vector sequence by Front-
end Analysis block and then each test vector xt is
fed to all reference speaker models in parallel.
The ith speaker dependent GMM produces likeli-
hood p�xtjki�; i � 1; 2; . . . ;N ; and all these likeli-
hoods are passed in the so called Likelihood
Transformation and Accumulation block, where
they are transformed (according to the chosen
transformation function) and accumulated for

t � 1; 2; . . . ; T to form the utterance level scores
Sc�X jki�. The speaker identi®cation is accom-
plished by comparing these scores in the Decision
Logic block and determining the best one. The un-
known speaker is classi®ed as the speaker, whose
model has the best score.

3.2. Speaker veri®cation

Speaker veri®cation is a binary decision prob-
lem where it has to be decided whether the speech
utterance belongs to the claimant speaker or not.
In the classical approaches, this decision is done
by comparing the utterance score of the claimant
speaker's model with some threshold determined
at the training phase. The problem with this meth-
od is that the absolute value of the utterance score
does not depend only on the speaker model used,
but also on the lexical content of the speech and,
therefore, a stable threshold cannot be set. One so-
lution to this problem is to apply a likelihood nor-
malization technique which has proven to
signi®cantly improve veri®cation performance
(Higgins et al., 1991; Rosenberg et al., 1992; Rey-
nolds, 1995a; Matsui and Furui, 1995).

The general approach is to apply a likelihood
ratio test (Fukunaga, 1990) to the input utterance
X � x1; x2; . . . ; xT using the claimant speaker mod-
el kc;

l�X � � p�X jkc�
p�X jkc� ; �12�

where kc is a model representing all other possible
speakers (impostors) and the prior probabilities
P�kc� and P �kc� are assumed equal. The likelihood

Fig. 1. Block diagram of our speaker identi®cation system.

196 K.P. Markov, S. Nakagawa / Speech Communication 24 (1998) 193±209



p�X jkc� is directly computed from Eq. (1) assum-
ing that the speaker model is a GMM type,

p�X jkc� �
YT

t�1

p�xtjkc�: �13�

The likelihood P �X jkc� is usually approximated
using a collection of background speaker models.
With the set of B background speaker models,
fk1; . . . ; kBg, the background speaker's likelihood
is computed as

p�X jkc� � 1

B

XB

b�1

p�X jkb�: �14�

In the special case when B � N , i.e. all reference
speakers including the claimed speaker act as
background speakers and assuming that
P �kc� � P �kb�, a posteriori probability P �kcjX �
scaled by the factor N approximates Eq. (12):

NP �kcjX � � P�kc�p�X jkc�
1
N p�X � � P �kc�p�X jkc�

1
N

PN
b�1 p�X jkb�P �kb�

� p�X jkc�
1
N

PN
b�1 p�X jkb�

� l�X �: �15�

In this case, using likelihood ratio test is equivalent
to the speaker veri®cation method based on a pos-
teriori probability as reported in (Matsui and Fur-
ui, 1993).

Fig. 2 shows the structure of our speaker veri®-
cation system. After the input speech signal is
transformed into a sequence of feature vectors,
frame likelihoods from the claimant speaker model
and the background speaker models are calculated,
further transformed and accumulated in the Likeli-
hood Transformation and Accumulation block as

in the speaker identi®cation system. Then, using
the claimant speaker score Sc�X jkc� and the back-
ground speaker scores, the likelihood ratio l�X � is
calculated. This is an utterance level normalization
and is the same as the likelihood normalization
used in the conventional speaker veri®cation sys-
tems. It is needed since the score Sc�X jkc� as well
as p�X jkc� depends on the lexical content of the test
utterance. l�X � is compared with the threshold H
and the decision is made according to the compar-
ison result. Note that the background speaker sets
for the frame normalization and for the utterance
normalization need not be the same. We can choose
di�erent sets and use the combined background
speaker set picking up only those scores which are
necessary for the current type of normalization.

Setting of the threshold very much a�ects the
performance of the veri®cation system. For exam-
ple, if the threshold is set high, a true speaker can
be rejected. If it is too low, an impostor speaker
could be accepted. These kinds of veri®cation er-
rors are measured in terms of false rejection (FR)
and false acceptance (FA) rates. These error rates
give us the estimate of the two kinds of errors giv-
en the threshold. Usually, veri®cation performance
is measured in terms of equal error rate (EER)
(Matsui and Furui, 1995; Reynolds, 1995a). In this
approach, the threshold is set such that FA and
FR are equal. This is found by sorting true test
scores and impostor test scores together and locat-
ing that point (or threshold) in the sorted list
where the percent of impostor tests above this
point is equal to the percent of the true tests below
this point. Often the available test data per speaker
are very few (especially the true tests) and setting a
speaker dependent threshold would give results
with low statistical signi®cance. That is why, for
small databases, a global threshold (same for all
speakers) is used. In this case, true tests and impos-
tor tests from all speakers are sorted together and
then the threshold is located. It has to be noted
that FA and FR are discrete functions of the
threshold and the step from one point to the next
one depends on the number of true tests for FR
and impostor tests for FA. Obviously, FA and
FR will intersect in one point if the number of true
tests is equal to the number of impostor tests.
However, in the leaving-one-out test scheme, thereFig. 2. Block diagram of our speaker veri®cation system.
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are always much more impostor than true tests. In
this case, using the above algorithm for locating
the threshold we will ®nd the point where FR
and FA are most close, but not equal. Some re-
searches accept the EER as the FA at this point
(Reynolds, 1995a). We have done detailed analysis
of this situation which shows that more precise es-
timation of the EER can be obtained by linear ap-
proximation of FR and FA functions.

4. Frame likelihood transformations

4.1. Likelihood normalization

As we stated in Section 1, the ®rst family of
frame likelihood transformation functions per-
forms the essentially likelihood normalization.

Given a single frame likelihood p�xtjki� from the
ith speaker model, the likelihood transformation is
done using the following general function form:

f �p�xtjki�� � p�xtjki�
1
B

PB
b�1 p�xtjkb�

; �16�

where p�xtjkb� are the frame likelihoods from the
background speaker models given the same frame
xt. Di�erent choices of the background speaker set
give di�erent transformation functions. Note that
the above likelihood transformation approximates
the likelihood ratio, as described in the previous
section, but for a single frame. Thus, we transform
the frame likelihood into a kind of con®dence
measure. Similar approach has been used for utter-
ance veri®cation purposes in speech recognition
(Lleida and Rose, 1996).

Utterance level score, in this case, is obtained by
inserting Eq. (16) into Eq. (2). For speaker i in the
log domain we have

log Sc�X jki�

�
XT

t�1

log p�xtjki� ÿ log
1

B

XB

b�1

p�xtjkb�
 ! !

; �17�

�
XT

t�1

log p�xtjki� ÿ
XT

t�1

log
1

B

XB

b�1

p�xtjkb�
 !

: �18�

It is easy to recognize that the ®rst term of
Eq. (18) is the standard L�X jk� from Eq. (8). The

second term represents a correction consisting of
likelihoods from the background speakers.

As in the utterance level likelihood normaliza-
tion, here also arises the problem of choosing the
proper background speaker set. In the closed set
speaker identi®cation task, however, we are re-
stricted to choose from available set of N speakers.
Given the speaker model i, we have experimented
with the following background speaker sets:
· All others: the background speaker set consists

of all registered speakers, except the speaker i.
· Top M speakers: since the likelihoods from all

speaker models for the current vector xt are
available, it is possible to determine the speaker
models, which have the M maximum likelihoods
and the background speaker set in this case con-
sists of these M speakers (excluding speaker i).
Obviously, the top M speakers will change from
frame to frame.

· Cohort speakers: the background speaker set
consists of K acoustically closest speakers to
the speaker i. The cohort speakers are deter-
mined on the training data in advance and this
procedure is described in (Rosenberg et al.,
1992).

4.2. Weighting models rank

This type of frame likelihood transformation in
contrast to the normalization approach described
in the previous section is new and is not based
on any known techniques. The main idea is to
transform the frame likelihood p�xjk� into a weight
w which does not depend on the absolute value of
this likelihood, but depends on its relative position
with respect to the likelihoods from all other
speaker models.

The WMR transformation is accomplished
using the following two steps.

Step 1. For each test vector xt; t � 1; 2; . . . ; T ,
calculate all likelihoods p�xtjki�; i � 1; . . . ;N ;
and sort them in a decreasing order. This is
the same as making an N-best list of models.
The model with the highest likelihood is at the
top of this list and the model with the lowest
likelihood ± at the bottom. We can also say that
each model has a rank, rk, which corresponds to
the position of the model in this list and is an
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integer ranging from 1 to N . The weight w is de-
®ned as a function of rk,

w�rk� � g�rk�: �19�
The relations between ranks, weights and mod-
els are shown in Table 1. Actually, it is not nec-
essary to calculate g�rk� each time. Since it
depends on rk which values are 1; 2; . . . ;N , we
can have all possible weights calculated prior
to any experiments.
Step 2. For each model ki, ®nd its rank rki , i.e.
its place in the N-best list, and instead of the
likelihood p�xtjki� use the corresponding weight
wt�rki� as a model's frame score.

Utterance level score Sc�X jki� is calculated by
summing up (in the log domain) all weights for
t � 1; . . . ; T :

log Sc�X jki� �
XT

t�1

wt�rki�; �20�

where wt�rki� is the weight of the model i with rank
rki at time t.

In accordance with Eq. (2), now we can de®ne
the WMR type likelihood transformation function
as

f �p�xtjk�� � exp�wt�rk��: �21�
Obviously, in this technique, the most impor-

tant issue is what types of function g� � to use.
Previously we have experimented with following
three typical functions (Markov and Nakagawa,
1996a):

g exp �rk� � exp�Aÿ Brk�; rk � 1; . . . ;N ; �22�
glin�rk� � Aÿ Brk; rk � 1; . . . ;N ; �23�
gsig�rk� � A

exp Brk � 1
; rk � 1; . . . ;N ; �24�

where A and B are parameters which we choose to
be such that g�1� � N . Graphically these three
functions are shown in Fig. 3. The reasons of
choosing these functions and more detailed analy-
sis of the WMR transformation performance are
presented in Section 6.3.

Table 1

N-best list of speaker models

Rank r Weight w�r� Model

1 w�1� Model kl (max. likelihood)

2 w�2� Model kj

. . . . . . . . .

m w�m� Model kk

. . . . . . . . .

N w�N� Model kp (min. likelihood)

Fig. 3. Weights as functions of the model rank.
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5. Experiments

We evaluated our speaker recognition system
using several types of GMMs with both full and
diagonal covariance matrices. As a baseline sys-
tem, we used the conventional maximum likeli-
hood testing approach based on Eq. (1) or Eq. (8).

5.1. Databases and speech analysis

We used two databases ± NTT database and
TIMIT corpus for the experiments.

The NTT database consists of recordings of 35
speakers (22 males and 13 females) collected in ®ve
sessions over 10 months (August 1990, September
1990, December 1990, March 1991 and June 1991)
in a sound proof room (Matsui and Furui, 1992).
For training the models, ®ve same sentences for
all speakers and ®ve di�erent sentences for each
speaker, from one session (August 1990) were
used. Five other sentences from the other four ses-
sions uttered at normal, fast and slow speeds and
same for each of the speakers and for each of the
sessions were used as test data. Average duration
of the sentences is about 4 s. The input speech
was sampled at 12 kHz. 14 cepstrum coe�cients
were calculated by the 14th order LPC analysis
at every 8 ms with a window of 21.33 ms. Then
these coe�cients were further transformed into
10 mel-cepstrum (cep) and 10 regressive (Dcep) co-
e�cients. Each session's mel-cepstrum vectors
were mean normalized by mean subtraction and si-
lence parts were removed.

The well known TIMIT database, consisting of
6300 sentences (630 speakers ´ 10 sentences), was
also used in evaluation experiments. Eight sentenc-
es ± one SA (equal for all speakers), ®ve SX (equal
for groups of speakers) and two SI (di�erent for
each speaker) from each speaker were used for
training and the remaining two (one SA and one
SI) sentences for testing. The speech was ®rst
down-sampled to 12 kHz and then the same anal-
ysis was performed as for the NTT database, ex-
cept that cepstrum vectors were not mean
normalized and silence was not removed. For the
TIMIT database, the cepstral mean normalization
is not necessary because the training and testing
conditions are the same. Removing the silence

events, however, has been reported to slightly de-
grade the identi®cation performance (Reynolds,
1995b).

5.2. Speaker identi®cation experiments

Since we had a limited amount of training data
± about 20±30 s of speech, for both databases, we
were restricted in the number of model's parame-
ters we could reliably estimate. That is why the
models with full covariance matrix have 4 and 8
mixtures (and 16 mixtures for TIMIT database)
and models with diagonal covariance matrix ± 32
and 64 mixtures.

Cepstral and delta cepstral vectors are treated
as separate feature streams. Therefore, frame like-
lihood transformations are performed indepen-
dently on each feature frame. The combination is
done at utterance level by summing the utterance
scores from the two types of features:

Sccomb�X jk� � Sccep�X jk� � ScDcep�X jk�: �25�

5.2.1. NTT database results
Table 2 shows the identi®cation rates, averaged

over all test sessions, using frame likelihood nor-
malization with the three types of background
speaker sets ± All others, Top M with M � 10
and Cohort and WMR transformation results. Co-
hort size is set to B � 5. Three separate experi-
ments were done for each type of the test
utterance speeds (speaking rate) ± normal, slow
and fast. In the table, the parts marked with ``Nor-
mal speed'', ``Slow speed'' and ``Fast speed'' show
the identi®cation rates in these three cases. Note
that the speaker models were trained only with
normal speed utterances. The column ``Model
type'' shows the GMM structure. ``4 mix. full''
means a GMM with 4 mixture densities with full
covariance matrices and ``32 mix. diag.'' ± GMM
with 32 mixture densities with diagonal covariance
matrices. The results in the ``cep'' rows present the
identi®cation rates when only 10-dimensional mel-
cepstral feature vectors are used. Adding the ceps-
tral derivative (Dcep) as a separate feature stream
resulted in higher identi®cation rates shown in
the ``cep� Dcep'' rows. Table 2 shows that our
frame likelihood transformation techniques give

200 K.P. Markov, S. Nakagawa / Speech Communication 24 (1998) 193±209



better results than the baseline system. All types of
the background speaker set give comparable id-
enti®cation rates. However, the more important
result is that our methods are much better than
the baseline at the ``Slow'' and ``Fast'' utterance
speeds compared to the ``Normal'' speed. This fact
indicates that the proposed types of frame likeli-
hood transformation are more robust against vari-
ations of the speaking rate.

In the column ``WMR'', we present the exact re-
sults only for the case of exponential relationship
between weights and ranks, since the other two ±
linear and sigmoidal were performing worse. It is
noted that an identi®cation rate of 97.3% is the
best on this database (for comparison see (Matsui
and Furui, 1992) with 95.6%) and is achieved using
WMR technique and GMM with eight full covari-
ance matrix mixtures.

In order to assess the signi®cance of the im-
provements achieved by our methods, we have
performed a statistical signi®cance test on our best
results (WMR technique with eight mixture, full
covariance matrix GMM) using sign test method-
ology described in (Nakagawa and Takagi, 1994;
Siegel, 1956). Using combined results of the all
three test speeds, our proposed method showed
the superiority over the baseline with a signi®cance
risk of 0.1% for the case when only cepstral fea-
tures were used and 4.4% for the cepstral + Dceps-
tral features case.

5.2.2. TIMIT database results
Table 3 summarizes the results on TIMIT data-

base. Identi®cation rates for both the SA and SI
test utterances are presented separately, because
these are quite di�erent types of sentences. SA is

Table 2

Identi®cation rate (%) using GMM models and frame likelihood transformation techniques (NTT database)

Likelihood normalization

Model type Feature All others Top 10 Cohort WMR Baseline

Normal speed

4 mix. full cep 92.8 92.7 92.4 92.4 92.3

cep + Dcep 94.6 94.8 94.8 95.2 94.1

8 mix. full cep 96.5 96.5 96.2 96.6 96.1

cep + Dcep 97.0 97.0 97.0 97.3 97.0

32 mix. diag. cep 95.5 95.5 95.2 95.0 95.0

cep + Dcep 95.8 95.8 96.3 95.3 96.0

64 mix. diag. cep 95.2 95.2 94.9 96.2 94.5

cep + Dcep 95.7 95.7 95.9 95.8 95.4

Slow speed

4 mix. full cep 89.0 89.2 89.4 90.3 88.6

cep + Dcep 91.6 91.6 92.4 91.0 90.8

8 mix. full cep 92.0 92.0 92.7 93.9 91.3

cep + Dcep 93.4 93.6 93.8 94.3 93.0

32 mix. diag. cep 92.7 92.7 92.6 92.5 92.4

cep + Dcep 92.6 92.6 93.0 92.6 92.3

64 mix. diag. cep 90.9 90.9 92.0 91.4 90.0

cep + Dcep 91.6 91.5 91.7 91.9 91.0

Fast speed

4 mix. full cep 90.9 90.7 91.2 89.9 90.4

cep + Dcep 91.7 91.8 92.3 91.9 91.0

8 mix. full cep 94.3 94.3 93.6 94.1 93.4

cep + Dcep 94.6 94.5 94.3 94.8 94.0

32 mix. diag. cep 92.6 92.6 93.2 91.4 91.7

cep + Dcep 92.0 92.0 92.0 90.5 91.7

64 mix. diag. cep 92.0 92.0 92.6 92.0 91.4

cep + Dcep 92.3 92.3 91.9 92.4 91.4

K.P. Markov, S. Nakagawa / Speech Communication 24 (1998) 193±209 201



the same for all speakers while SI is di�erent for
each speaker and, therefore, identi®cation rates
for SA are signi®cantly higher.

TIMIT database is a popular database and often
is used for speaker recognition experiments. An
identi®cation rate of 99.5% was reported in (Rey-
nolds, 1995b) when GMM with 32 diagonal co-
variance matrices were used. We should notice,
however, that our front-end speech analysis is quite
di�erent from (Reynolds, 1995b) where 16 kHz sam-
pling rate and 30 cepstral coe�cients were used.

In average, the performance of our likelihood
transformation approach is comparable to the
baseline and in some cases is slightly better. Note
that the best result of 98.1% for TIMIT database
is achieved using WMR approach as for the
NTT database, but this time using GMM with
16 full covariance matrix mixtures. The reason is
that from the TIMIT data silence was not removed
and, thus, several of the GMM mixtures are neces-
sary for modeling the silence. Since silences were
removed from the NTT data, less mixtures were
needed for the best performance.

5.3. Speaker veri®cation experiments

5.3.1. NTT database results
In these experiments, each of the 35 speakers

was acting as ``customer'' and all others as ``im-
postors''. Thus, rotating through all speakers we
had 35 evaluation sets. Table 4 presents the num-
ber of customer and impostor tests used for each
recording session as well as the total number of
tests.

For the speaker veri®cation, as stated above, it
is proven that the utterance level likelihood nor-
malization signi®cantly improves the systems per-
formance. In our experiments, we have combined
our frame likelihood transformation techniques
with the sentence level normalization. This is
achieved by using the sentence level scores
(Eq. (2)) obtained from the transformed frame
likelihoods and normalizing them in the same
way as in the conventional veri®cation systems.
Baseline results were also obtained using sentence
level normalization of the accumulated frame like-
lihoods. For this normalization we used the same

Table 3

Identi®cation rates (%) using GMMs (TIMIT database)

Likelihood normalization

Mod. type Feature All others Top 20 Cohort WMR Baseline

SA test

4 mix. full cep 94.0 94.1 93.5 89.2 93.8

cep + Dcep 94.8 94.9 94.9 89.8 94.6

8 mix. full cep 97.0 97.0 97.1 97.1 96.8

cep + Dcep 97.3 97.3 97.6 95.7 97.3

16 mix. full cep 97.6 97.6 97.8 97.6 97.6

cep + Dcep 96.8 96.8 97.2 98.1 96.8

32 mix. diag. cep 95.2 95.2 95.1 94.4 95.4

cep + Dcep 94.9 94.9 95.2 94.1 94.9

64 mix. diag. cep 94.3 94.3 94.3 95.6 94.3

cep + Dcep 94.0 93.8 94.3 94.6 93.8

SI test

4 mix. full cep 90.0 90.0 90.6 87.3 90.2

cep + Dcep 91.1 91.4 91.1 87.0 91.1

8 mix. full cep 93.7 93.7 93.5 94.4 93.7

cep + Dcep 94.1 94.1 94.8 93.0 94.0

16 mix. full cep 95.4 95.4 95.8 96.7 95.2

cep + Dcep 93.8 93.8 94.0 95.1 93.3

32 mix. diag. cep 92.2 92.1 93.0 94.6 92.4

cep + Dcep 92.1 92.1 92.9 91.4 91.7

64 mix. diag. cep 91.4 91.4 92.5 94.4 91.0

cep + Dcep 89.8 89.8 91.4 91.6 89.8
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types of background speaker sets as in the case of
frame likelihood normalization. In order to save
some space, in Table 5 we present only the results
when Top M (M � 10) background speaker set is
used for the sentence level likelihood normaliza-
tion, which achieved in average the lowest EER.
Results are averaged over all test sessions.

In this table, the column ``Frame transforma-
tion'' shows the type of the frame likelihood trans-
formation used. ``None'' stands for our baseline
system, that is, using only sentence level normal-
ization with top 10 speakers as background speak-
er set. ``All others'', ``Top 10'' and ``Cohort''
de®ne the type of the background speaker sets
used for frame likelihood normalization and
``WMR'' stands for WMR transformation tech-
nique. Results clearly show that our approach out-
performs the baseline. Among the di�erent
background speaker sets, the ``Cohort'' type is
the best, and compared to the baseline, the

WMR transformation gives up to more than two
fold reduction of the EER. Results similar to our
baseline system performance were reported in
(Matsui and Furui, 1995).

5.3.2. TIMIT database results
It was di�cult to compute the EER for all the

630 TIMIT speakers mainly because of memory
limitations. That is why, for the speaker veri®ca-
tion experiments on TIMIT database, we chose
168 speakers recommended as test speakers for
the database. The same was done in (Reynolds,
1995a). There are 112 male and 56 female speakers
with 2 test sentences per speaker. In the experi-
ments, one speaker was acting as true speaker
and all other as impostors. Rotating over all
speakers, this gives 168� 2 � 336 true tests and
167� 2� 168 � 56112 impostor tests. Table 6
shows the EER with Top 20 background speaker
set for the sentence level likelihood normalization.

Table 5

Veri®cation EER (%) for NTT database using di�erent frame transformations and sentence level normalization

GMM type

4 mix. full 8 mix. full 32 mix. diag. 64 mix. diag.

Test utterance

speed

Frame

transformation

cep cep + Dcep cep cep + Dcep cep cep + Dcep cep cep + Dcep

Normal None 2.50 1.64 1.66 1.18 1.65 1.29 1.60 1.07

All others 2.31 1.51 1.43 1.09 1.48 1.14 1.24 0.87

Top 10 2.30 1.48 1.44 1.09 1.48 1.13 1.24 0.88

Cohort 2.14 1.33 1.38 0.96 1.29 1.00 1.20 0.86

WMR 1.31 0.84 0.66 0.52 0.91 0.95 0.72 0.60

Slow None 3.79 2.96 2.46 2.06 2.95 2.36 3.15 2.57

All others 3.36 2.79 2.18 1.95 2.60 2.25 2.76 2.38

Top 10 3.33 2.77 2.16 1.95 2.62 2.26 2.76 2.39

Cohort 3.00 2.27 2.06 1.77 2.16 1.92 2.23 1.94

WMR 1.94 2.06 1.45 1.36 1.50 1.76 1.57 1.43

Fast None 3.07 2.26 2.01 1.43 3.06 2.88 2.65 2.66

All others 2.78 2.15 1.89 1.27 2.91 2.71 2.42 2.44

Top 10 2.75 2.15 1.88 1.26 2.91 2.71 2.44 2.43

Cohort 2.65 1.93 1.66 1.09 2.51 2.58 2.06 2.44

WMR 1.92 1.29 1.11 0.80 1.90 1.79 1.48 1.28

Table 4

Number of customer and impostor tests for NTT database

# True tests per

speaker

# Impostor tests per

speaker

Total # true tests Total # impostor

tests# Speakers

One session 35 5 170 175 5950

Total (®ve sessions) 35 25 850 875 29750

K.P. Markov, S. Nakagawa / Speech Communication 24 (1998) 193±209 203



In TIMIT database, the test and train condi-
tions are the same which is big simpli®cation for
the task and, consequently, it is more di�cult to
outperform the baseline performance. This is evi-
dent from the results of ``All others'' and ``Top
20'' background speaker sets which in contrast to
the multi-session NTT database are the same as
the baseline. The ``Cohort'' is slightly better, and
only WMR signi®cantly reduces the EER and we
obtained 0.09% ERR. For comparison, the best
EER reported in (Reynolds, 1995a) is 0.24% ob-
tained using cohort type utterance level likelihood
normalization.

Using a common set of true speakers and im-
postors, as in these experiments, i.e. a closed set
problem, does not allow us to assess the perfor-
mance of the speaker veri®cation system in a real
veri®cation scenario. This is because in the real
world application the system will have knowledge
only about the true speakers and neither the num-
ber of impostors nor their features can be known
ahead of time. In contrary, in the above experi-
ments, impostors are implicitly assumed to be
known to the system.

In order to simulate a real veri®cation task (an
open set problem), we performed a second set of
experiments where the same 168 TIMIT test
speakers were acting as true speakers and all other
462 train speakers served as impostors. This makes
336 true tests and 924 impostor tests. In the open
set task, we also have to address the problem of
choosing the veri®cation threshold. Calculating
the EER in this case is not the best choice since
it uses a posteriori threshold. Setting the threshold
is a challenging problem which still has not been
solved (Matsui et al., 1996).

Table 7 summarizes the results of the open set
experiments in terms of both EER and a ®xed
threshold set to the value of the EER threshold
calculated in the ®rst set of experiments (those
from Table 6). As it is apparent from the table,
in terms of EER both our methods ± frame level
likelihood normalization with cohort background
speakers and WMR technique, are better than
the baseline system. Results using a ®xed threshold
show that in this case only WMR gives signi®cant-
ly lower false acceptance rate with almost the same
number of false rejection errors (0.3% FR corre-
sponds to one rejection of a true test).

6. Discussion

6.1. Linear versus non-linear frame likelihood
transformation

When considering the type of the likelihood
transformation function f � � of Eq. (2), it is very
important to choose the right one. Since it is not
quite obvious why the linear type of f � � is not ap-
propriate, below we prove that the linear transfor-
mation of the frame likelihoods does not change
the recognition rate.

Consider the linear transformation function
f �x� � ax� b and the frame likelihood p�xtjki� of
ith speaker model at time t. Then, the transformed
likelihood is

f �p�xtjki�� � ap�xtjki� � b: �26�

In the speaker identi®cation task, we are interested
in the model iH which gives the best score. For the

Table 6

Veri®cation EER (%) for TIMIT database

GMM type

4 mix. full 8 mix. full 16 mix. full 32 mix. diag. 64 mix. diag.

Frame transformation cep cep + Dcep cep cep + Dcep cep cep + Dcep cep cep + Dcep cep cep + Dcep

None 0.72 0.61 0.43 0.46 0.40 0.46 0.59 0.66 0.57 0.76

All others 0.71 0.60 0.42 0.45 0.39 0.45 0.58 0.65 0.57 0.76

Top 20 0.71 0.60 0.42 0.45 0.39 0.45 0.58 0.65 0.57 0.76

Cohort 0.67 0.56 0.38 0.41 0.35 0.40 0.51 0.58 0.53 0.70

WMR 0.48 0.39 0.16 0.15 0.16 0.19 0.09 0.13 0.24 0.19

Sentence level normalization ± Top 20.
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standard maximum likelihood approach based on
Eq. (1), it is

iH � arg max
i

YT

t�1

p�xtjki�: �27�

When the frame likelihoods are linearly trans-
formed, the above equation becomes

iH � arg max
i

YT

t�1

�ap�xtjki� � b�

� arg max
i

aT
YT

t�1

p�xtjki� � b
a

� �
� arg max

i

YT

t�1

p�xtjki� � b
a

� �
� arg max

i

YT

t�1

p�xtjki�; �28�

which shows that whether the frame likelihoods
are linearly transformed or not, the identi®ed
speaker is the same and, therefore, that the linear
type of f � � does not change the identi®cation rate.

In the speaker veri®cation task, the EER, as
usually computed from the sorted list of all the
true and impostor utterance scores, may change
only if after the frame likelihood transformation
at least two scores (one true and one impostor
score) change their positions in this sorted list. In
other words, if for any two models ktrue and kimp,
their utterance likelihoods are related as

p�X jktrue� < p�X jkimp� or p�X jktrue� > p�X jkimp�
�29�

and the corresponding utterance scores obtained
from the transformed frame likelihoods change
the above inequalities, i.e.,

Sc�X jktrue� > Sc�X jkimp�
or Sc�X jktrue� < Sc�X jkimp� �30�
only then the EER may change.

Let us now consider the linear transformation.
Obviously, if for any i and j

p�X jki� �
YT

t�1

p�xtjki� > p�X jkj� �
YT

t�1

p�xtjkj�; �31�

then the corresponding scores will preserve the in-
equality

Sc�X jki� �
YT

t�1

�ap�xtjki� � b� > Sc�X jkj�

�
YT

t�1

�ap�xtjkj� � b�; �32�

which means the linear transformation of the
frame likelihoods would not change the veri®ca-
tion error rate.

From the above considerations follows that
only non-linear type of transformation is capable
of changing the speaker recognition rates.

Table 7

Veri®cation error rates (%) for TIMIT database ± open set problem

GMM type

4 mix. full 8 mix. full 16 mix. full 32 mix. diag. 64 mix. diag.

Frame transformation cep cep + Dcep cep cep + Dcep cep cep + Dcep cep cep + Dcep cep cep + Dcep

Equal error rate

None 1.15 1.25 0.61 0.70 1.01 1.12 0.98 1.17 1.13 1.12

Cohort 1.10 1.16 0.58 0.63 0.85 1.02 1.00 1.03 1.10 0.88

WMR 1.18 1.41 0.50 0.62 0.74 0.70 0.69 0.76 0.73 0.75

False rejection rate

None 0.90 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.90 0.90

Cohort 0.60 0.60 0.60 0.60 0.60 0.30 0.60 0.30 0.60 0.60

WMR 0.90 0.60 0.30 0.30 0.60 0.30 0.60 0.60 0.60 0.30

False acceptance rate

None 1.66 1.84 1.46 1.84 1.67 1.87 1.67 1.61 2.32 2.39

Cohort 1.68 1.88 1.52 2.03 1.71 1.99 1.61 1.52 2.16 2.49

WMR 1.52 1.63 0.83 1.08 1.17 1.05 1.08 1.07 1.31 1.05

Sentence level norm. ± Top 20.
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6.2. Frame versus utterance level likelihood normal-
ization

It is well known that the likelihood normaliza-
tion applied to utterance likelihoods does not
change the speaker identi®cation rate. Below we
show this fact and why applied at the frame level
it can be useful.

Consider, for example, the likelihood normal-
ization using ``All others'' background speaker
set (as the simplest case). Let us also denote, for
simplicity, the likelihoods from any two speaker
models i and j as pi and pj (it does not matter
whether these are frame or utterance likelihoods)
and the corresponding normalized likelihoods as
Sci and Scj. Then we have

Sci � pi
1

Nÿ1

P
b6�i pb

� pi

1
Nÿ1
�PN

b�1 pb ÿ pi�
� pi

C ÿ pi
Nÿ1

: �33�

The same holds for Scj:

Scj � pj

C ÿ pj

Nÿ1

: �34�

Since in the speaker recognition task we are inter-
ested in their relation, then, if the likelihoods ratio
is

pi

pj
� k; �35�

the normalized likelihoods ratio becomes

Sci

Scj
� pi�C ÿ pj

Nÿ1
�

pj�C ÿ pi
Nÿ1
� � k

�N ÿ 1�C ÿ pj

�N ÿ 1�C ÿ kpj
� k

Aÿ pj

Aÿ kpj
;

�36�
where A � �N ÿ 1�C.

Now, if k > 1, then

k
Aÿ pj

Aÿ kpj
> k �37�

and if k < 1 then

k
Aÿ pj

Aÿ kpj
< k: �38�

This means that this type of likelihood normaliza-
tion gains the ratio between likelihoods, but does
not invert the inequality. That is why, when it is

applied only once at utterance level, for speaker id-
enti®cation task, it cannot change the identi®cat-
ion rate (the same holds for the other types of
background speaker selection), because the speak-
er with maximum utterance likelihood p�X jk� after
such normalization will still have the maximum
normalized likelihood Sc�X jk�.

Let us now consider the likelihood normaliza-
tion when applied at frame level. For each frame
we will have a gain (or loss) in the likelihood ratio
which is accumulated over the whole utterance.
Then, in the case when the target speaker i is mis-
recognized with a similarly performing (having
similar utterance likelihood) speaker j because of
a small number of outlier frames, the loss acquired
from these outliers can become less than the gain
from the majority of the frames. Thus, the target
speaker utterance level score can become bigger
and it will be correctly recognized.

6.3. Choosing the WMR weight function

The weight, as de®ned in Section 4.2, is a func-
tion of the model's rank. In order to choose an ap-
propriate function, it is necessary to acquire some
additional knowledge about the rank. Obviously,
the rank of a given model is a random variable
since it depends on a random variable ± the mod-
el's likelihood p�xtjk� (assuming xt is itself ran-
dom). Then, we can gather some statistics of the
rank, which would give us insight of how to better
set the weights.

Our task is to improve the true speaker models
performance, because usually when a speaker is
misclassi®ed it is not due to a non-target speaker
doing well, but rather to true speaker's model do-
ing poorly (Gish and Schmidt, 1994). That is why
we would be interested in probability of target
speaker model having rank r as well as in probabil-
ity of non-target speaker model having the same
rank. In other words, we need to know the proba-
bility density functions (pdf) of target and non-tar-
get model ranks ± ftarget�r� and fnon-target�r�. They
can be estimated easily on the training data.
Fig. 4 shows these functions estimated using the
NTT database and eight mixture GMM (cepstral
feature vectors only) in the linear and log do-
mains.
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We can see that ftarget�r� is almost exponential
while fnon-target�r� is close to uniform. The same
functions obtained using all other types of GMM
had a similar shape.

Generally, rank's pdf f �r� as well as the weight
w�rk� is a function of the rank. And here naturally
comes the following question: What if we use the
estimated probabilities P �r� � Pr�rktarget

� r� as
weight-type scores (instead of conventional likeli-
hoods) in our test? It is possible and we have done
such an experiment. The obtained results were bet-
ter than the baseline but worse that the WMR test.
This is because the probability estimates are based
on the training data and we cannot expect good
generalization on unseen data (test data) of this
approach. That is why, by correcting the shape
of ftarget�r�, i.e. by using a proper weight function,
we could deal with this problem.

Since the weight w corresponds to log P�r�, we
should focus our attention on Fig. 4(b) in order to
choose a weight function. For the top 5±10 ranks,
log ftarget�r� is close to exponential and after that it
becomes almost linear. Setting the weight to be an
exponential function of the rank will approximate
the shape of log ftarget�r� for the top ranks. A lin-
ear function will be an approximation for the other
values of the rank. Our preliminary experiments
(Markov and Nakagawa, 1996a) showed that lin-
ear weight performs similarly or even worse than
the baseline. It appears, that the most critical, in
recognition point of view, is the shape of the
weight function for the top ranks. To verify this,
we experimented with sigmoidal weight function
which is quite di�erent, especially, for the top
ranks. It performed the worst.

When we have decided what weight function to
use, the next step is how to choose its parameters
(recall Eqs. (22)±(24)). Let us ®rst ®nd the mean
value of the weight for the target and non-target
speakers. Weight mean can be expressed by the
weight function and the rank pdf. The expected
value of a function of a random variable is (Pa-
poulis, 1991)

Efg�x�g �
Z1
ÿ1

g�x�f �x� dx; �39�

where f �x� is the pdf of the random variable x and
g�x� is a function of x. If x is of discrete type, the
above equation becomes

Efg�x�g �
X

i

g�xi�Pr�x � xi�: �40�

Therefore, for the two means we have

mtarget �
XN

r�1

g�r;H�Ptarget�r�; �41�

mnon-target �
XN

r�1

g�r;H�Pnon-target�r�; �42�

where g�r;H� is the weight function with parame-
ters H � fhig. Before going to determine the opti-
mal value of each parameter hi, we have to know
whether it is able to change the recognition rate
or not. Obviously, if a change of some parameter
has the same e�ect on both target and non-target
speaker scores (weights) the recognition rate will
be the same. However, we cannot examine the
speaker scores because they are not available prior

Fig. 4. Rank's pdf for target and non-target speaker models (NTT database, eight mix. GMM).
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to the recognition. But since the e�ect of the pa-
rameter change on the means mtarget and mnon-target

is the same as on the scores, we can focus our anal-
ysis on them. Now we can formulate our decision
on hi as: if any change of hi results in the same de-
gree of change of mtarget with respect to the change of
mnon-target, then hi will have no e�ect on the recogni-
tion rate. 1 Thus, we have to analyze the following
function:

J�hi� �
@
@hi

PN
r�1 g�r;H�Ptarget�r�

@
@hi

PN
r�1 g�r;H�Pnon-target�r�

; �43�

and if J�hi� � const P 0 then hi will be of no inte-
rest. In the other case, when J�hi� 6� const, we can
®nd the optimal hi as one which maximizes the dif-
ference between mtarget and mnon-target:

hopt
i � arg max

hi

XN

r�1

g�r;H�Ptarget�r�
 

ÿ
XN

r�1

g�r;H�Pnon-target�r�
!
; �44�

which is equivalent to

hopt
i � arg�J�hi� � 1�: �45�

It can be easily veri®ed that when the weight is a
linear function of the rank (see Eq. (23)), then
J�A� as well as J�B� is constant. Our experimental
results con®rmed that the speaker recognition rate
in this case does not depend on either A or B. For
the exponential weight (see Eq. (22)), the analysis
shows that only the parameter B can e�ect the rec-
ognition rate, which is also experimentally veri®ed.

The expression under the big parentheses in
Eq. (44) can also be used as a measure of the
weight function e�ectiveness with respect to the
recognition rate. The bigger this di�erence is, the
better recognition rate can be expected. For the ex-
ample of Fig. 4, we calculated this di�erence for
the linear and exponential weight functions. We
obtained 0.39 and 0.45, respectively. It is also pos-
sible to assess in the same way the e�ectiveness of
the conventional log-likelihood score by ®rst aver-

aging (normalized) log-likelihoods for each rank
and then using these averages as values of dis-
cretely de®ned weight function. For this case we
obtained 0.38 di�erence between target and non-
target means, which is very close to that for the lin-
ear weight function and far below from that for
the exponential weight function. This explains
why the WMR test with exponential weight is su-
perior to the conventional maximum likelihood
test.

7. Conclusion

We have developed and experimented a non-lin-
ear frame likelihood transformation method,
which allowed as to apply successfully likelihood
normalization technique for the speaker identi®-
cation task. For the speaker veri®cation, the com-
bination of frame and utterance level likelihood
normalization was also successful. Another new
technique, WMR transformation, was experiment-
ed with as well. Both approaches showed better re-
sults in the speaker identi®cation and speaker
veri®cation compared to the standard accumulat-
ed likelihood methods on both the TIMIT and
NTT databases. The NTT database results indi-
cate that our transformation techniques are robust
against variations in the speaker voices as well as
utterance speeds. The best speaker identi®cation
rate of 97.3% and ERR of 0.52% are both achieved
using WMR technique. For the TIMIT database,
the identi®cation rate of 98.1% is not the best ever
reported, but we attribute this to the fact that our
front-end analysis was not optimized for this data-
base. However, even in this case, we achieved ex-
tremely low veri®cation EER of 0.09%.

We also have shown that any linear transforma-
tion of the likelihoods at the frame level does not
a�ect the performance of the speaker recognition
system.

The number of possible frame likelihood trans-
formation techniques, for sure, is not limited to
those presented in this paper. There is a room
for further research in this direction, for looking
for new types of non-linear transformation func-
tions as well as incorporating these techniques in
the process of GMM training.

1 It is not di�cult to prove this statement. We skip the proof

in order to save some space.
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