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Abstract. The Russian language is characterized by very flexible word order,
which limits the ability of the standard n-grams to capture important regulari-
ties in the data. Moreover, it is highly inflectional language with rich morphol-
ogy, which leads to high out-of-vocabulary (OOV) word rates. In this paper, we
present comparison of two advanced language modeling techniques: factored lan-
guage model (FLM) and recurrent neural network (RNN) language model, ap-
plied for Russian large vocabulary speech recognition. Evaluation experiments
showed that the FLM, built using training corpus of 10M words was better and
reduced the perplexity and word error rate (WER) by 20% and 4.0% respectively.
Further WER reduction by 7.4% was achieved when the training data were in-
creased to 40M words and 3-gram, FLM and RNN language models were com-
bined together by linear interpolation.

Keywords: language modeling, Russian language, factored language models,
recurrent neural network, inflectional languages.

1 Introduction

Although the underlying speech technology is mostly language-independent, differ-
ences between languages with respect to their structure and grammar have substantial
effect on the automatic speech recognition (ASR) systems performance. Research in the
ASR area has been traditionally focused on several main languages, such as English,
French, Spanish, Chinese or Japanese, and some other languages, especially eastern
European languages, have received much less attention.

The Russian language belongs to the Slavic branch of the Indo-European group of
languages, which are characterized by complex mechanism of word-formation and flex-
ible word order. Word relations within a sentence are marked by inflections and gram-
matical categories such as gender, number, person, case, etc. [1]. Sentence structure is
not restricted by hard grammatical rules as in the English, German or Arabic languages.
These two factors greatly reduce the predictive power of the conventional n-gram lan-
guage models (LMs).

Regardless, in current Russian large vocabulary continuous speech recognition
(LVCSR) systems conventional n-grams are usually used [2,3,4]. An improved bi-gram
was proposed in [5] where the counts of some of the existing n-grams are increased after
syntactic analysis of the training data. Long-distance dependencies between words are
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identified and added as new bi-gram counts. This allowed to reduce the word error rate
of a speech recognition system with dictionary of 208K words from 58.4% to 56.1%.

Recently, for the Arabic, which is also highly inflectional language, it was pro-
posed to incorporate word features, called factors, into the language model [6]. This
factored language model (FLM) implements a back-off procedure by excluding factors
one by one or even several factors at a time without taking into account factor’s distance
from the predicted word. This improves the robustness of the probability estimates for
rarely observed word n-grams. Using this model, relative WER reduction of 3.4% was
achieved for Arabic LVCSR system with 70K vocabulary size [7]. For the Turkish lan-
guage, it was reported that the FLM reduced the WER by 1.7% relative for a 200K
words ASR system [8].

For the Czech language, which is also morphologically rich, implementation of neu-
ral network (NN) based language models was presented in [9]. Using such 4-gram LM
for the Czech lecture recognition task, WER relative improvement of 15% was obtained.
To be able to use larger context, LM based on recurrent neural network (RNN) was
proposed in [10]. RNN LMs allow effective processing of arbitrary length sequences,
which overcomes the main n-gram drawback - dependency on only few consecutive
words.

This paper describes our implementation of the FLM and RNN LM for Russian
LVCSR with vocabulary of 100K words. We investigated the influence of different fac-
tors for the FLM and different size of the RNN hidden and output layers on the language
model performance. Both language modeling techniques are implemented using n-best
re-scoring. Best, in terms of WER, was the interpolation of the conventional 3-gram
LM with both the FLM and RNN LM.

2 Factored Language Models

In the factored language model (FLM), it is proposed to include word features, called
factors, in the standard n-gram language model. Factors of a given word can be any
grammatical information about the word, such as its lemma, stem, root, ending, part-
of-speech, etc. In the FLM, word sequence W = {w1, w2...wt} is represented by
a sequence of K factors for each word wi, f1:K

i = {f1
i , f

2
i ...f

K
i }. A probabilistic

language model is estimated over the factor vectors. Using n-gram-like formula, the
general model takes the following form P (f1:K

t |f1:K
t−1 , f

1:K
t−2 ...f

1:K
t−n+1), which can be

simplified to P (ft|f1, f2...fm), where ft = wt and {fi}, i = 1...m, m ≤ K ∗ (n− 1)
is any combination of factors. If an n-gram of word or factor is not sufficiently observed,
generalized back-off procedure is used. As shown on Fig.1(b), during the back-off any
factor can be dropped at each step in any order. This flexible back-off procedure is the
main advantage of the FLM.

In order to obtain a good FLM performance, we need to tune its parameters: the
combination of conditioning factors (factor set) and the back-off tree. In [6], two ways
were proposed to optimize these parameters: manually choose the factor set and fix
the back-off tree based on linguistic knowledge [8]; automatically determine optimal
parameters using genetic algorithm (GA) [6,7].
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Fig. 1. N-gram and FLM back-off trees. (a) Standard n-gram back-off path has strict order of
dropping words, (b) In the FLM case, any factor may be dropped at each step resulting in many
possible paths.

In [6], it was demonstrated that the factor set and back-off tree optimized using GA
can perform better than hand-selected ones. In addition, relative WER reductions pre-
sented in [6] and [7] were higher than those reported in [8].

The genetic algorithm for FLM optimization seeks the optimal factor set and back-
off tree based on minimizing the model perplexity over some test set. This procedure
produces many FLMs and those with the lowest perplexity are further evaluated on
speech test data.

3 Recurrent Neural Network

The main advantage of the RNN LM over conventional n-gram and feed-forward NN
LM is the ability to store arbitrary long history of given word [10].

Fig. 2. Recurrent neural network architecture for language modeling

The RNN used in our experiments is shown in Fig.2 and has three layers. An 1-of-N
vector representation x(t) of the current word is fed to the input layer, which also takes
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the output s(t-1) of the hidden layer. This recurrent feedback stores the word history
information in the hidden layer. The output layer gives the probability distribution of
the next word y(t) and therefore uses neurons with softmax activation function. The size
of the input and output layers is defined by vocabulary size, but the size of the hidden
layer is a free parameter, which has to be determined experimentally.

Learning of the weight matrix between the hidden and the output layer is the most
time consuming part in the NN training. To reduce the computational complexity, it was
proposed to factorize the output layer using classes [11]. Words are mapped into classes
with frequency binning, which proportionally assigns words to classes based on their
frequency. Thus, the number of classes becomes another free parameter of the model.

4 Language Resources

Our text corpus contains 41M words with vocabulary size of about ∼100K words. This
corpus was assembled from recent news articles published by freely available Internet
sites of several on-line Russian newspapers for the years 2006-2011. We split our corpus
into 40M words train set and a test set consisting of 1M words. For the first experiments
with FLM and RNN LM 10M words were separated from the full train set and used as
small train set.

Word features for the FLM were obtained using the TreeTagger tool [12] with tagset
described in [13]. This tool annotates words with lemma and morphological tag, which
contains detailed grammatical information about the word, such as POS category, gen-
der, number, case, etc.

In addition to the word, lemma and morphological tag factor types, we use two extra:
POS category and gender-number-person factor, which contains important grammati-
cal information for the word relations in a sentence. The list of all factor types, we
experimented with, is shown in Table 1.

Table 1. Factor types for the Russian language used in the experiments

Factor type Description Size
W word 99 958
L lemma 23 742
T morphological tag 819
G gender, number and person 30
P part-of-speech (POS) category 10

The LM training corpus is preprocessed so that every word is replaced with a vector
of all factor types. For instance, word ’брэнды’ (brands) is replaced with the vector
{W-брэнды:P-N:T-Ncmpnn:L-брэнд:G-MP}.
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5 Experiments

5.1 Speech Database and Feature Extraction

In our experiments, we used the SPIIRAS [14] and GlobalPhone [3] Russian speech
databases. Speech data are collected in clean acoustic conditions. In total, there are
28671 utterances pronounced by 165 speakers (86 male and 79 female) with duration
of about 38 hours. Speech test data consist of 10% of the GlobalPhone recordings pro-
nounced by 5 male and 5 female speakers not used for acoustic model (AM) training.

The speech signal was coded with energy and 12 MFCCs and their first and second
order derivatives. The AM consists of 5342 tied states with 16 mixture GMMs as output
models. Our speech decoder (Julius ver. 4.2 [15]) produces 500-best hypothesis list,
which we use for re-scoring by the selected FLMs.

The FLMs we built using SRILM toolkit (v.1.5.11) [16]and the RNN LMs were
implemented using the RNNLM toolkit (v.0.3b) [11].

5.2 Experimental Results

To determine parameters of the FLM and RNN LM, we used the small train set of 10M
words, which speeds up this step. As a baseline LM, we use conventional 3-gram trained
on same train data using Kneser-Ney discount. Its perplexity is 537 and the word error
rate is 35.4%.

FLM Evaluation

First, we evaluated each factor type from Table 1 individually. For this reason, we built
several small FLMs using the word and one of the other factor types for time context 1
and 2 corresponding to 2-gram and 3-gram contexts respectively. In other words, train
FLMs, which model probability distributions pk(wt|w1, fk1, w2, fk2) for k = 1...K .
On this step, we set back-off path manually, in a manner similar to the conventional
3-gram back-off path, which has two possible variations:

– Back-off path 1: Drop the words in time distance order: w2, w1, then drop factors
in the same order: fk2, fk1.

– Back-off path 2: First drop the most distant word and factor w2, fk2, then less
distant ones w1, fk1.

The performance of these FLMs presented in Table 2 shows that the back-off path has
big influence on the perplexity. Since factors G and P showed the perplexity worse than
baseline in both cases, we choose to continue with L and T factor types only.

Then, using GA, we find the optimal factor set and back-off trees for factor types W,
L and T using time context 1, 2 and 3. In Table 3, results obtained using FLMs with
lowest perplexities are presented. The best perplexity was achieved using the largest
model F1, which is a significant 19.9% reduction relative to the baseline. Using model
F3 with longer context, the lowest WER was achieved. However, the biggest relative
WER reduction of 6.9% is obtained by the interpolated with 3-gram model F2, which
is built with quite small factor set and not highly branched back-off tree. So, we chose
this model for further experiments.
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Table 2. Perplexities of FLMs built from the small training set with different back-off paths. The
baseline perplexity is 537.

Factor types Back-off path 1 Back-off path 2
WL 611 525
WT 685 488
WG 988 714
WP 652 549

Table 3. Performance of FLMs built using most effective factors

Factors FLM 3-gram + FLM
Model (# back-off tree nodes) perpl. WER,% Int.coef perpl. WER,%
3-gram 1.0 537 35.4

F1 W1,L1,T1,W2,L2,T2 (55) 430 34.5 0.51 437 33.3
F2 W1,L1,T1,L2,T2 (20) 440 34.4 0.45 445 33.0
F3 W1,L1,T1,L2,T2,T3 (43) 460 34.0 0.43 463 33.4

RNN LM Evaluation

To determine main parameters of RNN LMs: the number of hidden nodes and the num-
ber of word classes, we trained several models using the small train set. Perplexity
and WER of those models were much higher than baseline, about 1100 and 38% re-
spectively. However, when interpolated with the baseline 3-gram, their performance
improved significantly. In Table 4, we summarize results obtained from the 3-gram and
RNN LM interpolation. The interpolation coefficient (Int.coef.) was manually tuned for
each model.

Table 4. Performance of the RNN LM interpolated with 3-gram. The baseline perplexity is 537
and the WER is 35.4%.

# classes
# hidden 150 500 1000
nodes Int.coef perpl. WER,% Int.coef perpl. WER,% Int.coef perpl. WER,%
100 0.68 466 33.5 0.64 470 33.3 0.68 503 33.3
150 0.67 474 33.6 0.67 457 33.3 0.66 462 33.1
200 0.69 454 33.3 0.77 458 33.5 0.64 471 34.1
250 0.81 459 33.9 0.63 469 33.5 0.67 459 33.5

Perplexity of all interpolated models is lower than the baseline and is in the same
range as of the FLM. The best relative WER improvement of 6.5% was obtained us-
ing 150 hidden nodes and 1000 classes. These parameters were chosen for the further
experiments.
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Results Using the Full Training Set

After defining optimal parameters for both LM types, the 3-gram and FLM (F2) models
were re-trained using all training text. On the other hand, the RNN model with 150
hidden nodes and 1000 classes (h-150, c-1000) was updated with one more iteration
using the full train data. Using the full training set, the baseline 3-gram LM perplexity
became 293 and the word error rate - 33.9%. In the Table 5, results obtained using the
new models and their interpolations are presented. While FLM model WER improved,
the result of its interpolation with the 3-gram did not change. However, in terms of
WER, performance of the stand-alone RNN model improved significantly from 38.3%
to 32.9%. The best WER relative improvement of 7.4% was achieved by the linear
interpolation of all the 3 models.

Table 5. Performance of FLM and RNN LMs built using all train data

# Model Int.coef. perpl. WER, %
1 3-gram 1.0 293 34.0
2 FLM (F2) 1.0 242 33.7
3 (1) + (2) 0.55 + 0.45 241 33.0
4 RNN (h-150, c-1000) 1.0 393 32.9
5 (1) + (4) 0.49 + 0.51 244 31.9
6 (2) + (4) 0.6 + 0.4 215 32.0
7 (1) + (2) + (4) 0.3 + 0.4 + 0.3 216 31.5

6 Conclusions

This paper presents implementation of some advanced language modeling techniques
such as factored language model and recurrent neural network language model for Rus-
sian speech recognition task. We evaluate those models and present the results obtained
using small and large training sets. Obtained WER relative improvement of 7.4% is
quite high, in comparison to improvements achieved for other morphologically rich
languages such as Arabic and Turkish using advanced language modeling techniques
[7,8].

Factored language models seems to be able to capture additional information and
improve LM probability estimates, when the amount of training data is limited. On
the other hand, RNN LM evaluation showed significant improvement applying large
training set.
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