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Abstract—As part of their learning journey, students fre-
quently encounter challenges and make errors, especially with 
algorithmic programming questions. Regrettably, providing tai-
lored solutions for these mistakes can impose a significant burden 
on instructors in terms of time and effort. To address this, 
automated program repair (APR) techniques have been explored 
to generate such fixes a utomatically. P revious r esearch has 
investigated the use of symbolic and neural approaches for APR 
in the educational domain. However, both types of approaches 
necessitate substantial engineering endeavors or extensive data 
and training. In this study, we propose the utilization of a large 
language model trained on code to construct an APR system 
specifically d esigned f or s tudent p rograms. O ur s ystem h as the 
capability to rectify semantic errors by employing a few-shot 
example generation pipeline solely based on the input code. We 
assess the performance of our system on one dataset of algorithm 
implementations, namely QuixBugs. The results demonstrate that 
the novel example generation pipeline not only enhances the 
overall system’s performance but also ensures its stability.

Index Terms—bug localization, bug fixing, p rogram repair, 
large language model. few-shot prompting, in-context learning

I. INTRODUCTION

In recent years, programming education has seen significant 
growth, leading to the challenge of providing effective learning
support to beginner students. Manual assistance from teaching 
assistants is often impractical on a large scale, driving the need 
for automated tools to offer tailored feedback for programming 
errors. Automated program repair (APR) has emerged as a
field within software engineering [1], [2], introducing various
methodologies [3], [4] to generate fixes for student mistakes in 
introductory assignments. The APR system aims to generate
a patch that aligns with the given specifications, primarily 
defined b y t he i nstructor’s t est c ases, w hile m inimizing code
alterations to enhance the learning experience for students. 
Automated systems for repairing student programming as-
signments have historically relied on two main approaches:
symbolic techniques [3], [4] and neural methods [5]. Symbolic 
techniques require significant e ngineering e ffort a nd exper-
tise in program analysis and repair, tailored to the specific
programming language used by students. Neural methods, on
the other hand, often require large amounts of data, making
them more suitable for specialized applications like Massive
Open Online Courses (MOOCs). Additionally, these systems
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may specialize in either syntax repair or semantic repair, with
semantic repair assuming the code contains no syntactic errors.

We propose a prompting-based system using a large lan-
guage model (LLM) to tackle bug localization and program
repair challenges. Our approach uses pre-trained LLMs, avoid-
ing the need for custom logic or retraining. In bug localization
and program repair, we adopt the approach of using LLMs
as proposed in [6]. To overcome stability challenges, we
introduce a novel framework based on few-shot examples.
The pipeline involves code summarization-generation and code
modification. This enables generating question-related exam-
ples applicable to various problem classes.

We evaluate our system by applying it to each of the
2 chatbot LLM models: Galpaca [7] [8], GPT-3.5-turbo [9]
on one student programming dataset: QuixBugs [10]. The
programs in the dataset are filtered to contain only semantic
mistakes. The accquired results has proven the effectiveness
and efficiency of our approach where it dominates in most
of the benchmarks. We also carried out two ablation studies
to understand the impact of our design decisions. To our
knowledge, the choice of building blocks for the current
pipeline outperform all of the other variants.

To summarize, we make the following contributions
• We propose an approach to automatically repair mistakes

in student programs using a large language model trained
on code. Our approach follows a Socratic Models [11] to
propagate messages through contiguous blocks to achieve
the final goal. In contrast to prior work, our approach
relies on no manual symbolic logic nor training data and
thus can be applied to any domain.

• We implement our system based on an open source LLM
and a popular commercial LLM. We then evaluate it
on a dataset of real student programs drawn from an
online programming challenge. We compare our few-shot
prompting performance to baselines ranging from zero-
shot to manual fixed few-shot (related and unrelated). The
results show that our proposed method outperforms other
baselines in most of the benchmarks. Thus, our novel
approach becomes the default choice to design few-shot
examples, especially in the case of bug localization/fixing.

The remainder of this paper is structured as follows, Section
II introduces background and related works on the bug local-
ization/fixing and large language models. After that, Section
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III describes our proposed approach in details. Next, Section
IV presents our experimental setup followed by the results and
discussions from Section V. Finally, Section VI concludes our
findings.

II. BACKGROUND AND RELATED WORKS

A. Bug Localization

Automated bug localization aims to identify bugs in pro-
grams accurately. It can be classified into different levels
of complexity: bug detection, line-level bug localization, and
token-level bug localization. Bug detection lacks real-world
applications and is often unnecessary when test suites are
available. Token-level localization can lead to many false pos-
itives, while line-level localization strikes a balance, receiving
significant attention in program analysis [12].

Spectrum-based fault localization (SBFL) techniques [13]
use execution traces of passing and failing tests to identify
potentially faulty code elements. They calculate the suspi-
ciousness of code elements using statistical analysis methods
like Ochiai [12] and Tarantula [14]. However, SBFL may
not directly associate a code element with the test failure.
Mutation-based fault localization (MBFL) [15] addresses this
limitation by mutating code elements and evaluating their
impact on test outcomes. Researchers have explored other
fault localization techniques including learning-based, data
mining-based approaches [16], [17]. In the end, traditional
bug localization methods rely on code-specific features like
control flow, data flow, and ASTs, demanding significant
engineering for representation design. This restricts their utility
across domains and languages. To address this, we present
a new bug localization approach that incorporates embedded
programming knowledge from extensive repositories. This
design avoids manual efforts and caters to diverse domains.

B. Program Repair/ Bug Fixing

Automated program repair (APR) is an emerging field
focused on automatically rectifying programming errors [18].
These repair techniques take a faulty program and a cor-
rectness specification (typically a test suite) as inputs and
generate a corrected program by making slight modifications
to satisfy the given specification. Conventional repair tools
employ different approaches for generating patches based on
program semantics and the provided specification. Semantic-
based repair tools, such as SemFix [19] and Angelix [20],
utilize symbolic execution to produce patches. On the other
hand, search-based repair tools like GenProg [21] and TBar
[22] explore a predefined search space and leverage dynamic
execution results to find correct patches. Thus, search-based
conventional methods are limited in their search spaces which
can not match the demand of a general program repair
solution.

In addition to conventional methods, the utilization of neural
machine translation (NMT) models has emerged as an alter-
native approach for program repair. Specifically, employing
a robust language model, NMT-based APR techniques have
exhibited superior performance compared to most rule-based

approaches [23], [24]. NMT models use deep learning to
encode flawed source code into a latent representation, which
is then decoded into the correct target code. Through iterative
loss minimization and weight updates, NMT models learn
to grasp the connection between flawed and correct code,
avoiding manual design of fixed patterns or features. However,
source code’s unique traits challenge NMT models in bug
fixing [24]. Current methods lack repository-wide knowledge,
relying on limited snippets. NMT-based APR lacks language
syntax awareness, resulting in incomplete code comprehen-
sion. This can be solved by integrating deep models with
ample knowledge, making large language models ideal for
program repair [24].

C. Automated Program Repair Using Large Language Model
Prompting

Expanding transformer-based language models, with factors
like model size, data, and compute, boosts performance in
downstream NLP tasks [25]. Large language models (LLMs)
exhibit emergent capabilities, including few-shot learning,
zero-shot problem solving, chain-of-thought reasoning, and
instruction following [26]–[28]. LLMs with 100B+ parameters
support few-shot learning via in-context prompts [25], ush-
ering the ”pre-train and prompt” era. Prompting gains wide
adoption for various NLP tasks [29].

Various endeavors have been made to perform bug local-
ization and program repair using large language prompting
techniques. In a recent study [6], Codex is employed as an
assistant to process diverse forms of input, including code,
code with hints, code with docstrings, docstrings alone, and
input-output examples. This approach involves inserting the
input between two comments: ”fix the bug in the following
function” and ”fixed function” while requesting the desired
output in subsequent lines. Although achieving satisfactory
performance on the QuixBugs dataset [10], this prompting
mechanism is restricted to a zero-shot prompting template.
Additionally, the fact that Codex is not a chatbot leads to a
clear distinction from few-shot prompting, thus overlooking
a crucial aspect of prompting. Another simultaneous effort,
known as REPEATNPR [30], leverages program dependence
analysis to extract slicing-based contextual information, en-
hancing the APR task. Furthermore, this work introduces
an ensemble framework that integrates multiple APR mod-
els through a filtering mechanism. Despite the sophisticated
framework, REPEATNPR still relies on a dataset split for
training. Given our objective of developing a domain-agnostic
method without the need for training, we pursue an alternative
path distinct from REPEATNPR.

III. APPROACH

Figure 1 describes the overview of our framework. To
construct a set of in context examples for few-shot prompting,
we first ask the LLM to summarize the buggy code. After
that, we generate a presumably correct implementation of the
summary. Subsequently, a chosen line is modified to result
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in a buggy version of the code. Finally, we construct the an
example from the generated correct-buggy pairs of programs.

Fig. 1. Overview of our method

A. General Prompt Template

In this section, we describe the general prompt template
for subsequent sections. Using chatbot models, prompts fol-
low a consistent approach, including the example generation
pipeline. Each prompt begins with a system message defining
the LLM’s role and behavior in a conversation with the user
for a specific task (lines 1-3, Fig. 2). Depending on the task,
we fill in the corresponding <user> and <assistant>
roles. LLMs trained on different tasks receive distinct instruc-
tions, including these roles. We condition the LLM using the
<expected_behavior> tag to specify the desired output
type. The user’s question, with a concise text description and
code block, follows, separated using ```python tags for
code parsing. For zero-shot prompting (default), the prompt
fills slots from lines 1 to 6. For few-shot prompting, additional
examples adhere to a similar format (lines 4 to 7, including
the answer) and are inserted before line 4.

B. Bug Localization Prompting

In this section, we describe the process of input
processing, prompt creation, and outputs parsing for the
bug localization task. This process is applicable regardless
of the presence of few-shot examples. For bug localization,
we set <expected_behavior> as Analyst always
considers the previous query carefully.
Analyst always extracts one buggy line in
the provided Python code. to ask the LLM for
exactly one answer on the buggy line location, acting as
a zero-shot chain-of-thought [28]. The question Please
analyze the following code and locate the
buggy line. aligns with common scenarios encountered
in practice. After inputting the buggy program within
backticks, we define the output format, including line index
and content. The inferred content of the line is expected,
not directly copied from the input buggy code (see Section
IV-B). By explicitly specifying the desired format, we enable
parsing all outputs by extracting text within backticks, even
in cases of zero-shot prompting.

C. Program Repair Prompting

Similar to bug localization, we begin by replacing the
extracting command in the <expected_behavior> by
Analyst always provides the corrected code
after fixing the bug. In addition to the buggy pro-
gram, the LLM is given the ground-truth buggy line location

Fig. 2. General prompt template (line 1-6) with the expected answer (line 7).
Few-shot examples are inserted between line 3 and line 4.

(and its content). To complete the process, the output format
entails another block of Python code.

D. Generate few-shot demonstrations

Here, we introduce our main contribution: creating few-
shot examples solely from input codes, eliminating the need
for domain expertise. Each example includes correct and
buggy programs labeled with the buggy line’s location. Our
method combines code summarization and code generation to
generate partially correct code, and code mutation to create
the corresponding buggy version. This approach labels bug
localization and repair tasks, serving as integrated few-shot
demos in the prompt. In the following sections, we describe
each component in details.

1) Code Summarization and Generation: First, we ask
the LLM to summarize our input buggy code with a
simple <expected_behavior> of Analyst always
provides a summary of the code inside the
backticks. and a simple <question> of Please
tell me what does the code do.. Subsequently,
we prompt the LLM to produce a code snippet, typically a
function, that embodies the summarized information. In order
to enhance the LLM’s conditioning for the desired function,
we extract the function prototype, typically found in the first
line of the code, and incorporate it into the code generation
prompt. Furthermore, we modify the role of the assistant to
Coder as it is commonly associated with code generation
tasks. In practice, given a code generation prompt, we will
generate several candidates and evaluate them on a small set
of public test cases provided with the questions to pick the
most suitable generated code which is preferably bug-free.
If none of the generated codes passed any test cases, we go
back and re-generate them.

2) Code Modification: In this stage, our objective is to
generate a modified version of the synthesized correct code
with one controlled buggy line. Using the LLM, we provide
appropriate instructions for natural modifications applicable
across domains. Initially, we emphasize the need for a new
code with specific modifications. To identify a line eligible
for modification, we scan the entire program for variables. We
examine each line involving any of the variables, excluding
assignments of variable-primitive values (e.g., empty list,
constants) and lines with print, assert, and raise keywords.
From the identified candidates, we randomly select one line for
modification and integrate it into the prompt template. Similar
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to the code generation pipeline, we go back and generate new
modifications if none of them change our selected lines.

IV. EXPERIMENT

A. Datasets

QuixBugs is a benchmark for program repair [10], con-
sisting of buggy implementations of 40 classical computer
science algorithms in Python and Java. Each buggy program
has a corresponding correct program with a single edit. Test
suites with multiple input-output examples are provided for
each program. In this work, we focus on the Python version
of the dataset.

B. Data Processing

To prepare bug localization formats, we use the difflib
Python package to identify discrepancies between the faulty
program and its correct version. The output contains multiple
changes, and we determine the number of bugs by counting
non-equal changes. We convert batch changes into single-line
changes for line-based bug localization. The input includes the
faulty code, and the output is a list of buggy lines represented
by their indices. Practically, we take only the first predicted
line as our answer because QuixBugs has only one bug per
program. To address the program repair task, the input includes
the faulty program and its corresponding ground-truth buggy
line indices. The desired output is simply the model-generated
corrected program.

C. Evaluation Metrics

1) Bug Localization Metrics: To evaluate the bug localiza-
tion results, we implement several standard metrics:

• Top-1 accuracy [31] Atop−1 ∈ [0.0, 1.0]. Given a lo-
calization prompt, we ask our LLMs to output only one
answer and compare it with the ground truth.

• Top-3 accuracy [31] Atop−3 ∈ [0.0, 1.0]. In addition to
Atop−1, we output 1 line before and 1 line after the
model prediction as buggy lines. We argue that LLM
sometimes can be confuse between indices starting from
0 and indices starting from 1.

2) Bug Fixing Metrics:
• Exact Match Accuracy [6] Aexact ∈ [0.0, 1.0]. Given a

repair prompt, we ask our LLMs to output the program
after fixing the bug. If a program is exactly equal to
its corresponding correct version, we count the result as
correct.

• Execution Accuracy [6] Aexe ∈ [0.0, 1.0]. Given a fixed
program, we run it with the hidden test cases of the
problem. If the program passed all the tests, we count
the result as correct.

D. Large Language Model Backbones

In this work, we use 2 different LLM backbones: Galpaca-
30b, and GPT-3.5-turbo. While the former is a variant of
the well-known open source LLM called LLaMA [32] from
MetaAI, the latter is a proprietary software from OpenAI [9]
that has already proven its peak performance on multiple tasks.

E. Baseline Methods

To create a fair comparison between baseline methods and
ours, we only consider different LLM prompting approaches
ranging from few-shot to zero-shot. All of the prompts are
then fed to the same set of LLMs to answer the same questions
without any exceptions.

• Related fixed few-shot prompting. In this baseline, we
provide the prime number checking problem as a fixed
few-shot example for all of the input buggy codes. We
alter one line in a program meant for prime checking,
treating the modified version as a bug-containing pro-
gram. We follow the same data processing pipeline (refer
to IV-B) for this example. The example choice is open,
as long as it has no dataset link and consists of over three
lines to avoid triviality

• Unrelated fixed few-shot prompting. A related example
improves the prompt’s performance, while an unrelated
one could yield the opposite. To assess this, we manually
design a function checking if a string starts with a number
which should be unrelated to the algorithmic questions in
the dataset.

• Zero-shot prompting. In this baseline, we simply ask
the LLMs to answer the bug localization (program repair)
question without any conditioning. This baseline serves as
a lower bound to test the embedded knowledge in each
LLM. Incorrect formats from the outputs are expected
(see III-B, III-C).

F. Settings

In order to serve Galpaca-30b on our system consisting of
2 NVDIA RTX 3090Ti-24GB GPUs, we initialize the check-
points with the 8-bit integer format (int8) parameters. With
that setting, it takes 2 x 18 GB of GPU RAM. We implement
our system with the open-source framework PyTorch. For the
implementation of the selected backbone models, we use the
publicly available source codes provided by the authors or the
publicly released checkpoints. For GPT-3.5-turbo, we simply
use the OpenAI API.

V. RESULT AND DISCUSSION

A. RQ1: How does our proposed method perform against
other baselines

1) Bug Localization: In all prompts, we use only 1 set of
few-shot example to fit the maximum tokens of 1024. Ac-
cording to Table I, our proposed method outperforms all other
baseline methods with GPT-3.5-turbo backbone. However, we
only rank the second place with Galpaca-30b backbone. This
suggests that handcrafted examples created by experts still
works as an upper bound, especially in the case of the model
with less computing capacity.

2) Bug Fixing: To create a comprehensive comparison
between our proposed method and the baseline methods,
we set up 3 scenarios for bug fixing: fixing without bug
location (1) [6], fixing with provided bug location (2) [6],
and joint bug localize-fixing (3) where we use the predicted
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TABLE I
BUG LOCALIZATION PERFORMANCE

Backbone Zero-shot Related fixed few-shot Unrelated fixed few-shot Generated few-shot (ours)
Atop−1 Atop−3 Atop−1 Atop−3 Atop−1 Atop−3 Atop−1 Atop−3

Galpaca-30b 0.0 0.05 0.15 0.4 0.075 0.2 0.125 0.25
GPT-3.5-turbo 0.15 0.35 0.125 0.375 0.075 0.275 0.175 0.4

Fig. 3. 3 different approaches to generate (partially) correct codes from buggy
codes. Top: Use directly buggy code. Middle: Paraphrase buggy code. Bottom:
Summarize buggy code and generate new code (ours)

bug location as an input of the bug fixing. According to Table
II, our proposed outperforms other baseline methods in 4 out
of 6 scenarios. Similar to the previous comparison, expert-
crafting examples still can outperform our method in some
scenarios. Besides, the poorly unrelated fixed examples always
has suboptimal performance. Thus, making effective in context
examples requires in-depth knowledge of both algorithm and
programming. Therefore, our proposed solution is a perfect
candidate to eliminate human effort yet perform well in most
scenarios.

B. RQ2: What is the contribution of the code summarize-
generation block in our system?

To validate our chosen building blocks’ efficacy, we com-
pare our method, ”summarize buggy code and generate,”
with two alternatives: ”use buggy code only” and ”paraphrase
buggy code”. In the first baseline, we directly copy buggy
code, falsely treating it as new and correct. This leads to
misleading bug localization/fixing examples, as the modified
code could accidentally improve. In the second baseline, we
ask the LLM to generate code with the same meaning as
the buggy version, often resulting in another buggy code or
occasionally a correct one. This approach lies between our
proposed method and naive copying in terms of code quality.
Fig. 3 gives a closer look at the difference between the code
generation methods. According to Table III, our proposed
method dominates in 3 out of 4 scenarios. This clearly proves
that the summarize buggy code and generate approach can
generate examples with higher quality and thus can lead to
better prompts (and results).

C. RQ3: Can we replace the LLM prompting with a heuristic
approach for the code modification task?

To demonstrate the effectiveness of our chosen code modifi-
cation component, we compare it against a heuristic approach
[33]. In the heuristic approach, given the same input as the
generated code and the chosen line to modify, we use a set

of heuristic rules to randomly alternate between changing an
operand or changing an operator. For example, if our chosen
line contains a statement a+b, we can choose to either change
the + sign into another in the set [−, ∗, /] or change a to c if
c appears before this statement. We argue that our proposed
LLM prompting for code modification give a more diverse
set of modifications by not defining any fixed set beforehand.
According to Table IV, our LLM prompting outperforms the
heuristic approach in 3 out of 4 scenarios. Consequently, the
freedom of choices from our proposed method leads to the
best performance for the code modification task and thus the
whole pipeline.

VI. CONCLUSION

In this work, we introduce a novel approach to automatically
generate few-shot examples for both bug localization and bug
fixing toward semantic mistakes in student programs. At the
core of our approach is a large language model trained on
code and textual instructions. We leverage code summarize-
generation and code modification using LLMs to create zero-
cost few-shot examples to boost the performance and stability
of our main tasks. We evaluate our approach with 2 backbones:
Galpaca, and GPT-3.5-turbo on QuixBugs dataset. With the
obtained results, we demonstrate that the novel approach with
its components creates an optimal choice to design few-shot
examples for bug localization/fixing task without any human
effort.
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