Kernel Based Principal
Component Analysis
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* Method: projecting samples into feature space
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* But, we do not know feature map, because it is implicit
* How to find eigenvectors of xTx?
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e What is the kernel matrix?
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e How we use K to calculate C?
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e Let us calculate it

* What is the eigenvalue of K — XYY T —|:
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* Which are eigenvalue and eigenvector of C?

* However, eigenvector is not sure equal 1, how to normalize?
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* Eigen vector of C can be calculated by K (D(Xl)
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However, we do not know X,
so we do not know v
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* However, we do not know X, so we do not know v!!!
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* Question: how to know the projection of a sample coordination in the
feature space?
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* Solve the eigenvalue problem:
KU =AU, A 24 =2...2 A,

* the projection of a sample coordination in the feature space?
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* Relationship with Wahba theorem
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* Visual Example: PCA and KPCA



