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ABSTRACT
Distributed machine learning (DML) has shown great promise in

accelerating model training on multiple GPUs. To increase GPU

utilization, a common practice is to let multiple learning jobs share

GPU clusters, where the most fundamental and critical challenge is

how to efficiently schedule these jobs on GPUs. However, existing

works about DML job scheduling are constrained to settings with

homogeneous GPUs. GPU heterogeneity is common in practice,

but its influence on multiple DML job scheduling has been seldom

studied. Moreover, DML jobs have internal structures that contain

great parallelism potentials, which have not yet been fully exploited

in the heterogeneous computing environment. In this paper, we

propose Hare, a DML job scheduler that exploits both inter-job and

intra-job parallelism in a heterogeneous GPU cluster.Hare has three
novel designs. First, Hare optimizes GPU execution environment

to reduce task switching overhead by exploiting unique features

of DML scheduling. Second, Hare adopts a relaxed fixed-scale syn-

chronization scheme that allows independent tasks to be flexibly

scheduled within a training round. Finally, we propose a fast heuris-

tic algorithm to minimize the total weighted job completion time

by jointly considering job features and hardware heterogeneity. Its

theoretical bound is derived. We evaluate Hare using a small-scale

testbed and a trace-driven simulator. The results show that it can

outperform the state-of-the-art by about 2x.
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1 INTRODUCTION
Background. The recent success of machine learning, especially

deep learning, stems from the availability of big data and strong

computational power brought by cutting-edge hardware (e.g., GPUs

and TPUs). Facing massive computational loads, it is inefficient or

sometimes impossible to train models on a single GPU, driving

attention towards distributed machine learning on multiple GPUs.

In the paradigm of distributed machine learning (DML), a learning

job is divided into multiple tasks, which can run on multiple GPUs

in parallel. The Parameter Server (PS) [25] scheme has been widely

adopted to coordinate the training processes across multiple GPUs.

In practice, it is rare to assign a dedicated GPU cluster to each

DML job, due to low resource utilization [26]. Instead, a common

practice is to let multiple jobs share these GPUs. A critical research

challenge is how to efficiently schedule these jobs on GPUs, which

is particularly concerned by public or private cloud data centers

that offer learning services while desiring high hardware resource

utilization. Therefore, the learning job scheduling problem has

attracted great research attention, and various solutions have been

recently proposed with different objectives. For example, Gandiva

[41] has studied GPU sharing among several jobs to improve GPU

utilization. The fairness of learning jobs has been studied by Pollux

[32]. Zhang et al. [47] have exploited both intra-job and inter-job

parallelism and proposed online DML job scheduling algorithms to

minimize job completion time.

Limitation of state-of-art approaches.However, the aboveworks
are all based on an assumption that GPUs are homogeneous. In

practice, hardware heterogeneity commonly exists in computing

clusters. For example, as the expansion of data centers, new GPUs

are continuously added and they should work with existing ones

to maximize resource utilization. Some recent works [9, 24, 29]

have started to pay attention to the influence of GPU-heterogeneity,

which motivates us to re-examine the DML job scheduling problem

in such an emerging heterogeneous computing environment. We

find that existing works with the homogeneity assumption cannot

fully achieve their claimed goals in heterogeneous environment.

That is because they expect that training tasks scheduled simultane-

ously on several machines have the same completion time. However,

when these tasks actually run on heterogeneous machines, they

complete at different time. Due to the task synchronization at the
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end of each training round, the faster tasks need to wait for slower

ones, which may lead to longer job completion time.

Hardware heterogeneity brings new challenges as well as oppor-

tunities to DML system design. We are excited to see the success of

several preliminary studies. For example, Gandiva
fair

[9] is designed

to ensure the user-level fairness while maximizing the efficiency of

heterogeneous GPU clusters. Gavel [29] generalizes existing sched-

uling policies with consideration of GPU heterogeneity. Allox [24]

efficiently schedules ML jobs in a heterogeneous cluster to improve

the max-min fairness. These recent works have extensively studied

inter-job parallelism in heterogeneous computing environment, but

leaving intra-job parallelism unexplored. They treat each DML job

as a unsplittable unit when making scheduling decisions. We are

still facing open questions: how to exploit both inter-job and intra-

job parallelism on heterogeneous GPUs? How much acceleration

can be obtained? And is there strong theoretical support for such

acceleration?

Key insights and contributions. In this paper, we propose Hare
for heterogeneous GPU cluster scheduling, to answer the above

questions. The basic idea of Hare can be illustrated using the ex-

ample in Fig. 1. There are 3 jobs, and every job consists of several

tasks, each of which responsible for training a data batch. We fur-

ther assume that job J3 needs to synchronize for every two tasks.

The single-batch training time on 3 different GPUs is shown in

the table. By following the heterogeneity-oblivious strategies in

[47], we get the scheduling results shown in Fig. 1(a), where the

job J3 uses GPU2 and GPU3 to exploit intra-job parallelism and J2

takes the whole GPU1. When both jobs complete, we start J1 that

runs on two GPUs in parallel. The total job completion time is 10.5

seconds and the makespan is 4.5 seconds. The results of job-level

scheduling aware of GPU-heterogeneity, represented by Allox [24],

are shown in Fig. 1(b). Each job gets a dedicated GPU and the total

completion time of 9 seconds. An alternative scheduling result with

better performance is shown in Fig. 1(c), where the idle time on

GPU3 can be used by J1. This scheme reduces total job completion

time to 8.5 seconds and makespan to 3 seconds. Note that although

communication time and task switching overhead is ignored in this

example for simplicity, we have similar observation even if they

are considered.

Despite the promise of GPU-heterogeneity-awareness and intra-

job parallelism, Hare needs to conquer several critical technical

challenges to grasp the promised benefits. First, to use the idle

time on some GPUs before model synchronization, as shown in Fig.

1(c), the scheduler needs to allow GPU preemption during learning

job execution, which is forbidden by existing works [32, 41, 47].

Moreover, with such GPU preemption, switching between tasks

belonging to different jobs should be quick. Otherwise, frequent

task switching may happen in Hare, leading to ruinous overhead.
To solve this challenge, Hare first enables fast task switching by

optimizing task initialization and cleaning on GPUs, which has

been identified as the major source of switching overhead. We use

some methods, e.g., CUDA context sharing, that have been shown

to be effective in reducing task switching overhead [8]. Moreover,

we exploit the unique features of Hare to further improve perfor-

mance by proposing early task cleaning and speculative memory

management.

Figure 1: A toy example to show job scheduling results under
different methods. (a) GPU-heterogeneity-oblivious schedul-
ing result; (b) GPU-heterogeneity-aware scheduling result,
but without exploiting intra-job parallelism; (c) A better
scheduling result jointly considering GPU heterogeneity and
intra-job parallelism.

Second, existing intra-job synchronization schemes are not flexi-

ble enough, which constrains the optimization space of Hare. Syn-
chronization schemes decide how many independent tasks are

launched in a training round and how to synchronize these tasks.

Two synchronization schemes have been widely adopted. A scale-

fixed scheme always launch the same number of tasks in each train-

ing round and schedule them when the same number of GPUs are

available to maximize parallelism. Instead, a scale-adaptive scheme

can adjust the number of parallel tasks according to available GPU

resources. Although scale-adaptive scheme is more flexible but may

lead to uncertainty in convergence. Comparison details of both

schemes can be found in Section 2.2. Motivated by their pros and

cons, we propose a relaxed scale-fixed synchronization scheme for

Hare to maximize scheduling flexibility. It fixes the number of tasks

in each rounds but relaxes resource requirement for scheduling,

so that we can maintain convergence certainty while maximizing

GPU utilization.

The final challenge is about scheduling algorithm design. We

need to exploit the parallelism at both intra-job and inter-job levels

while considering GPU heterogeneity. Different jobs may prefer

different GPUs because their models and training datasets are di-

verse. A sophisticated scheduler should make careful decisions to

optimize the overall performance. Thanks to our proposed fast task

switching mechanism, the switching overhead is so tiny that we

can ignore it in the scheduling algorithm design for simplicity. Even

though, the scheduling problem is still NP-hard. We propose a fast

heuristic algorithm to minimize the total weighted job completion

time and derive an important theoretical approximation ratio to

the optimal solutions.

Experimental methodology. We develop a prototype of Hare
based on PyTorch 1.8.1 by adding about 2500 LoC of Python andC++.

We build a testbed consisting of 15 heterogeneous GPUs (8 V100s, 4

T4s, 1 K80, and 2 M60s) for performance evaluation. The workloads

contain 8 types of jobs, which train different deep learning models



respectively. The details of models and datasets are shown in Table

2. We consider 4 scheduling algorithms proposed by recent works

as comparison baselines.

We also develop a simulator using Python to evaluate Hare under
large-scale settings. The accuracy of our simulator has been verified

by comparing its results with the one obtained from the testbed.

They have no more than 5% difference. We collect tasks’ running

traces from our testbed and synthesize large-scale traces to feed

this simulator. The results show that Hare outperforms baselines

under various settings.

Limitations of the proposed approach. Since Hare currently
uses an offline scheduling algorithm, it is short in handling dynamic

jobs. This dynamic comes from two kinds of cases. First, jobs may

change settings (e.g., hyper-parameters or parallelism levels) during

running. For example, some jobs use the autoML technique to

search for the best models over different hyper-parameters or even

model structures.Hare needs to frequently profile task running time,

which may cause high overhead. Second, jobs arrive in different

time and we cannot accurately predict future job arrivals. Online

algorithms are needed to address the dynamic in both cases.

Despite these limitations, we believe this paper still have impor-

tant and sufficient contributions. We have strong theoretical results

for offline scheduling. A basic scheduling system has been built

and it can be easily extended to accommodate other scheduling

algorithms for dynamic jobs, which is left for future work.

2 BACKGROUND AND MOTIVATION
In this section, we first give the background of distributed machine

learning (DML), and then present the unique characters of DML

jobs, which motivate us to design Hare.

2.1 Background
Distributed machine learning (DML) on GPUs has been widely

adopted to accelerate model training on large datasets. The training

goal is to minimize a loss function as follows:

L(𝑤) = 1

|P |
∑︁
𝑝𝑖 ∈P

ℓ (w, 𝑝𝑖 ), (1)

where 𝑝𝑖 is a data point in the training dataset P. The loss func-

tion ℓ (·) is, typically cross-entropy for the classification problem

or squared error for the regression problem. The trainable model

parameters w are updated iteratively by using stochastic gradient

descent (SGD).

In each iteration, training workloads are shared by K GPUs,

which are also called workers. Each worker is assigned a fixed-size

mini-batch B𝑘 ⊆ P and computes its local gradients 𝑔𝑡
𝑘
as:

𝑔𝑡
𝑘
=

1

|B𝑘 |
∑︁

𝑝𝑖 ∈B𝑘

∇ℓ (w𝑡 , 𝑝𝑖 ). (2)

After the local training, workers send their gradient updates to a

parameter server that creates a global model:

𝑔𝑡 =
1

|K |
∑︁
𝑘∈K

𝑔𝑡
𝑘
; w𝑡+1 = w𝑡 − 𝜂𝑔𝑡 , (3)
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where 𝜂 is the learning rate. Then workers download the global

model and move to the next iteration of training. The training pro-

cess ends when a required number of rounds is achieved. Typically,

the parallelism scale |K |, the batch size |B|, and the learning rate 𝜂
are chosen by the user.

Typically, multiple DML jobs share GPU resources in a cluster.

With the soaring size of the DML jobs, a sophisticated scheduler is

needed to shorten the training time and improve GPU utilization.

Existing works [9, 19, 26, 29, 41, 47] have made many efforts on

scheduling algorithms design with an assumption that GPUs in the

cluster are homogeneous. However, existing clusters usually accom-

modate different types of GPUs with various specifications, which

implies the inefficiency of existing homogeneity-based schedulers.

2.2 Motivation
2.2.1 GPU heterogeneity and inter-job parallelism. We find that

different GPUs provide different performance speedups for learning

jobs, mainly because of the heterogeneity of model (such as model

architecture) and hardware. As shown in Fig. 2, we use the training

time per mini-batch on a K80 GPU as the baseline and evaluate the

speedup for other GPUs. Training the ResNet50 model can be sped

up by 2x on a T4 GPU, while with 7x significant speedup on a V100

GPU. However, the graph learning model GraphSAGE shows the

heterogeneous performance on different GPUs. Specifically, Graph-

SAGE can only be sped up by about 2x, even on the most advanced

V100 GPU. That is because the required FLOPS of GraphSAGE are

much smaller than other models. Moreover, the data pre-processing

speed is slower than the GPU computation speed. The GPU spends

more time to wait for input data, resulting in low GPU utilization.

As shown in Fig. 3, we find that utilization of GPU is less than 30%

when we train GraphSAGE on a V100 GPU. There is a little im-

provement when training GraphSAGE on a V100 GPU. Therefore,

giving a high priority for assigning V100 GPUs to the ResNet50 job

is more efficient since it shows a high-performance speedup than

other jobs.

This empirical study gives us important hints about accelerating

learning jobs and increasing GPU utilization. On the other hand, it

throws challenges about how to schedule jobs on GPUs, considering

massive learning workloads and hardware resources in modern data

centers. Moreover, the intra-job parallelism, which will presented

in the following, further complicates this problem.



(a) Traditional scale-fixed scheme (b) Relaxed scale-fixed scheme
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Figure 4: An example showing the benefit of relaxed scale-
fixed synchronization scheme adopted by Hare.

2.2.2 GPU heterogeneity and intra-job parallelism. Each DML job

consists of multiple tasks, which are periodically synchronized to

share gradients, via a parameter server or exchanging gradients

directly. Although a single advanced GPU can provide a perfor-

mance speedup for gradients computing, the training speed of the

whole DML jobs is constrained by the synchronization. We train the

ResNet152 on five different distributed settings and show the epoch

time in Fig. 5. We find that mixing different GPUs is not always

helpful. For example, compared to a pure K80 cluster, adding faster

T4 or V100 brings no acceleration. That is because the gradient

synchronization impedes early completed GPUs to move to the

next-round training. There is much idle time on V100 GPUs when

they waits for the gradients update from K80 GPUs. This low effi-

ciency can be also reflected by GPU utilization as shown in Fig. 6,

where we can see that K80 is always busy while V100’s utilization

is rarely over 50%.

A straightforward idea to address this challenge is to schedule

parallel tasks belonging to the same job on similar GPUs. However,

it is hardly to have such a perfect allocation in practice because

of limited GPU resources in the cluster. Since it is inevitable to

use heterogeneous GPUs for intra-job parallelism, it is desired an

algorithm that can well schedule fine-grained tasks to reduce idle

time.

2.2.3 Scale-fixed synchronization versus scale-adaptive synchroniza-
tion. Existing intra-job parallelism methods can be categorized into

two types, scale-fixed and scale-adaptive, according to how many

tasks are synchronized. Scale-fixed methods, adopted by Tiresias

[19] and Gandiva [41], fix the number of synchronized tasks and

always try to allocate the same number of GPUs so that they can

achieve full parallelism. If the number of available GPUs is insuffi-

cient, all tasks need to wait until required GPU number is satisfied.

In contrast, scale-adaptive methods [26, 29, 31, 42] dynamically

change the number of synchronized tasks according to available

GPU resources. Although these methods are flexible and tasks are

not blocked by strict resource requirement, wemay needmore train-

ing epochs to achieve competitive accuracy of scale-fixed methods.

Moreover, it is hard to build theories to predict how many epochs

are needed. Due to this uncertainty, we do not use scale-adaptive

design in Hare.
Motivated by the above analysis, we would like to follow the

scale-fixed idea but relax the parallelism requirement. An example

is shown in Fig. 4, where three tasks, 𝑖1, 𝑖2 and 𝑖3, are running

on 3 GPUs respectively. Now a new job 𝑛 consisting of 3 tasks

(i.e., synchronization scale is 3) comes. As illustrated in Fig. 4(a),

traditional scale-fixed methods start job 𝑛 after the completion

of slowest task 𝑖3, when 3 GPUs are available. We find that it is
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unnecessary to make 3 tasks strictly run in parallel. Two tasks can

run sequentially on GPU1, as shown in Fig. 4(b), leading to earlier

completion than traditional methods while maintaining the same

level of parallelism.

Implementing such a relaxed scale-fixed synchronizationmethod

is not easy. We need to address challenge of changing the task

assignment and synchronization modules. It also affects task sched-

uling algorithm design.

2.2.4 Task Switching Cost. As we are motivated above, exploiting

intra-job parallelism on heterogeneous GPU environment is critical

for accelerating training and increasing hardware resource utiliza-

tion. It should be taken into consideration of scheduling algorithm

design. We further find that such an algorithm inevitable generates

results with frequent task switching on GPUs. To study task switch-

ing cost on GPUs, we conduct experiments to compare switching

time and task time under 3 different settings. In the first setting, we

alternatively run a GraphSAGE task and a ResNet50 task, each of

which trains a mini-batch. We define a metric Ω =
𝑡𝑠𝑤
𝑡
𝑔
𝑐 +𝑡𝑟𝑐

to evaluate

the switching cost, where 𝑡𝑠𝑤 is the task switching time, 𝑡
𝑔
𝑐 and 𝑡𝑟𝑐

is the average batch training time of GraphSAGE and ResNet50,

respectively. As shown in Fig. 7, the switching cost is about 9 times

higher than training. Similar high cost can be observed under other

two settings. We also show the real-time GPU utilization with and

without task switching in Fig. 8. When training a single ResNet50

model on a V100 GPU, GPU resources are almost fully utilized.

However, if we train GraphSAGE and ResNet50 alternatively, GPU

utilization is no more than 50%, because much time is spent on

CUDA environment cleaning and creation during task switching.

Even though we can continuously schedule the same-type tasks

on a GPU, which is possible due to the proposed relaxed scale-fixed

method, to amortize switching cost. However, the switching cost is

still high and such a solution heavily relies on sophisticated design

of scheduling algorithm that takes switching cost into consideration.

In this paper, instead of struggling on amortizing switching cost,

we propose to reduce it using novel system designs.

3 SYSTEM OVERVIEW
In this section, we give an overview about Hare’s design. First, we
clarify three primary design goals of Hare.

• High training efficiency: Given a number of DML jobs,

Hare needs to schedule them on a cluster of GPUs to finish
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the training as fast as possible. It depends on exploiting both

intra-job and inter-job parallelism as well as GPU hetero-

geneity, as we shown in the motivation section. We achieve

this goal by designing a high-efficient task scheduling algo-

rithm with strong theoretical performance guarantee.

• High GPU utilization: Hardware utilization is always im-

portant for cluster providers. Hare is not only a job scheduler
but also a resource manager in the GPU cluster. Therefore,

Hare aims to improve the GPU utilization by reducing system

cost and minimizing GPU idle time.

• Starvation-free: In real scenarios, learning tasks can not

wait for arbitrarily long time or starve due to mutual exclu-

sion resource requirement. The scheduling algorithm design

should be starvation-free so that every task has a chance to

run.

A system overview of Hare is shown in Fig. 9, where Hare is
integrated into the existing PS-based distributed machine learning

framework.Hare is not only a scheduling algorithm, but also a set of

modules that optimize training processes across GPUs. It contains

two main components: a logically centralized task scheduler, and

executors running on training machines. All data are stored with

HDFS [6]. The whole system running process contains two stages,

an offline preparation stage and an online training stage. In the

preparation stage, the task scheduler is fed by job information, e.g.,

job types, model description and training data size, from upper-layer

applications. It also collects hardware information, e.g., GPU types,

speed and memory, from the under-layer computing infrastructure.

These information first goes to a module called profiler that trains

a small piece of data to obtain expected task execution time on

different GPUs, which will be the input of the task scheduling

algorithm. We note that some jobs are usually repeatedly submitted

to the training platform. For example, some models are periodically

re-trained using latest collected datasets to adapt to emerging cases,

which is particularly common in deep reinforcement learning. This

observation motivates us to accelerate the profiling by maintaining

a database that stores historical profiling results. We first search the

database upon receiving job information. If corresponding results

can be found, we skip profile training and directly feed searching

results to the scheduling algorithm. We then run the scheduling

algorithm (in Section 5) to generate a task running sequence for

each GPU. Finally, these task sequences are sent to corresponding

executors.

Figure 9: System Overview.

In the training stage, each executor schedules tasks and loads

checkpoints on GPU according to their order given in the received

task sequence. When a task completes, it sends updated gradients

to the corresponding parameter server for aggregation. We follow

the most of training designs in traditional distributed machine

learning frameworks [26, 31], except the task switching mechanism.

In existing works, since each job has exclusive use of assigned GPUs,

several consecutive tasks on a GPU belongs to the same job and they

share the same GPU context, leading to low switching overhead.

In contrast, Hare allows GPU preemption by alternatively running

tasks of different jobs, which involves frequent context switching

with high overhead. Therefore, we design a fast task switching

mechanism with a customized memory controller (in Section 4) to

reduce this overhead.

4 FAST TASK SWITCHING
Given two tasks scheduled continuously on a GPU, a traditional

task switching process contains two main steps. First, the predeces-

sor needs to clean its GPU environment by freeing GPU memory

occupations. Second, the successor initializes its environment by

creating a new CUDA context, launching the process, allocating

GPU memory and moving the model from main memory to GPU

memory. Traditionally, the above two steps run sequentially, which

incurs large overhead. Such overhead has been observed by [2, 8, 45]

and our experimental results have also confirmed it. Therefore, re-

ducing the task switching cost becomes a critical challenge that has

to be addressed by Hare.
The fast task switching ofHare is mainlymotivated by PipeSwtich

[8]. To accelerate the model movement from main memory to GPU

memory, PipeSwitch leverages the layered structure of neural net-

works and pipelines the model transmission and execution. More-

over, it finds that CUDA context creation is slow, and proposes

to create multiple CUDA contexts in advance to hide the over-

head of context creation during task switching. Other techniques,

like NVIDIA Multiple Process Sharing (MPS) [2], allow multiple

processes to share a single GPU, but they cannot be applied here
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because these processes need to be pre-loaded into GPU memory,

which may exceed GPU memory limit.

Similar designs have been also adopted by PipeSwitch [8]. How-

ever, it is originally designed for maximizing GPU utilization by

filling GPU idle time of an inference job with training or other

inference jobs, and it misses many optimization chances in training

job scheduling scenarios studied in this paper. To further reduce

task switching cost, we propose the following two new designs by

exploiting unique features of our task scheduling problem.

Early Task cleaning. When a task completes, PipeSwitch cleans

its GPU environment by deleting GPU memory pointers only, leav-

ing memory content unmodified, which may cause security issues

[16, 44]. For example, an attacker can steal the private data by allo-

cating the memory region the same as that used by the previous

task. Instead, we propose early task cleaning that deletes intermedi-

ate data of each layer once its backward training completes. Early

task cleaning has two benefits. First, we delete not only memory

pointers but also memory content to avoid potential security con-

cerns. Second, released GPU memory can be used for pre-loading

data of the next task, so that it can start earlier.

Speculative Memory Management. PipeSwitch cleans a task

by removing all its data stored in GPU memory. However, we find

that it is not always necessary, especially when we know the tasks

that will be scheduled on the same GPU. As an example shown in

Fig. 10, we consider three tasks, 𝑖1, 𝑖2 and 𝑖3, scheduled sequentially

on a GPU. Tasks 𝑖1 and 𝑖3 belong to the same training round of a

job, while 𝑖2 is from a different job. We further suppose that three

tasks do not occupy the whole GPU memory, which is common

in practice [40]. In a traditional design, all data of 𝑖1 are removed

when it completes. An alternative method adopted by Hare is to
keep the model data of task 𝑖1, so that they can be re-used by 𝑖3
scheduled later. Such a speculative memory management is feasible

because Hare conducts an offline task scheduling and task running

sequences as well as their GPU memory occupation can be known

in advance. To decide which models and how long they can be

kept in GPU memory, Hare uses a simple heuristic that always

gives higher GPU memory priority to the next tasks, and greedily

keeps models of latest completed tasks until they cannot be accom-

modated. Of course, we can formulate this memory management

problem as an optimization problem and solve it to get the optimal

solution. However, we find that the heuristic works sufficiently well

in practice, and the resulted switching cost can be neglected.

Table 1: Notations

N set of training jobs M set of heterogeneous GPUs

𝑎𝑛 arrive time of job 𝑛 𝑤𝑛 weight of job 𝑛

𝑅𝑛 set of training rounds for job 𝑛 ∈ N
𝐷𝑟 set of parallel tasks in 𝑟 ∈ 𝑅𝑛

D set of all tasks in N

𝑇𝑐
𝑖,𝑚,𝑟

training time of task 𝑖 ∈ N on GPU𝑚 in the training

round 𝑟

𝑇 𝑠
𝑖,𝑚,𝑟

synchronization time of task 𝑖 ∈ N on GPU𝑚 in the

training round 𝑟

𝑥𝑖 the start time of task 𝑖 ∈ N
𝑦𝑖,𝑚 whether task 𝑖 ∈ N is assigned to GPU𝑚

𝑥𝑖 the solution of 𝑥𝑖 from the relaxed problem

𝑥𝑖 the solution of 𝑥𝑖 from Algorithm 1

𝑦𝑖,𝑚 the solution of 𝑦𝑖,𝑚 from Algorithm 1

𝐻𝑖,𝑚 the middle completion time of task 𝑖 ∈ N on GPU𝑚

𝐻𝑖 the maximum middle completion time of task 𝑖 ∈ N
𝝅 a non-descending sequence according to 𝐻𝑖

𝜑𝑚 current available time of GPU𝑚

5 TASK SCHEDULING ALGORITHM
In this section, we present the task scheduling algorithm, which

is the core design of Hare. The system model is first presented,

followed by algorithm details and theoretical performance analysis.

5.1 Problem Statement
We consider a set N of training jobs, running on a set M of het-

erogeneous GPUs. Each job 𝑛 ∈ N consists of multiple training

rounds, which are denoted by set 𝑅𝑛 . Each job 𝑛 ∈ N launches a set

𝐷𝑟 of training tasks that can run in parallel in every training round,

and each task is responsible for training a data batch. After local

training, all tasks synchronize their gradients via the PS scheme

to obtain an updated model for the next-round training. Moreover,

we denote D as the set of all tasks in N .

We let 𝑇𝑐
𝑖,𝑚,𝑟

denote the training time of task 𝑖 on GPU𝑚 in the

training round 𝑟 , and the corresponding synchronization time is

denoted by 𝑇 𝑠
𝑖,𝑚,𝑟

. As shown in Fig. 11, our experimental results

about 2 popular models have shown that task training time and

synchronization time is highly predictable and stable across training

rounds. This fact allows us to use 𝑇𝑐
𝑖,𝑚

and 𝑇 𝑠
𝑖,𝑚

by dropping the

subscript 𝑟 to simplify problem formulation. More importantly, it

makes task scheduling with performance guarantee feasible.

Due to GPU heterogeneity, each task may have different training

time on different GPUs. Similarly, it may have different synchroniza-

tion time across GPUs because network condition changes. Besides,

we assume that the training time is longer than the synchronization

time. That is because GPUs are usually connected by high-speed

networks (e.g., NVLink and InfiniBand) in data centers. Note that

this is different from job-level non-preemption assumed in existing

works [19, 31, 41], i.e., a job 𝑛 ∈ N cannot be preempted once it

starts to run on GPUs.

We consider the non-preemption setting for task running, i.e., a

task’s execution cannot be preempted once it is scheduled on a GPU.

Thanks to the fast task switching mechanism, there is tiny task



switching cost, which is less than 5% of task training time according

to experimental results. Therefore, we ignore the task switching

cost in the problem formulation for simplicity. Note that our main

theoretical results are still true even this cost is considered. We list

the important notations in Table. 1

Each job 𝑛 ∈ N is associated with arrive time 𝑎𝑛 and a weight

𝑤𝑛 . To formulate the problem, we define a variable 𝑥𝑖 to denote the

start running time of task 𝑖 . In addition, a binary variable 𝑦𝑖,𝑚 is

defined to indicate the GPU assignment, i.e., 𝑦𝑖,𝑚 = 1 if task 𝑖 is

assigned to GPU𝑚, and 𝑦𝑖,𝑚 = 0 otherwise. The completion time of

job 𝑛 is denoted by 𝐶𝑛 . With the objective of minimizing the total

weighted job completion time, we formulate the task scheduling

problem as follows:

Hare_Sched: min

∑︁
𝑛∈N

𝑤𝑛𝐶𝑛, subject to:

𝑥𝑖 ≥ 𝑎𝑛,∀𝑖 ∈ 𝐷𝑟 , 𝑟 ∈ 𝑅𝑛, 𝑛 ∈ N ; (4)∑︁
𝑚∈M

𝑦𝑖,𝑚 = 1,∀𝑖 ∈ 𝐷𝑟 , 𝑟 ∈ 𝑅𝑛, 𝑛 ∈ N ; (5)

𝐶𝑛 ≥ 𝑥𝑖 +
∑︁

𝑚∈M
𝑦𝑖,𝑚 (𝑇𝑐

𝑖,𝑚 +𝑇 𝑠
𝑖,𝑚),

∀𝑖 ∈ 𝐷𝑟 , 𝑟 ∈ 𝑅𝑛, 𝑛 ∈ N ; (6)

𝑥 𝑗 ≥ 𝑥𝑖 +
∑︁

𝑚∈M
𝑦𝑖,𝑚 (𝑇𝑐

𝑖,𝑚 +𝑇 𝑠
𝑖,𝑚),∀𝑗 ∈ 𝐷𝑟+1, 𝑖 ∈ 𝐷𝑟 ,

𝑟 ∈ 𝑅𝑛, 𝑛 ∈ N ; (7)

|𝑥𝑖 − 𝑥 𝑗 | ≥ 𝑦𝑘,𝑚𝑇
𝑐
𝑘,𝑚

,∀𝑖, 𝑗 ∈ D,𝑚 ∈ M,

𝑦𝑖,𝑚 = 𝑦 𝑗,𝑚 = 1, 𝑘 = argmin𝑘={𝑖, 𝑗 }{𝑥𝑘 }. (8)

Constraint (4) indicates that tasks of each job can not start before

arrival. Each task can be assigned to at most one GPU, which is

represented by (5). The job completion time is constrained by (6).

Besides, due to the synchronized parameter update policy, the tasks

of the (𝑟 + 1)−th round must wait for the completion of all tasks

of the 𝑟−th round, as shown in (7). Finally, we use constraint (8) to

guarantee the non-preemption among tasks. Specifically, for any

two tasks assigned to the same GPU, one cannot start before the

completion of the other. The hardness of the above problem is given

as follows.

Theorem 1. Hare_Sched is NP-hard.

Proof. The NP-hardness of Hare_Sched can be proved by re-

ducing the well-known SS13[17] problem. The details are ignored

due to length limit. □

5.2 Algorithm Design
By carefully examining the problem formulation, we find that the

difficulty mainly stems from the non-linear constraint (8). There-

fore, we are motivated to relax (8) and then design a heuristic

algorithm based on the solution of the relaxed problem. This algo-

rithm contains the following two steps and pseudo codes are shown

in Algorithm 1.

Algorithm 1 Task Scheduling Algorithm in Hare

1: 𝑥𝑖 = 0, 𝑦𝑖,𝑚 = 0,∀𝑖 ∈ D,𝑚 ∈ M;

2: 𝜑𝑚 = 0,∀𝑚 ∈ M;

3: Solve the Hare_Sched_RL problem to obtain solutions 𝑥𝑖 as

well as 𝐻𝑖 ;

4: Sort tasks to generate a sequence 𝜋 satisfying𝐻𝜋 (1) ≤ 𝐻𝜋 (2) ≤
... ≤ 𝐻𝜋 ( |D |) ;

5: for 𝑖 ∈ {𝜋 (1), 𝜋 (2), ..., 𝜋 ( |D|)} do
6: Identify the corresponding job 𝑛 and 𝑟 where 𝑖 ∈ 𝐷𝑟 , 𝑟 ∈ 𝑅𝑛 ;

7: if 𝑟 = 0 then
8: 𝑡𝑖 = 𝑎𝑛 ;

9: else
10: 𝑡𝑖 = max

𝑗 ∈𝐷𝑟−1
{𝑥 𝑗 +𝑇𝑐

𝑗
+𝑇 𝑠

𝑗
};

11: end if
12: Find𝑚∗ = argmin𝑚∈M 𝜑𝑚 ;

13: 𝑥𝑖 = max{𝑡𝑖 , 𝜑𝑚∗ };
14: 𝑦𝑖,𝑚∗ = 1;

15: 𝑇𝑐
𝑖
= 𝑦𝑖,𝑚∗𝑇𝑐

𝑖,𝑚∗ , 𝑇
𝑠
𝑖
= 𝑦𝑖,𝑚∗𝑇 𝑠

𝑖,𝑚∗ ;

16: 𝜑𝑚∗ = 𝑥𝑖 +𝑇𝑐
𝑖
;

17: end for
18: return 𝑥,𝑦

Step 1: Problem Relaxation.We relax the original planning

problem as follows:

Hare_Sched_RL: min

∑︁
𝑛∈N

𝑤𝑛𝐶𝑛, subject to:

∑︁
𝑖∈D

𝑦𝑖,𝑚𝑇
𝑐
𝑖,𝑚 (𝑥𝑖 +𝑇𝑐

𝑖,𝑚) ≥ 1

2

[( ∑︁
𝑖∈D

𝑦𝑖,𝑚𝑇
𝑐
𝑖,𝑚

)
2

+

∑︁
𝑖∈D

(
𝑦𝑖,𝑚𝑇

𝑐
𝑖,𝑚

)
2
]
,∀𝑚 ∈ M; (9)

(4) − (7) .

Constraint (9) is the relaxation of (8) according to [33]. Note

that (9) is independent of the running order of tasks scheduled on

each GPU and it always holds for any feasible scheduling. Thus,

Hare_Sched_RL serves as a lower bound of Hare_Sched. Although

Hare_Sched_RL is a mixed-integer quadratic programming that is

still with high theoretical complexity, we are fortunate to have fast

solvers, e.g., CPLEX and Gurobi, which have been well optimized

and work well in practice.

Step 2: Task Scheduling. The solution of Hare_Sched_RL is

denoted by 𝑥𝑖 . The middle completion time of task 𝑖 on GPU𝑚 can

be calculated by𝐻𝑖,𝑚 = 𝑥𝑖 + 1

2
𝑇𝑐
𝑖,𝑚

. Therefore, the maximum middle

completion time of task 𝑖 can be denoted by 𝐻𝑖 = max

𝑚
{𝐻𝑖,𝑚}.

We then sort tasks in a non-descending order according to 𝐻𝑖

to generate a sequence 𝝅 , as shown in line 4. The 𝑗-th task in the

sequence 𝝅 is denoted by 𝜋 ( 𝑗). Next, we iteratively schedule tasks

according to the sequence 𝜋 in the for loop in lines 5-17. Specifically,
in each iteration, we deal with the task 𝑖 by first identifying its

associated job 𝑛 and training round 𝑟 , which is easy in practice by

attaching such information in the task description. In the following

line 7, we continue to check whether this task belongs to the first

training round. If it is, i.e., 𝑟 = 0, this task can logically start upon



arrival. We let 𝑡𝑖 denote the task available time. In this case, we

have 𝑡𝑖 = 𝑎𝑛 as shown in line 8, where 𝑎𝑛 is the arrival time of job

𝑛 containing task 𝑖 . Otherwise, task 𝑖 needs to wait the completion

of all tasks in the previous training round, and its available time 𝑡𝑖

can be calculated in line 10. Note that 𝑇𝑐
𝑗
and 𝑇 𝑠

𝑗
in line 10 is the

real training and synchronization time of tasks in the (𝑟 − 1)-th
round and they are updated in line 15 in the previous algorithm

iterations.

Up to now, we consider only task available time, which may not

be identical to its real start time in practice because we haven’t

decided which GPU to run this task. We let 𝜑𝑚 denote the current

GPU available time. Next, we will check the GPU availability and

find a GPU where the task can be assigned. We adopt a greedy

strategy, which always assigns the task to the GPU𝑚∗
with the

earliest available time, as shown in line 12. After that, we can

update the real task start time, denoted by 𝑥𝑖 , as well as the task

assignment 𝑦𝑖,𝑚∗ . The real task training time and synchronization

time is updated in line 15. Finally, we update the GPU available

time 𝜑𝑚∗ in line 16. Note that the synchronization time 𝑇 𝑠
𝑖,𝑚∗ is not

considered in line 16 because the communication can overlap with

the next task assigned on this GPU.

5.3 Theoretical Analysis
Before deriving the approximation ratio of the proposed algorithm,

we prove the following two lemmas. Due to the space limitation,

we put the complete proof in our technical report [7].

Lemma 2. For any task 𝜋 ( 𝑗) ∈ 𝝅 on GPU𝑚, we have:

𝑗∑︁
𝑘=1

𝑦𝜋 (𝑘),𝑚𝑇
𝑐
𝜋 (𝑘),𝑚 ≤ 2𝐻𝜋 ( 𝑗) , (10)

where 𝑦𝜋 (𝑘),𝑚 indicates the GPU assignment by Algorithm 1.

Proof. For any task𝜋 ( 𝑗) aswell as its predecessors {𝜋 (1), 𝜋 (2), ...,
𝜋 ( 𝑗 − 1)} in the sequence 𝝅 , constraint (9) always holds and we

have:

𝑗∑︁
𝑘=1

𝑦𝜋 (𝑘),𝑚𝑇
𝑐
𝜋 (𝑘),𝑚 (𝑥𝜋 (𝑘) +𝑇𝑐

𝜋 (𝑘),𝑚) ≥

1

2

[( 𝑗∑︁
𝑘=1

𝑦𝜋 (𝑘),𝑚𝑇
𝑐
𝜋 (𝑘),𝑚

)
2

+
𝑗∑︁

𝑘=1

(
𝑦𝜋 (𝑘),𝑚𝑇

𝑐
𝜋 (𝑘),𝑚

)
2

]
. (11)

By substituting 𝐻𝑖,𝑚 = 𝑥𝑖 + 1

2
𝑇𝑐
𝑖,𝑚

and eliminating
1

2

𝑗∑
𝑘=1

(𝑦𝜋 (𝑘),𝑚

𝑇𝑐
𝜋 (𝑘),𝑚)2 in the right side of (11), we can obtain:

𝑗∑︁
𝑘=1

𝑦𝜋 (𝑘),𝑚𝑇
𝑐
𝜋 (𝑘),𝑚𝐻𝜋 (𝑘),𝑚 ≥ 1

2

( 𝑗∑︁
𝑘=1

𝑦𝜋 (𝑘),𝑚𝑇
𝑐
𝜋 (𝑘),𝑚

)
2

. (12)

Because of 𝐻𝜋 (𝑘) = max𝑚{𝐻𝜋 (𝑘),𝑚} and 𝐻𝜋 (1) ≤ 𝐻𝜋 (2) ≤ ... ≤
𝐻𝜋 ( 𝑗) , we have:

𝐻𝜋 ( 𝑗)

𝑗∑︁
𝑘=1

𝑦𝜋 (𝑘),𝑚𝑇
𝑐
𝜋 (𝑘),𝑚 ≥ 1

2

( 𝑗∑︁
𝑘=1

𝑦𝜋 (𝑘),𝑚𝑇
𝑐
𝜋 (𝑘),𝑚

)
2

. (13)

Canceling out

𝑗∑
𝑘=1

𝑦𝜋 (𝑘),𝑚𝑇
𝑐
𝜋 (𝑘),𝑚 in both sides of (13) leads to (10).

□

Lemma 3. We let 𝜋𝑚 denote the task sequence on GPU𝑚 returned
by Algorithm 1. The total idle time before task 𝜋𝑚 ( 𝑗) on GPU𝑚 is
𝛿 (𝜋𝑚 ( 𝑗),𝑚), which satisfies:

𝛿 (𝜋𝑚 ( 𝑗),𝑚) ≤ 𝛼𝐻𝜋𝑚 ( 𝑗) , (14)

where 𝛼 = max

𝑖∈D
{𝑇𝑐,𝑚𝑎𝑥

𝑖
/𝑇𝑐,𝑚𝑖𝑛

𝑖
,𝑇

𝑠,𝑚𝑎𝑥
𝑖

/𝑇 𝑠,𝑚𝑖𝑛
𝑖

}.

Proof. Without loss of generality, we consider two tasks 𝜋𝑚 ( 𝑗−
1) and 𝜋𝑚 ( 𝑗), which are not continuously scheduled on GPU𝑚.

Suppose task 𝜋𝑚 ( 𝑗) belongs to the job 𝑛. Let us first check how

such a case happens. According to Algorithm 1, when we schedule

task 𝜋𝑚 ( 𝑗) according to the task sequence 𝜋 , GPU𝑚 has the earliest

available time. However, task 𝜋𝑚 ( 𝑗) cannot start immediately after

𝜋𝑚 ( 𝑗 − 1) because of the synchronization barrier, i.e., there must

exist some tasks, which belong to previous rounds of 𝜋𝑚 ( 𝑗), run-
ning on other GPUs before the start of task 𝜋𝑚 ( 𝑗). Otherwise, there
would be no GPU idle time between 𝜋𝑚 ( 𝑗 − 1) and 𝜋𝑚 ( 𝑗). Note
that there may be multiple training rounds of job 𝑛 between tasks

𝜋𝑚 ( 𝑗 − 1) and 𝜋𝑚 ( 𝑗). In each round, there must be a bottleneck

task whose running time is the same with duration of this round.

Otherwise, some tasks would be scheduled on GPU 𝑚 between

tasks 𝜋𝑚 ( 𝑗 − 1) and 𝜋𝑚 ( 𝑗). We denote these bottleneck tasks as

⟨𝑢 (1), 𝑢 (2), ..., 𝑢 (𝑙)⟩. We have the following relationship between

tasks 𝜋𝑚 ( 𝑗 − 1) and 𝑢 (0).

𝑥𝑢 (0) ≤ 𝑥𝜋𝑚 ( 𝑗−1) +𝑇𝑐
𝜋𝑚 ( 𝑗−1) ; (15)

𝐻𝑢 (0) ≥ 𝐻𝜋𝑚 ( 𝑗−1) . (16)

where 𝑢 (0) is a task that belongs to the previous round of 𝑢 (1)
and satisfies 𝑥𝑢 (0) + 𝑇𝑐

𝑢 (0) + 𝑇 𝑠
𝑢 (0) = 𝑥𝑢 (1) . By introducing 𝛼 =

max

𝑖∈D
{𝑇𝑐,𝑚𝑎𝑥

𝑖
/𝑇𝑐,𝑚𝑖𝑛

𝑖
,𝑇

𝑠,𝑚𝑎𝑥
𝑖

/𝑇 𝑠,𝑚𝑖𝑛
𝑖

} and adopting constraint (7),

we can obtain:

𝛼 (𝐻𝜋𝑚 ( 𝑗) − 𝐻𝑢 (0) ) ≥
𝑙∑︁

𝑖=0

(𝑇𝑐,𝑚𝑎𝑥

𝑢 (𝑖) +𝑇 𝑠,𝑚𝑎𝑥

𝑢 (𝑖) ). (17)

According to the property of the results {𝑥𝑖 } returned by the Algo-

rithm 1:

𝑥𝜋𝑚 ( 𝑗) − 𝑥𝑢 (𝑙) = 𝑇𝑐
𝑢 (𝑙) +𝑇

𝑠
𝑢 (𝑙) ; (18)

𝑥𝑢 (𝑖) − 𝑥𝑢 (𝑖−1) = 𝑇𝑐
𝑢 (𝑖−1) +𝑇

𝑠
𝑢 (𝑖−1) ,∀𝑖 = 1, 2, ..., 𝑙 . (19)

we final proof that:

𝛿 (𝜋𝑚 ( 𝑗)) ≤ 𝛼 (𝐻𝜋𝑚 ( 𝑗) − 𝐻𝜋𝑚 (0) ) = 𝛼𝐻𝜋𝑚 ( 𝑗) . (20)

□

Theorem 4. Algorithm 1 is 𝛼 (2 + 𝛼)-approximation.

Proof. Since our algorithm always schedules tasks on machines

with the earliest start time, we have:

𝑥𝜋 ( 𝑗) ≤
𝑗−1∑︁
𝑘=1

𝑦𝜋 (𝑘),𝑚𝑇
𝑐
𝜋 (𝑘),𝑚 + 𝛿 (𝜋 ( 𝑗),𝑚),∀𝑚 ∈ M . (21)



By combining with the result of adding (10) and (14), we obtain:

𝑥𝜋 ( 𝑗) +𝑇𝑐
𝜋 ( 𝑗) ≤ (2 + 𝛼)𝐻𝜋 ( 𝑗) . (22)

We can proof Theorem 4 by taking scaling methods in (22).

□

6 IMPLEMENTATION
We have implemented a prototype of Hare by using roughly 2500

LoC of Python and C++. We use PyTorch 1.8.1 for DML job train-

ing. Hare primary maintains two components: a central scheduler

and executors. The scheduler communicates with executors via

controlling messages implemented using gRPC APIs [5].

Scheduler. The scheduler integrates a task profiler, a scheduling

algorithm, and parameter servers. The scheduler first executes

task_profile(), fed by job information, to predict task execution

time. The task scheduling is executed to obtain the task sequence

for each executor. According to job information, the scheduler

instantiates a series of Hare_Parameter_Server to bind to each

DML job for gradient synchronization. Hare_Parameter_Server
saves the checkpoint of DML job by using PyTorch interface save()
Also, the scheduler maintains a gRPC module to communicate the

task sequence and gradients with executors.

Executor. The executor initializes several trainer processes to

train tasks in the sequence received from the scheduler. In our

implementation, we initialize three trainer processes in the ex-

ecutor. To hide CUDA context creation cost, we create a CUDA

context for each process in advance by calling an implicit initial-

ization torch.randn(10, device=’cuda’). When a task needs to

be trained, we assign it to a process (called the working process)

and leave the rest on standby. Each working process initializes the

task model locally and loads the checkpoint from storage by using

PyTorch interface load(). Note that the model structure is small

so that we can save it locally. We add hooks to the model to enable

pipelined model transmission. Specifically, we use PyTorch inter-

face register_forward_pre_hook() to change the initialized
property of components (e.g., torch.nn.Linear()) in each layer.

After that, the executor starts the training task and sends gradients

to the parameter server using PyTorch and gRPC interfaces. We

also add hooks to change the property retain_graph of all tensors
in each layer, which aims to support early task cleaning. In native

PyTorch, the gradients of intermediate variables are deleted. To

avoid the deletion, we modify the gradients free mechanism in

PyTorch. Moreover, we keep the model data in GPU according to

switching algorithm results.

7 PERFORMANCE EVALUATION
In this section, we first introduce our experimental settings and

then present the results of the testbed and simulations.

7.1 Experimental settings
Testbed. We build a testbed consisting of 15 heterogeneous GPUs (8

V100s, 4 T4s, 1 K80, and 2 M60s), which are deployed on 4 Amazon

EC2 instances. All GPUs are equipped with PCIe-3×16 (15.75 GB/s).
Each instance is powered by NVIDIA driver 418.21, CUDA 10.1 and

cuDNN 8.0.4, running Ubuntu 18.04 with Linux kernel version 5.4.

All instances are connected via the 25 Gbps Ethernet.

Table 2: Deep Learning Jobs Used in Our Experiments.

Type Model Dataset BatchSize
CV VGG-19 [37] Cifar10 [23] 128

25%CV ResNet50 [22] Cifar100 [27] 64

CV Inception V3 [38] Cifar100 [27] 32

NLP Bert_base [15] SQuAD [34] 32

25%

NLP Transformer [39] WMT16 [1] 128

Speech DeepSpeech [21] ComVoice [4] 8 25%

Rec. FastGCN [11] Cora [35] 128

25%

Rec. GraphSAGE [20] Cora [35] 16

Simulator. We have developed a trace-driven simulator to evaluate

Hare in large-scale settings. The simulator is built in Python, and

emulates the execution of DML jobs using the traces collected from

the testbed. The job arrival time is set according to the trace in

Google cluster [3].

Workload.We create some DML jobs based on 8 popular models

across domains of computer vision (CV), natural language pro-

cessing (NLP), speech, and recognition (Rec.). The details of these

models are shown in Table 2. In the default setting, each type of jobs

accounts for 25% of the total workload. All jobs are implemented in

PyTorch 1.8.1, and they are trained using synchronous PS scheme.

Since the original datasets of SQuAD and WMT16 are too large and

the corresponding training would run for days, we downscale them

so that they can complete within hours.

Schemes for Comparison. We compare Hare with following

schemes.

Gavel_FIFO: FIFO (First In First Out) is a default job scheduling

algorithm in many traditional batch job processing systems [46].

It schedules jobs in an order according to their arrival time. Gavel

[29] customizes FIFO for heterogeneous GPUs by assigning jobs to

fastest available GPUs. If the number of idle GPUs is insufficient,

this job needs to wait until demanded GPUs are available.

SRTF (Shortest Remaining Time First): SRTF has been widely adopted
to minimize total job completion time. It always schedule jobs that

could complete earlier.

Sched_Homo [47]: We denote a recent scheduling algorithm [47]

designed for homogeneous GPUs by Sched_Homo. Similar to Hare,
it aims to minimize the weighted ML job completion time by ex-

ploiting both inter-job and intra-job parallelism. However, job-level

preemption is not allowed.

Sched_Allox [24]: We consider the ML job scheduling algorithm

proposed by Allox [24]. The GPU heterogeneity has been fully

exploited, but it does not consider the intra-job parallelism.

7.2 Resutls on Testbed
We first study the benefits of fast task switching by showing the

average switching time of different jobs in Table 3. A default task

switching scheme, without any optimization, needs more than

3000ms for all jobs. PipeSwitch can reduce the average switching

time to 12.57ms for Bert_base and less for others. The maximum

switching time of Hare is no more than 6ms. The proportion of task

switching time to the total task time is also shown in the table. We

can see that Hare constrains the task switching overhead within



Table 3: Average Task Switching Time of Different Jobs.

VGG19 ResNet50 Inception V3 Bert_base Transformer DeepSpeech FastGCN GraphSAGE

Default

3288.94 ms

(98.21%)

5961.16ms

(97.37%)

7807.43 ms

(96.99%)

9016.99 ms

(93.95%)

5257.17 ms

(95.41%)

5125.64 ms

(94.15%)

5327.24 ms

(98.47%)

5213.54 ms

(98.29%)

PipeSwitch[8]

4.01 ms

(2.40%)

4.75 ms

(5.46%)

5.03 ms

(2.39%)

12.57 ms

(1.99%)

10.34 ms

(2.03%)

8.91 ms

(1.59%)

2.86 ms

(7.56%)

2.42 ms

(8.64%)

Hare
2.77 ms

(1.82%)

2.04 ms

(3.71%)

2.46 ms

(1.43%)

5.03 ms

(1.13%)

5.79 ms

(1.36%)

4.27 ms

(1.25%)

1.83 ms

(4.53%)

0.96 ms

(3.36%)
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Figure 12: The results in
testbed.
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Figure 13: CDF of job com-
pletion time.
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Figure 14: Performance un-
der different number of
GPUs.
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Figure 15: Performance un-
der different number of
jobs.

2% for most of models, and the largest overhead under FastGCN

is no more than 5%. These results justify our assumption that task

switching time is negligible in the scheduling algorithm design.

The total weighted job completion time (JCT) of several schemes

running on the testbed and the simulator is shown in Fig. 12. Com-

pared with other schemes, Hare can reduce total weighted JCT by

47.6% to 75.3%, significantly outperforming other schemes. Fig. 13

shows the cumulative distributed function (CDF) of JCT of all jobs.

We can see that about 90.5% of jobs can complete within 25 min-

utes by Hare, while Sched_Allox and Sched_Homo can complete

only 66.7% and 56.5%, respectively. That is because Allox misses

the optimization chances brought by intra-job parallelism, and

Sched_Homo is GPU-heterogeneity-oblivious, leading to low GPU

utilization.

7.3 Results of Simulations
Large-scale experiments are conducted using the simulator. As we

have shown in Fig. 12, the maximum performance gap between

the testbed and simulator is only 5%, which demonstrates that the

simulator can offer sufficient simulation accuracy. The gap is mainly

because the error in prediction of training time and switching cost.

We study the influence of number of GPUs in Fig. 14. The number

of ML jobs is set to 200. The weighted JCT of all schemes decreases

as more GPUs are used. Hare always outperforms other schemes

under all cases. Sched_Allox is slower than Hare by about 2x, but it

is still significantly faster than others, thanks to its heterogeneity-

aware design. Although Gavel_FIFO schedules jobs with the consid-

eration of heterogeneity, it still has the largest weighted JCT since

it has no optimization in scheduling.

We then consider 160 GPUs and change the number of jobs from

100 to 300 to see how it affects the performance. As shown in Fig.

15, as the number of jobs increases, the total weighted JCT grows

under all schemes. Meanwhile, the performance gaps between Hare
and other schemes become bigger. For example, Hare outperforms

others by 54.6%-80.5% when processing 300 jobs. It demonstrates

that Hare can use these GPUs in a more efficient way, to minimize

the total weighted JCT.

We study the influence of GPU heterogeneity in Fig. 16. We con-

sider 160 GPUs and 200 jobs. We set different heterogeneity levels

by selecting a different combination of GPUs. For the low hetero-

geneity level, we only choose V100 GPUs for training. We select the

combination of (V100×K80) GPUs as the middle heterogeneity level

while selecting the combination of (V100×T4×K80×M60) GPUs as

the high heterogeneity level. We find the gaps between Hare and
other schemes become bigger as the increasing of heterogeneity

level. The main reason is the higher heterogeneity level results

in lower resource utilization in heterogeneity-oblivious schemes.

Although Sched_Allox suffers a slight influence from the hetero-

geneity level, its performance still lags behind Hare by 2× since

there is no consideration of intra-job parallelism optimization. We

also find that Hare and Sched_Homo have close performance when

there is a low-level heterogeneity, because intra-job parallelism

optimization has the dominant influence in such scenarios.

We investigate how job type affects the performance by changing

their proportions. The results are shown in Fig. 17. In the default

setting, each type of jobs account for 25%. In each experiment, we

then increase one of them and keep others the same. The x axis of

Fig. 17 shows the ratio of different job types. When we increase

the proportion of NLP jobs, the total weighted JCT of all schemes

increases since NLP jobs involve heavier training workloads (i.e.,

more training rounds andmore training time). On the other hand, all

schemes have smaller weighted JCTwhenmore recognition jobs are

added, because they have less workloads. Although Hare is affected
by the job proportion, it always achieves the best performance due

to the sophisticated scheduling algorithm.



Low Middle High
Heterogeneity Level

0.0

0.4

0.8

1.2

To
ta

l W
ei

gh
te

d 
JC

T 
(m

in
)

×104

Hare
Gavel_FIFO

SRTF
Sched_Homo

Sched_Allox

Figure 16: Performance un-
der different heterogeneity
levels.

2:1:1:1 1:2:1:1 1:1:2:1 1:1:1:2
(CV) : (NLP) : (Speech) : (Rec.)

0.0

0.5

1.0

1.5

To
ta

l W
ei

gh
te

d 
JC

T 
(m

in
)

×104

Hare
Gavel_FIFO

SRTF
Sched_Homo

Sched_Allox

Figure 17: Performance un-
der different fractions of
jobs.

10 Gbps 15 Gbps 25Gbps
Bandwidth

0.0

0.4

0.8

1.2

To
ta

l W
ei

gh
te

d 
JC

T 
(m

in
)

×104

Hare
Gavel_FIFO

SRTF
Sched_Homo

Sched_Allox

Figure 18: Performance un-
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Figure 19: Performance un-
der different batch sizes.

We change the speed of the network connecting GPUs and study

its influence in Fig. 18. The results are in alignment with our intu-

ition that faster networks can accelerate the ML training. However,

such acceleration is not linear with the network speed since the

training time becomes the main bottleneck as the decreasing of

the synchronization time. For example, Hare’s weighted JCT de-

creases by only 31.2%, even though increase the network speed

from 10Gbps to 25Gbps.

Fig. 19 shows the performance under different batch sizes, where

𝐵0 stands for the default batch size configuration. We can see that

batch size has no big influence to all schemes except Sched_Homo.

That is because larger batch size leads to longer training time, and

there is more GPU idle time in Sched_Homo.

8 RELATEDWORK
Distributed Machine Learning. Distributed machine learning

on GPUs has been widely adopted to accelerate model training on

large datasets. Typically, We can assign and synchronize workloads

on GPUs in two different ways, which are referred to as model

parallelism [13, 28] and data parallelism [12, 25, 36]. In the model

parallelism, each GPU trains a partition of the model with the entire

dataset. In data parallelism, each GPU maintains a complete model

and trains it using a subset of data. The model gradients are period-

ically synchronized across GPUs using All-Reduce [15, 18, 30] or

Parameter Server (PS) [10, 14, 25, 43] scheme. In particular, the PS

scheme is popular due to its simplicity, and we also use it in our

work. Specifically, the training process contains multiple rounds. In

each round, training workloads are shared by multiple GPUs, which

are also called workers. Each worker computes its local gradients by

using mini-batch stochastic gradient descent (SGD) method. Then

they send gradients to the parameter server, which updates the

model for the next-round training.

Job scheduling for machine learning. Job scheduling, which

determines when and where each job should run, is the most fun-

damental and critical issue for distributed machine learning. Early

studies follow the idea of traditional batch job scheduling by treat-

ing each job as an unsplittable unit and schedule them on different

GPUs [46]. Later, some works have exploited the intra-job paral-

lelism, i.e., tasks in the same training round of a job can run in

parallel, which can significantly enhance learning performance.

Optimus [31] allocates resources to ML jobs by learning a through-

put model with respect to various resource allocation. Themis [26]

introduces a notation of finish-time fairness to promote fair allo-

cation, while improving the cluster utilization. Pollux [32] studies

different resource allocation for ML jobs by observing the through-

put and statistical efficiency during training. Zhang et al. [47] design

an online algorithm that selects the amount of resources for each

job to minimize the total job completion time. Although the above

works have exploited both inter-job and intra-job parallelism, they

consider homogeneous GPUs and forbid GPU preemption during

job execution.

Recently, GPU-heterogeneity becomes popular as the expansion

of data centers and it has attracted significant research attention.

Gandiva
fair

[9] proposes an automated trading mechanism to sup-

port time-slicing resource sharing among different jobs while im-

proving the cluster efficiency. Gavel [29] develops a heterogeneity-

aware scheduler to generate different scheduling policies for dif-

ferent kinds of jobs. However, Gandiva
fair

and Gavel schedule jobs

based on given time slice length. Such a coarse-grained scheduling

manner leaves a large optimization space for performance improve-

ment. Moreover, they ignore the task switching cost. Allox [24]

transforms the job scheduling problem into a min-cost bipartite

matching to provide dynamic fair allocation, but it conducts job-

level scheduling and ignores the intra-job parallelism.

9 CONCLUSION
We present Hare, a system enabling efficient multiple DML job

scheduling on heterogeneous GPU cluster. Considering frequent

task switching may happen in Hare, we propose fast task switch-

ing optimization in Hare to reduce the overhead of task switching.

Besides, we propose a heterogeneity-aware task scheduling algo-

rithm to minimize the total weighted job completion time. We

demonstrate the performance of Hare through experiments on both

small-scale testbed and large-scale trace-driven simulator. Hare can
significantly outperform existing works.
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