Content of this lecture

- What is a decision tree?
- How to induce a decision tree?
- What are the drawbacks of decision trees?
- What is an NNTree?
- What are the advantages of NNTrees?
- How to induce NNTrees efficiently?

Local decision making in a DT

- In each internal node, a decision function \(f(x) \) is used to make local decisions.
- For binary decision trees, an input pattern is classified to the left child node if \(f(x) < 0 \); and to the right child node otherwise.
- The decision function in a standard DT is \(f(x) = X_i a_i \).
- That is, only one of the features is used for making the decisions.

What is a decision tree?

- Decision tree (DT) is a tree structure.
- In a DT, there are two kinds of nodes
 - Internal nodes: Used to make local decisions based on the local information they possess.
 - Terminal nodes: Used to make the final decision.

Local decision making in a DT

- In each internal node, a decision function \(f(x) \) is used to make local decisions.
- For binary decision trees, an input pattern is classified to the left child node if \(f(x) < 0 \); and to the right child node otherwise.
- The decision function in a standard DT is \(f(x) = X_i a_i \).
- That is, only one of the features is used for making the decisions.
Final decision making in a DT

- In each terminal node, the distribution of data assigned to the node by the tree is used for making the final decisions.
- If the majority of data belong to the ith class, the terminal node is assigned with the class label i.
- All test data assigned to this node by the tree are assigned with the label i.

Example 1: Shall I play tennis today?

- Play tennis if (outlook is sunny & humidity is normal).
- Play tennis if (outlook is overcast).
- Play tennis if (outlook is rain & wind is weak).
- Otherwise not play.

Example 2: A binary decision tree

How to induce (design) decision trees?

- One of the most popular tools for inducing DT is C4.5.
- C4.5 was proposed by Quinlan.
- C4.5 is often used as a standard for comparison with newly developed algorithms.
- The source code of C4.5 can be downloaded from the following web site:
 - http://www.rulequest.com/Personal/
- There are many other programs for inducing DTs.
Basic steps for inducing a DT

Step 1: If all data assigned to the current node belong to the same class, the current node is terminal. Define the class label and return;
Step 2: Otherwise, find the best decision function $f(x)$ based on some criterion (Information Gain Ratio is used in C4.5);
Step 3: Split the data assigned to the current node to N-groups using $f(x)$;
Step 4: For each group, if it is not empty, make a new node, set the current node as this new node, and call the same sub-routine recursively.

Pros and cons of DTs

• Pros:
 – Comprehensible.
 – Easy to design.
 – Easy to implement.
 – Good for structural learning.

• Cons
 – May become very large for complex problems.
 – Difficult to know the true concept.
 – Too many rules to be understood by human users.

Why DTs become large?

• The decision boundary corresponding to $f(x) = x_i - a_i$ is an axis-parallel hyperplane.
• The main reason that standard DTs become every large is that only axis-parallel hyperplanes are used.
• Standard DTs are also called axis-parallel decision trees (APDTs).
• For complex problems, many hyperplanes are required.

A Simple Example

• 2,000 points plotted at random in the square $[0, 1]^2$
• Theoretic decision boundaries:
 – L_1: $y = 1.1x$
 – L_2: $y = -0.91x + 1.0$
 – L_3: $y = -0.91x + 0.91$
APDT for the Simple Example

What are the concepts hidden in the decision boundaries?

The oblique decision tree

- One way to reduce the tree size is to use multivariate decision functions.
- **Oblique decision tree** (ODT) is the simplest MDT.
 - Linear combination of features is used as the decision function

\[F(x) = \sum_{i=1}^{d} w_i x_i \]

- If \(F(x) < 0 \), visit the left child; otherwise, visit the right child.

An ODT for the Simple Example

\[y < 1.10 x + 0.007 \]
\[y < -0.89 x + 0.917 \]
\[y < -0.93 x + 1.017 \]
Pros and cons of MDT

- **Pros**
 - A multivariate decision function is more powerful, and thus less nodes or less steps are required for making a decision.
 - Better generalization ability can be expected.

- **Cons**
 - In general, the MDT are not comprehensible.
 - To get the best decision function is very difficult.

How to make MDT comprehensible?

- One way to make the MDT more comprehensible is to use a small neural network (NN) in each internal node as the decision function.
- This is a hybrid learning model that combines DT and NN.
- We call this model the neural network decision tree (NNTree).
- One way to make NNTree comprehensible is to use each NN to learn some intermediate concept, and assign a label for each internal node.
- The tree can be transformed to a very compact rule set.
- Note that each intermediate concept is still represented in a black-box.

How to induce MDT more efficiently?

- Instead of generating many decision functions, we propose to generate only one decision function through supervised learning.
- The teacher signal g(x) of a data is called the group label.
- If g(x) = i, x is assigned to the i-th child of the current node.

 ➢ Put all data with the same class label to the same group
 ➢ Put data that are close to each other to the same group

Definition the teacher signals

- Suppose that we want to partition S into N subsets $S_1, S_2, ..., S_N$.

 1. If there is a $y \in S_i$ such that $\text{label}(x) = \text{label}(y)$, assign x to S_i.
 2. Else if there is a S_i such that $S_i = \text{empty set}$, assign x to S_i.
 3. Else if find y, which is the nearest neighbor of x in S_i, assign x to same sub-set as y.
Definition the teacher signals

- Suppose that we want to partition S into N subsets S_1, S_2, \ldots, S_N.

1. If there is a $y \in S_i$ such that $\text{label}(x) = \text{label}(y)$, assign x to S_i.
2. Else if there is a S_i such that $S_i = \text{empty set}$, assign x to S_i.
3. Else if find y, which is the nearest neighbor of x in S_i, assign x to same sub-set as y.

Method for inducing NNNTrees

- Once the group labels are defined, we can find different kinds of decision functions using different learning algorithms.
- If we use a feed forward multilayer neural network in each internal node, we can use the back propagation (BP) algorithm.
- The MDT so obtained is called the neural network tree (NNTree).
- We can also use an SVM (support vector machine) in each internal node, and we may call the model SVM-Tree.
Advantages of NNTrees

• Compared with the APDT, experimental results show that NNTrees have better generalization ability.
• Compared with single model, fully connected neural networks, NNTrees are better for structural learning, and can make decisions more quickly.

Team Project VII

• Download the program from the web site of this course, and try to understand the basic idea of the program.
• Download 2 databases from the UC Irvine Machine Learning Repository, and try to induce an NNTree for this database.
• Solve the same problem using the BP based multilayer neural, and compare the results with those of the NNTree.