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Abstract—The bag-of-features (BoF) model is the standard
platform for image retrieval systems and successfully extended
to systems for exploring 3D models through their projected
views. However, we need a large number of views for each 3D
model to achieve shape retrieval systems with high accuracy,
which results in increased data storage and long computation
time for shape comparison. This paper presents an approach for
reducing projected images in such image-based shape retrieval
by aggregating views of each 3D model. Our approach begins by
discovering a proper metric for evaluating dissimilarity between
3D models by referring to their high-dimensional feature vectors
obtained from the BoF model. We then introduce a variant of the
k-means clustering method to identify the representative views of
each 3D model, given the number of such essential views. Finally,
we adjust the degree of such view aggregation by assessing the
number of plane symmetries for each 3D model. We test our
approach with a dataset containing 200 3D models and we learn
that we can reduce the number of views to less than 10% while
limiting the degradation of accuracy to approximately 5%.

Index Terms—View-based 3D model retrieval, bag-of-features
model, similarity measures, viewpoint aggregation, plane symme-
tries

I. INTRODUCTION

Recent improvements in hardware have led to the emergence
of computer graphics technologies that play an increasingly
crucial role in synthesizing highly realistic and complicated 3D
scenes. For that purpose, skill in modeling geometric shapes
of 3D objects is essential to improving the visual quality of
synthesized 3D scenes. This means that designing visually
appealing 3D models directly influences the attractiveness of
visual media, including graphics, animation files, video games,
and advertisements.

Conventionally, 3D models were manually designed through
trial and error using modeling software. However, com-
mercially available cloud storage services facilitate shape
databases consisting of a large number of ready-made and
ready-to-use 3D models. This implies that properly retrieving
requisite 3D models from such shape databases is an important
technical concern in the computer graphics community. In
practice, image retrieval techniques were successfully ex-
tended to implement effective shape retrieval systems [1].

Here, the bag-of-features (BoF) model has been successfully
employed as the basis for finding 3D models similar to
the input key. The 3D model search query is accomplished
by first extracting image features from views of each 3D
model projected from multiple viewpoints and then plotting
the corresponding feature vectors in high-dimensional feature
space. Each view is then vector quantized by decomposing the

set of feature vectors into a specific number of clusters and
then transformed to the histogram coordinates by counting the
occurrence of the feature vectors in the respective clusters.
This image-based retrieval technique also successfully facili-
tates an effective search query for a large set of 3D models
that are ready to use.

However, this query system for 3D models often results in
large data storage since a single 3D model requires multiple
projected views to achieve high accuracy in retrieval perfor-
mance. This is unlike an image query system in which each
image is directly mapped to a single histogram through a
one-to-one association mapping. Such large-sized storages also
degrade the query performance since we need to investigate
histograms obtained from multiple views to assess the simi-
larity of a single 3D model with the input key model.

The objective of this study is to compose a compact repre-
sentation of an image-based shape retrieval system employing
a minimum number of views for each model. Our first task
is to find a proper similarity metric between the histogram
coordinates acquired from views of 3D models to maximally
enhance the quality of similar shape queries. We then apply
a variant of k-means clustering using the selected similarity
metric to find a set of representative views of each 3D model.
Finally, we detect significant plane symmetries to adjust the
number of clusters to adaptively reduce the total number of
projected views maintained in the image-based shape database.
Our experiment demonstrates that we can successfully reduce
the number of projected views to 10% of the original views
while limiting the degradation of shape retrieval accuracy by
around 5%.

This paper is organized as follows. Section II provides a
brief survey of previous studies related to this work. Sec-
tion III explains the algorithmic flow of our computational
framework for retrieving 3D models from their projected
views. We detail our primary contribution in Section IV, in
which we take advantage of plane symmetries inherent in
each 3D model to adaptively aggregate views projected from
multiple viewpoints. Section V presents experimental results
to demonstrate how we can adaptively minimize the views of
3D models stored in the image-based database system without
significantly degrading the quality in shape retrieval. Finally,
we present our conclusions and outline possible future work
in Section VI.



II. RELATED WORK

This section provides a summary of relevant studies by
classifying them into the following three categories: image-
based shape retrieval, viewpoint selection, and viewpoint ag-
gregation.

A. Image-Based Shape Retrieval

The BoF model [2], [3] allows us to extract the underlying
semantics inherent in a set of images. This model is an
extended version of the bag-of-words model used in text
mining techniques in the sense that the extracted image
features are treated as words. For the image features, the
Scale-Invariant Feature Transform (SIFT) [4] was commonly
employed to facilitate the process of image categorization.
Another possible formulation is Speeded Up Robust Features
(SURF) [5], which has frequently been used as a descriptors
of local image features. Although the SURF was partially
inspired by the concept of SIFT, it successfully reduced the
associated computational cost approximately threefold [6].

The BoF model promoted a variety of practical applications.
Gao et al. [7] implemented a system for visually analyzing
the bipartite relationships between images and their categories.
Ohbuchi et al. [1] developed a shape retrieval system based
on the BoF model and demonstrated its feasibility. More
recently, multiple modalities including images have been also
employed as the keys for shape retrieval, in which deep
learning techniques were successfully incorporated [8].

B. Viewpoint Selection

In computer graphics, research has been intensively con-
ducted to select optimal viewpoints for better acquisition of
shape characteristics of 3D objects. Kamada and Kawai [9] and
Roberts and Marshall [10] explored viewpoints that minimized
the invisible areas of the 3D objects in their projected views.
Barral et al. [11] modified the approach by Kamada and Kawai
to incorporate perspective projections as well. Vázquez et
al. [12] proposed viewpoint entropy based on the formulation
of Shannon entropy to assess the amount of visual information
available in the view projected from the corresponding view-
point. Later, they developed this formulation to accommodate
the concepts of view stability and depth maps of the 3D
scenes [13]. More sophisticated approaches based on machine
learning techniques [14] and perceptual studies [15] were
also introduced to investigate the viewpoint selection problem.
Techniques for selecting optimal viewpoints in the context of
volume visualization were also investigated [16], [17].

C. Viewpoint Aggregation

It is often important to pursue a plausible set of represen-
tative viewpoints through an adaptive aggregation process. In
the early stages of the research, Yamauchi et al. [18] proposed
several different ideas, including clustering similar views on
the viewing sphere. Tulsiani et al. [19] computed a symmetry-
aware mapping from pixels to an object-centric canonical
3D coordinate system using Convolution Neural Network
(CNN) to better propagate information over the projected
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Fig. 1: Flow of the algorithm.

view. Sridhar et al. [20] trained a 2D CNN to predict these
representative viewpoints from multiple views of a 3D object.
Research on effective viewpoint sampling for image-based 3D
model retrieval has also been conducted using an approach
different from that of this paper. Li et al. [21] presented a study
on C-means-based view clustering from viewpoint entropy
values to retrieve relevant 3D models based on hand-drawn
sketches. This was done by measuring visual complexity using
viewpoint entropy distributions and adaptively determining the
number of representative views based on their complexity
values.

III. ALGORITHMS

In this section, we describe the flow of the algorithm for
retrieving 3D models through their projected views based on
the BoF model (Fig. 1). Although this is a variant of the
previous approach developed by Ohbuchi et al. [1], we strive
to make the data storage required for the shape database as
compact as possible by adaptively aggregating the original
viewpoints in this study. In our setup, we first collect 200 3D
models as our running example for 3D shape retrieval. We then
store multiple views for each model by projecting them from
1,024 viewpoint samples that are uniformly distributed over
the viewing sphere around the model. Our prototype retrieval
system searches for a set of 3D models similar to a projected
view of a 3D model taken as input. This is accomplished by
comparing the SIFT features of the input view with those
contained in the multiple views of 3D models stored in the
database.

A. Sampling Viewpoints Using the Generalized Spiral Set

Our first step is to sample an initial set of viewpoints
uniformly over the unit viewing sphere that encloses the
3D model. In this study, we use a Generalized Spiral Set
(GSS) [22] to ensure uniformity in distributing the viewpoints
over the viewing sphere. The GSS permits us to locate the
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Fig. 2: Image-based shape retrieval based on the BoF model. (a) Viewpoint position placed on the sphere by the GSS (red
points are the viewpoint position). (b) Calculating a histogram for each projected view.

viewpoint samples by referring to the corresponding incidence
and azimuth angles in the polar coordinate system. Let us
denote the number of viewpoints by N . We can calculate the
k-th (k = 1, . . . , N ) viewpoint using the GSS, formulated as
the following incremental equations:

θk = cos−1 hk, where hk = −1 + 2
k − 1

N − 1
and

φk = φk−1 +
3.6√

N sin θk
, where φ1 = 0.

Here, θ and φ indicate the incidence and azimuth angles in the
polar coordinate system, respectively. Thus, we can calculate
the 3D coordinates of the k-th viewpoint as (xk, yk, zk), where
xk = sin θk cosφk, yk = sin θk sinφk, and zk = cos θk.

As for the choice of N , we first investigate the retrieval
accuracy for a sufficiently large number of viewpoints and
then learn that sampling N = 1,024 viewpoints is sufficient
to retain high accuracy in the retrieval of 3D models. Fig. 2(a)
shows the result of the GSS formulation used to sample
viewpoints over the viewing sphere around a 3D model, where
the red points represent the positions of sampled viewpoints.
In the initial setup, we generate 1,024 views projected from
these viewpoints for each 3D model and store the images in
our prototype system for 3D shape retrieval. Note that we
normalize the size of the input 3D model before projecting it
from multiple viewpoints in such a way that the model will
fit within the unit viewing sphere.

B. Extracting SIFT Feature Vectors

The next step is to construct the BoF model by taking
as input multiple views of the respective 3D models, as
described previously. Fig. 2(b) illustrates the entire process
of calculating the histogram coordinates for each projected
view. The construction process of the BoF model begins by
extracting the SIFT features embedded in a projected image of
each 3D model. Note that a single SIFT feature is represented
as a 128-dimensional feature vector. Thus, we can plot a set of

SIFT features extracted from each projected image in a 128-
dimensional feature space, where the total number of projected
views is 1,024 (viewpoints) multiplied by 200 (3D models).

We distribute all the SIFT feature vectors to a specific
number of clusters by introducing the ordinary k-means clus-
tering method. We then create a histogram for each projected
view, where each bin represents the frequency of such feature
vectors in the respective clusters. Finally, we normalize the
histogram so that it represents a unit k-dimensional vector, for
later convenience in evaluating the similarity scores between
different views. It is crucial to properly select the number of
clusters, k, which will be further discussed later.

C. Calculating Dissimilarity Scores

Having obtained histogram coordinates for each projected
image, we want to compute the distance, i.e., dissimilarity,
between every pair of histograms. Since a histogram can be
thought of as a k-dimensional vector, the Euclidean distance
metric in the k-dimensional space is the most natural tool for
assessing the dissimilarity. However, we have other possible
choices that can evaluate the distance between the histograms
more faithfully. In practice, we introduced four options in
our experiment and observed which option was the best
for evaluating the dissimilarity between 3D models through
statistical analysis. Suppose that we have two histograms, x
and y, to be compared, where xi and yi represent the i-
th coordinate (i.e., the height of the i-th bin) of x and y,
respectively. The four metrics can be summarized as follows:

1) Euclidean distance:
This metric evaluates the dissimilarity between the two
histograms x and y as the distance between the corre-
sponding two vectors, {xi} and {yi}, as follows:

d(x,y) =

√∑k
i=1(xi − yi)2

2) Pearson product-moment correlation coefficient:
This coefficient evaluates the strength of the linear rela-
tionship between the histograms {xi} and {yi}, where the



two histograms are assumed to represent the sequences
of probability values. The coefficient is given by

c(x,y) =

∑k
i=1(xi − x)(yi − y)√∑k

i=1(xi − x)2
√∑k

i=1(yi − y)2
,

where x and y denote the average values of xi’s and
yi’s, respectively. The coefficient ranges from −1 to
1 according to the degree of the positive correlation
between x and y. Thus, the resulting dissimilarity metric
can be defined as d(x,y) = 1− c(x,y).

3) Cosine similarity:
This score calculates the cosine of the angle spanned by
the two vectors x = {xi} and y = {yi}. This implies
that the score is expressed as

c(x,y) =

∑k
i=1 xiyi√∑k

i=1 xi
2

√∑k
i=1 yi

2

This value again ranges from −1 to 1 according to the
degree of similarity between the two histograms x and
y, which implies that the associated dissimilarity metric
is d(x,y) = 1− c(x,y).

4) Weighted Jaccard coefficient:
The weighted Jaccard coefficient calculates the degree
of similarity between two sets by dividing the total
cardinality of the products of the two sets by that of their
sums [23]. Thus, the coefficient is formulated as

c(x,y) =

∑k
i=1 min{xi, yi}∑k
i=1 max{xi, yi}

This coefficient ranges from 0 to 1 according to the degree
of similarity. The corresponding distance metric can be
defined as d(x,y) = 1− c(x,y).

We conduct an experiment to assess which metric faithfully
measures the similarity between the projected views of 3D
models the best. The scenario for comparing the similarity
metrics is summarized as follows.

We first classify the 200 3D models in the database into 29
categories according to the shape contents they represent, such
as airplanes, cars, ships, humans, and fishes. We then randomly
select one projected view out of N = 1,024 views for each of
the 3D models to use as a key image for the shape retrieval
in the experiment. Using each of the four similarity metrics
described above, we evaluate the degree of similarity of each
3D model to the input key by computing the similarity score
of its N views in the database. With this approach, we find
the top 10 models that have the highest degree of similarity
in the database. Once we identify one of the N views as the
most similar to the input key, we exclude other N − 1 views
from our analysis.

In this way, for each 3D model, we can find the 10 most
similar models in the shape database. We plotted these most
similar models as small dots (in gray) in the similarity matrix,
as shown in Fig. 3. Here, the rows and columns of the
matrix correspond to the 3D models ordered according to the

Fig. 3: Similarity matrix obtained using the weighted Jaccard
coefficient when k = 512.

Fig. 4: Comparison between the four similarity metrics in
terms of the histogram dimensions.

shape categorization. We then counted the total number of
small dots in the submatrices along the diagonal of the entire
similarity matrix as the number of retrieved 3D models that
are sufficiently similar to the input key. This is because we
consider that 3D models in the same category are considered as
similar shapes. This implies that the accuracy of the similarity
metric increases as the total number of small dots contained
in the diagonal submatrices becomes larger. Of course, this
total count varies according to the choice of the four similarity
metrics (d) and the dimension of the histograms (k) that
corresponds to the number of clusters in the feature space
we described earlier. Actually, we want to employ the metric
and the number of clusters that achieve the highest similarity
count in our study.

We can plot the counts of retrieved similar 3D models in
terms of the histogram dimension and the similarity count, as
exhibited in Fig. 4. The resulting trend suggests that the best
metric for seeking similar 3D models is the weighted Jaccard



(a) k = 2

(b) k = 4

(c) k = 8

Fig. 5: Views of a car projected from k representative view-
points. (a) k = 2. (b) k = 4. (c) k = 8.

coefficient, and its corresponding proper histogram dimension
is 512. We can observe that the Jaccard coefficient can
keep a relatively stable accuracy regardless of the histogram
dimension when compared with other similarity metrics.

D. Identifying the Representative Viewpoints

The last task is to adaptively select representative views
from those projected from the original set of 1,024 view-
points. Suppose that we have a means of computing the
proper number of representative views as k for each 3D
model. In this case, we can apply the conventional k-means
clustering method to the 1,024 histogram coordinates and find
the representative viewpoints that correspond to the cluster
centers. Nonetheless, we have already decided to use the
weighted Jaccard coefficient as our similarity metric, and thus,
we cannot precisely identify the center of each cluster as
its barycenter since we no longer use the Euclidean distance
metric.

For this purpose, we introduce the k-medoid clustering
method [24], which is a variant of the k-means clustering
approach. In practice, the k-medoid clustering method is com-
patible with the non-Euclidean distance metric as it restricts
the position of each cluster center on the data samples that
belong to the cluster. In other words, we define a cluster center
called a medoid to be the sample that minimizes the sum of
distances from other samples in the same cluster. The medoid
of the i-th cluster can be obtained by the following equation:

arg min
x∈Gi

∑
y∈Gi−{x}

d(x,y),

where Gi is the set of data samples in the i-th cluster and d
is the distance metric.

In this study, we apply the k-medoid clustering method to
the histograms of projected views to aggregate the viewpoints
in each cluster to its center, which is expected to serve as
the representative viewpoint. In the proposed approach, k-
means++ [25] method is adapted to k-medoids clustering to
minimize the influence of the initial conditions on the final
clustering results.

Fig. 5 presents the selected views projected from the repre-
sentative viewpoints aggregated using the k-medoid clustering
method. As demonstrated in the figure, the set of selected
views changes according to the number of clusters, k. Note
that the label at the bottom left of each image contains the ID
of the viewpoint generated using the GSS [22] formula. Based
on the observation, we can claim that the set of views with a
small number of viewpoint clusters is likely to survive in the
set even when we raise the number of clusters. For example,
the viewpoint IDs of a car model with k = 4 (Fig. 5(b))
can also be found in the set with k = 8 as identical IDs or
immediately preceding/following IDs (Fig. 5(c)). This means
that properly adjusting the number of viewpoint clusters while
retaining high accuracy in shape retrieval will enhance the
effectiveness of the image-based shape retrieval system. The
next section describes our solution to this problem.

IV. ADJUSTING VIEWPOINT AGGREGATION

This section explores how we can assess the required
number of representative viewpoints for generating projected
views of 3D models in the image-based shape retrieval system.

A. Accuracy Degradation by Viewpoint Aggregation

As a preliminary experiment, we investigated how the ac-
curacy in shape retrieval degrades as the number of viewpoint
samples decreases. For this purpose, we counted the number of
similar 3D models successfully retrieved from the database for
numbers of viewpoints to the power of 2. We then computed
the relative accuracy with respect to the initial number of
viewpoints (1,024). Note that in this experiment, we employed
the weighted Jaccard coefficient as the similarity metric and
set the dimension of the histograms, k, to 512, as described
earlier. Furthermore, we obtained the same number of similar
3D models as we did in Section III-C, in which we counted
the number of dots in the submatrices along the diagonal of
the entire similarity matrix (cf. Fig. 3).

Fig. 6 shows how the relative accuracy ratio changes accord-
ing to the increase in the number of representative viewpoints
to the power of 2. The figure indicates that the relative
accuracy ratio does not drastically reduce as we aggregate
the set of viewpoints by half. Actually, the accuracy ratio in
retrieving similar 3D models decreases by 16%, even when
we reduce the number of viewpoints significantly, from 1,024
to 2. This demonstrates the possibility of drastically reducing
the number of viewpoints when preparing representative views
of each 3D model in the database. However, we still need
to assess the acceptable level of reduction in shape retrieval



Fig. 6: Number of viewpoints aggregation and overall change
in search accuracy.

accuracy when finding the optimal number of representative
viewpoints in our approach.

B. Selected Viewpoints and Viewpoint Entropy

One of the commonly used indicators for finding optimal
viewpoints is the formulation of viewpoint entropy [12]. This
indicator facilitates quantifying the visual information of a 3D
model projected from the specific viewpoint position and can
be formulated as follows:

E = −
M∑
i=0

Ai

S
log2

Ai

S
,

where M is the number of faces that cover the 3D model, Ai

is the visible area of the i-th (i = 1, 2, . . . ,M) face on the
2D screen space, and A0 corresponds to the area of the scene
background. Suppose that S represents the total area of the
screen space and is thus computed as S = A0+

∑M
i=1Ai. This

is just a variant of the Shannon entropy measure, which means
that we can obtain more visual information in the projected
view as the viewpoint entropy increases. We can identify the
optimal viewpoints by computing the viewpoint entropy values
of the views projected from viewpoints sampled with the GSS
and identifying those with high entropy values.

For a more detailed investigation, we visualize the rela-
tionship between the distribution of the viewpoint entropy
values and positions of representative viewpoints over the
viewing sphere. To visualize this relationship, we compute
the entropy values at the initial set of 1,024 viewpoints
and then normalize them into the range [0.0, 1.0] through
an affine transformation. This normalization process allows
us to consistently assign the colors according to the relative
magnitude of the viewpoint entropy value for each viewpoint
sample. In our implementation, we plot the viewpoints over the
triangulated viewing sphere and render its wireframe represen-
tation. Here, the color of the wireframe representation changes
from blue to green to red according to the magnitude of the
corresponding viewpoint entropy value. To view the positions
of representative viewpoints, we overlay each viewpoint as a
small sphere on the viewing sphere.

Bed

Car

Holstein

Fig. 7: Comparison between viewpoints entropy distribution
and representative viewpoint positions.

Fig. 7 shows color-coded distributions of the normalized
viewpoint entropy values for 3D models, together with the
representative viewpoints obtained in this study. Here, we
set the number of representative viewpoints to be eight. Our
observation suggested that the representative viewpoints were
likely to stay in the areas of high entropy values. Another
interesting fact is, if the 3D model is almost symmetric about
a plane, viewpoints in a pair are likely be located antipodal to
each other on the viewing sphere. In this case, the distribution
of the viewpoint entropy values is also nearly symmetric
with respect to the plane. This fact actually inspired us to
devise a new method of aggregating viewpoint samples while
minimizing the degradation of accuracy in the shape retrieval
process.

C. Viewpoint Aggregation Based on Plane Symmetries

The ultimate goal of this study is to adaptively adjust
the number of representative viewpoints by referring to the
intrinsic shape features of each 3D model. Our idea lies in
the incorporation of the plane symmetries of 3D models for
such adaptive aggregation of viewpoints. Suppose that a 3D
model is nearly symmetric in terms of some plane. In this case,
we obtain almost the same views of the 3D model if they are
projected from a pair of antipodal viewpoints over the viewing
sphere. This implies that we can skip half of the viewpoint
samples if the 3D model is almost symmetric about the plane.
Thus, we decided to assess the degree of plane symmetry
for each 3D model to adaptively aggregate the initial set of
viewpoints. Among the many methods currently available for
this purpose, we employed one developed by Bo et al. [26],
which facilitates the detection of such symmetry planes based



on the distribution of viewpoint entropy over the viewing
sphere. This method allows us to find a pair of viewpoints with
similar distributions of entropy values and identify a symmetry
plane if it bisects the line segment connecting the viewpoints.

Our scenario is to adaptively aggregate the viewpoints by
counting the number of such symmetry planes for each 3D
model. However, this approach is computationally expensive
as it requires an exhaustive search for symmetric pairs of view-
points scattered over the viewing sphere. Consequently, we
wanted to accelerate the computation by limiting the number
of symmetry planes to be checked for viewpoint aggregation.
This consideration leads us to the idea of aligning 3D models
along the three principal axes. In this study, we introduce
Continuous Principal Component Analysis (CPCA) [27] for
this purpose and restrict our symmetry test to the three planes
spanned by the principal axes. This sophistication considerably
reduces the computation time that is initially required by the
conventional approach for the exhaustive search for symmetry
planes. Fig. 8(a) shows an example of the principal axes
calculated by CPCA, and Figs. 8(b), (c) and (d) exhibit
several 3D models with symmetry planes detected using this
approach. Below, we demonstrate how the proposed approach
can successfully aggregate the initial set of viewpoints while
retaining high accuracy in retrieving similar 3D models in the
shape database.

V. EXPERIMENTAL RESULTS

We have implemented our prototype shape retrieval system
on a laptop PC (MacBook Pro) with an Intel Core i5 processor
with two cores (2.7 GHz), 8GB RAM, and an Intel Iris
Graphics 6100 GPU (1536MB VRAM). The source code
has been written in C++, OpenGL for rendering 3D models,
and OpenCV for image feature extraction. Basically, it takes
more time to retrieve similar 3D models as the number of
projected views stored in the database increases. Our simple
statistical analysis, together with linear regression, shows that
the retrieval time is approximately proportional to the number
of projected views to be compared.

In our experiments, we tested two approaches for viewpoint
aggregation, the exhaustive plane symmetry search formulated
by Bo et al. [26] and our restricted search with CPCA [27]. In
both cases, we adaptively reduced the number of viewpoints
by counting symmetry planes for each 3D model. Suppose
that we start with an initial number of viewpoints, V and
reduce the number by half once we can find a single symmetry
plane. If we can extract the second symmetry plane, we can
further reduce the number to a quarter of the initial value.
However, we never lower the number of viewpoints, even
when we have three or more symmetry planes in total, to
avoid unexpected degradation in the accuracy of similar shape
retrieval. We tested the two symmetry-based strategies for
V = 8, 128, and 512 and investigated how we can retain the
accuracy in the search for the similar 3D models, as well as
maintain the required time for shape retrieval. Table I shows
the statistics resulting from our experiments on these two
symmetry-based aggregations of viewpoint samples.

(a) (b) (c) (d)

Fig. 8: Symmetry planes detected using the algorithm by Bo
et al. [26] and CPCA [27]. (a) Principal component axes
calculated by CPCA. (b) Two symmetry planes. (c) One
symmetry plane. (d) No symmetry planes.

The results in Table I demonstrate that with the exhaustive
plane symmetry search, we could further reduce the number of
viewpoints by almost 30% with little loss in the shape retrieval
accuracy. This implies that the adaptive selection of viewpoint
samples based on plane symmetries can effectively reduce the
data size in image-based 3D shape retrieval systems.

Nonetheless, this simple approach for symmetry detection
requires an exhaustive search for pairs of viewpoints over the
viewpoint sphere and thus, results in a large amount of com-
putation time. On the other hand, as described previously, our
accelerated approach, based on CPCA [27], is effective since
it aligns a 3D model to the principal three axes first and then
tests the symmetry only in terms of three planes spanned by the
principal axes. In our experiments, the conventional exhaustive
search took 500.99 seconds to detect symmetry planes for each
model, while the CPCA-based approach only required 0.698
seconds. This means that we accelerated the computation by
a factor of approximately 700. Furthermore, the reduction rate
of viewpoints has been further improved, as demonstrated in
Table I. Simultaneously, this shape alignment enhancement
again effectively suppresses the loss in the accuracy of the
shape retrieval. This allows us to conclude that our accelerated
symmetry search succeeded in selecting an effective number
of viewpoints in shape retrieval and also reduces the required
time for shape retrieval.

VI. CONCLUSION AND FUTURE WORK

In computer graphics, the selection of good viewpoints has
been an important area of study for many years. In this paper,
these technical problems have been tackled in the context of
image-based shape retrieval, in which 2D views of 3D models
projected from multiple viewpoints are stored as images for
finding similar 3D models. Our technical challenge includes
effective adjustment of the number of projected images stored
in the database to implement compact and accelerated shape
retrieval systems. For this purpose, we try to aggregate the set
of viewpoints using the k-medoids clustering while referring
to a non-Euclidean distance metric.

In this study, we obtained several new findings. First, the
Jaccard coefficient is the best similarity metric among several
candidates, especially for retrieving similar shapes via image
analysis based on the BoF model. Second, the accuracy in
retrieving similar 3D models can be kept relatively high even
when we drastically decrease the number of views through



TABLE I: Symmetry-based aggregation of viewpoints, shape retrieval accuracy, and computation times. O is the original
number of viewpoints that produces projected views of 3D models (i.e., O = 1,024 × 200 = 204,800). V : selected number
of viewpoints for each model before viewpoint aggregation. A: selected number of projected views (i.e., A = N × 200). B:
accuracy rate in the case of N viewpoints compared to the 1024 ones. C: total number of viewpoints after adaptive viewpoint
aggregation. D: accuracy rate compared to the case before viewpoint aggregation (compared to the rate with N viewpoints.)
T : time required for retrieving similar objects (in msec).

Symmetry detection only Symmetry detection + CPCA
N A A/O B C C/O D B ×D T C C/O D B ×D T

8 1,600 0.78% 89.0% 1,178 0.58% 99.2% 88.2% 12.64 1,010 0.49% 97.7% 86.9% 7.53
128 25,600 12.5% 95.8% 18,188 8.89% 96.9% 92.8% 197.42 16,160 7.89% 98.3% 94.2% 132.51
512 102,400 50.5% 98.2% 72,688 35.49% 99.8% 98.0% 789.45 64,640 31.5% 99.8% 98.0% 727.30

viewpoint aggregation. The last and most important contri-
bution lies in our new approach for adaptively reducing the
number of viewpoints in the context of image-based shape
retrieval, which is based on the plane symmetries of 3D mod-
els. By referring to the distribution of the viewpoint entropy
values over the viewing sphere, we succeed in detecting the
plane symmetries of 3D models, while retaining the accuracy
in retrieving similar shapes even with a reduced number of
viewpoints. We can reduce the number of views to less than
10% while limiting the degradation of accuracy to approxi-
mately 5%, especially when starting with 128 viewpoints for
each 3D model as an initial set of samples over the viewing
sphere.

Our future work is to justify these new findings quantita-
tively through additional experiments. In particular, we want to
explore the meaningful relationship between the geometric fea-
tures inherent in the 3D models and the number of viewpoints
required for producing projected views. Exploring useful shape
features other than symmetry through deep learning techniques
is a future research theme.
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