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Abstract
Constructing a 3D papercraft model from its unfolding has been fun for both children and adults since we can
reproduce virtual 3D models in the real world. However, facilitating the papercraft construction process is still
a challenging problem, especially when the shape of the input model is complex in the sense that it has large
variation in its surface curvature. This paper presents a new heuristic approach to unfolding 3D triangular meshes
without any shape distortions, so that we can construct the 3D papercraft models through simple atomic operations
for gluing boundary edges around the 2D unfoldings. Our approach is inspired by the concept of topological
surgery, where the appearance of boundary edges of the unfolded closed surface can be encoded using a symbolic
representation. To fully simplify the papercraft construction process, we developed a genetic-based algorithm for
unfolding the 3D mesh into a single connected patch in general, while optimizing the usage of the paper sheet and
balance in the shape of that patch. Several examples together with user studies are included to demonstrate that
the proposed approach works well for a broad range of 3D triangular meshes.

Categories and Subject Descriptors(according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geome-
try and Object Modeling—Geometric algorithms, languages, and systems -mesh unfolding, topological surgery,
genetic algorithms, papercraft models

1. Introduction

Unfolding 3D meshes into 2D papercraft models allows us
to retrieve the corresponding 3D physical shapes from the
2D display to the real world. This technique would be very
useful when we prepare miniatures of 3D scenes, such as ar-
chitectural designs and urban plannings using the papercraft
models. Furthermore, regardless of the recent development
of rapid prototyping, constructing the 3D physical models
from 2D papercraft patterns is by itself an interesting enter-
tainment, especially for children and families to share pleas-
ant experiences. A variety of methods have been developed
recently for this purpose both in the �elds of computational
geometry and computer graphics.

Although existing techniques are effective, they usually
decompose an input 3D model into a relatively large num-
ber of unfolded patches, including small pieces as shown in
Figure 1(a). This is a serious problem in practice because
we have to seek the correspondences between the bound-
ary edges of different patches when merging them, or even
worse, we have to �t a tiny piece, having a few faces only, to
the remaining part of a 3D papercraft model tightly enough.

Actually, facilitating simple search for the boundary edge
matching is crucial for accelerating the construction of the
corresponding papercraft model.

This paper presents a new heuristic approach for fully op-
timizing the 2D unfolding of an input 3D mesh. The key
ideas of our approach are inspired by the concept of topolog-
ical surgery, which allows us to encode the edge sequence
on the boundary of the unfolding using a symbolic repre-
sentation. Furthermore, in order to ease the papercraft con-
struction process, we have developed a genetic-based algo-
rithm for unfolding the 3D mesh into one single patch. This
formulation allows us to construct the 3D papercraft model
only through simple atomic operations for merging bound-
ary edges of the 2D unfolding, where we can always �nd a
pair of duplicated edges that are next to each other.

Our approach is distortion-free in the sense that we need
not stretch and shrink unfolded patterns to construct the
papercraft models, unlike most conventional approaches.
Actually, unfolding a polyhedron into a single unfolded
patch without any deformation is a well-known open prob-
lem [She75, DO05] and has intensively been studied so far

c 2011 The Author(s)
Computer Graphics Forumc 2011 The Eurographics Association and Blackwell Publish-
ing Ltd. Published by Blackwell Publishing, 9600 GarsingtonRoad, Oxford OX4 2DQ,
UK and 350 Main Street, Malden, MA 02148, USA.



S. Takahashi, H.-Y. Wu, S. H. Saw, C.-C. Lin & H.-C. Yen / Optimized Topological Surgery for Unfolding 3D Meshes

(a) (b)
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Figure 1: Unfolding a bunny model (348 faces). (a) A previous approach [SP05] unfolds the mesh into many patches including
small pieces. (b) Our approach converts the mesh into a single unfolded patch. (c) Steps for stitching boundary edges together
one by one for papercraft construction. The arrows of the same color indicate the correspondences between duplicated edges
together with their directions, while solid and broken lines on the patches represent mountain and valley folds, respectively.

rather from a theoretical point of view. However, to our
knowledge, the only available solution to this problem is
to check all the possible combinations of edges to be cut
over the input polyhedron until we �nd an acceptable so-
lution, which may lead to combinatorial explosion. On the
other hand, our genetic-based approach considerably accel-
erates the search for the overlap-free single connected patch
by adaptively sampling the search space of mesh unfoldings.
This is accomplished by classifying mesh vertices into hy-
perbolic and elliptic ones by referring to their surface cur-
vatures, which lets us instantly reject local self-overlaps be-
tween a pair of neighboring faces without actually projecting
them onto a 2D plane. As presented in Figure1(b), our ap-
proach usually converts a 3D mesh into a single unfolded
patch for 3D meshes with up to 500 faces, which can be
considered as a size limit for hand-made papercrafts.

We assume that the input 3D mesh consists of triangular
faces only, while this is not a hard constraint because we
can easily partition a non-triangular face into a set of trian-
gles. There are no restrictions on the topological types of
the 3D meshes as long as they are orientable, which means
that topological tori and their connected sums can be suc-
cessfully unfolded without any extra cost. In our approach,
we also assume that the unfolded patches will be printed on
a single A3 sized sheet, to which the scale of the unfolded
patches is automatically adjusted to be �t compactly.

Our approach begins by partitioning a given 3D mesh into
a set of small unfolded patches. The unfolded patches are
then stitched together along boundary edges one by one us-
ing a genetic algorithm. The genetic-based optimization or-
dinarily transforms the initial set of small patches to a single
connected one, while we can optionally rearrange the con�g-
uration of the mesh unfolding to fully optimize the number

of unfolded patches. The boundary edges of the unfolded
patches are rendered using arrows having different colors,
so that we can easily identify the correspondence between
a pair of duplicated boundary edges together with their di-
rections as shown in Figure1(c). In addition, mountain and
valley folds on the patches are explicitly rendered using solid
and broken lines, respectively, in our implementation.

The remainder of this paper is organized as follows: Sec-
tion 2 summarizes the previous approaches to 3D mesh un-
folding. Section3 describes the basic ideas of the proposed
approach. The overall process is detailed from Section4 to
Section6, where Section4 describes how we decompose
the input 3D mesh into a set of small unfolded patches,
Section5 introduces an algorithm for stitching together un-
folded patches along boundary edges using a genetic algo-
rithm, and Section6 presents an optional stage for rear-
ranging the mesh unfolding to fully minimize the number
of unfolded patches. After demonstrating several examples
of mesh unfoldings together with user studies in Section7,
Section8 concludes this paper.

2. Related Work

Unfolding 3D polyhedra has been intensively studied in the
�eld of computational geometry from a theoretical point of
view [She75]. A typical frequently asked question is whether
a polyhedron can be cut along its edges and unfolded onto a
2D plane without self-overlaps, while the only known so-
lution to this question is to try all the possible combina-
tions of edges to be cut. Readers can refer to recent surveys
(e.g. [DO05]) for further details.

From a practical point of view, on the other hand, unfold-
ing 3D models has been conducted after their shapes are fa-
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vorably transformed. This type of approach has been well-
studied especially in CAD applications since 1990s [PF95,
Hos98], where the 3D shape is approximated as a set of de-
velopable surfaces that we can easily unroll onto a plane.

In computer graphics, Mitani et al. [MS04] presented a
pioneering work where they successfully approximated an
input 3D mesh with a set of triangular strips. This work
was followed by several interesting extensions, which ap-
proximate the shape of a 3D mesh using a few types of
developable surfaces [STL06,MGE07]. Mesh segmentation
techniques [AKM � 06] naturally let us unfold 3D meshes if
we can allow shape distortion to some degree according to
surface curvatures [JKS05,YGZS05]. Mesh parametrization
techniques [FH05, SPR06] also helped us convert the 3D
mesh onto a 2D plane because the techniques provide us with
a one-to-one mapping between the 3D shape and 2D plane
rather directly. In this framework, 3D meshes were �attened
onto 2D with bounded distortion by introducing seams of
minimal length [SCOGL02] and low visibility [SH02].

Distortion-free unfolding of 3D meshes is preferable in
the sense that we can avoid crumpling sheets during the pa-
percraft construction, while it still remains dif�cult since di-
rectly cutting out the given 3D mesh along its edges usually
results in a large number of unfolded patches due to self-
overlaps. There are several available mesh unfolding pro-
grams (e.g., http://www.javaview.de/services/unfold/) on the
Internet, while they are limited to relatively simple 3D mod-
els with a small number of faces. Straub et al. [SP05] pro-
posed an interesting approach in this category, where they
unfolded an input 3D mesh by referring to aminimum span-
ning tree (MST) that covers the dual graph of the mesh,
and then resolved the self-overlaps on the unfolded patches.
However, the resulting mesh unfolding still retains a rela-
tively large number of patches (cf. Figure1(a)). Note that
the input meshes are usually expected to be simpli�ed to
have up to 500 faces beforehand, so that we can construct
the corresponding papercraft model within a certain period
of time. We follow this strategy in our work by employing a
mesh simpli�cation technique [GH97].

3. Basic Ideas

This section describes the basic ideas of the proposed ap-
proach including the overview of our algorithm.

3.1. Topological surgery

Topological surgery[Mas80] is a mathematical formulation
that allows us to classify closed surfaces according to their
topological types. This can be accomplished by cutting out
the closed surface along seams, and then encoding the ap-
pearance of its boundary edges, for example, in the counter-
clockwise order. Note that the seams consist ofcut edgesand
compose a spanning tree of such cut edges over the 3D mesh.
Let us de�ne aboundary runto be a sequence of cut edges
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Figure 2: Encoding the appearance of boundary runs. (a)
A tetrahedron. (b) A single unfolded patch. (c) Multiple un-
folded patches.
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Figure 3: Two fundamental transformations for orientable
surfaces, where each symbol corresponds to a boundary run.

bounded by the endpoints or branches on the spanning tree.
Here, we denote the appearance of such a boundary run by
a symbol, for examplea, while we assigna� 1 when we en-
counter the same run in the opposite direction. Figure2(b) il-
lustrates that the boundary of the unfolded tetrahedron is en-
coded byaa� 1bb� 1cc� 1 when we cut the tetrahedron along
three edgesa, b, andc as shown in Figure2(a).

The formulation of topological surgery provides us with
two fundamental transformations for the encoded boundary
runs, as shown in Figure3, if we limit ourselves to orientable
surfaces. Type II transformation involves both cut and stitch
operations for reordering boundary runs, and thus we can-
not reduce the number of such runs. In contrast, Type I
transformation monotonously reduces the number of bound-
ary runs by stitching together a pair of duplicated runs that
are next to each other while in opposite directions. Actu-
ally, this transformation is simple enough to acquire and
thus has been employed in our approach as an atomic op-
eration for composing the papercraft model. In practice, the
classi�cation theory guarantees that, through a sequence of
the atomic operations, we can simplify the symbolic rep-
resentation of boundary runs intoaa� 1 for a sphere, and
a1b1a� 1

1 b� 1
1 � � � anbna� 1

n b� 1
n for a surface with genusn. In

this approach, we draw an arrow of different color on each
boundary run so that we can easily �nd a pair of neighboring
runs that can be stitched together (Figure1(c)).

3.2. Unfolding a 3D mesh into a single unfolded patch

As described earlier, restricting our stitching operations to
Type I of Figure3 fully facilitates the construction of paper-
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(a) (b)

Figure 4: Self-overlaps on the mesh unfolding: (a) a local
self-overlap and (b) a global self-overlap.

craft models. For this purpose, we should unfold an input 3D
mesh into a single connected patch, or a few patches at most.
This is clear from Figure2(c), where the tetrahedron is de-
composed into multiple patches. In this case, we have to con-
duct different operations where we �nd the correspondence
between a pair of boundary runs that are distributed to two
distinct patches such asf d;d� 1g, f e;e� 1g, andf f ; f � 1g.
This usually increases the total time of papercraft construc-
tion considerably, especially for naïve users, as the number
of unfolded patches becomes larger. However, if we can un-
fold the 3D mesh into a single connected component, we can
easily construct the papercraft model through the sequence
of atomic stitching operations of Type I only.

Indeed, Taubin et al. [TR98] studied how to unfold 3D
meshes in the context of topological surgery. Nonetheless,
their purpose is quite different from ours since they explored
high compression ratio of the 3D mesh representation, by
minimizing the number of bifurcations in the spanning tree
of cut edges. Furthermore, they did not consider anything
about the self-overlaps of the resulting 2D unfolding.

3.3. Classifying self-overlaps of mesh unfoldings

Our solution to this problem is to classify self-overlaps of
mesh unfoldings into two types: a local self-overlap that
causes an intersection between a pair of neighboring faces
in the same connected patch (Figure4(a)), and a global self-
overlap where a pair of faces that are away from each other
has a mutual overlap (Figure4(b)). We hope to identify these
self-overlaps before actually projecting the unfolded patches
onto the 2D plane because we need geometric computation
for that projection at the expense of relatively high compu-
tational cost. Actually, this is achievable especially for the
local self-overlaps in our approach, by taking into account
the surface curvature type at each vertex together with the
number of cut edges incident to that vertex.

According to [BDE� 03], we can classify the mesh ver-
tices intohyperbolicvertices having negative Gaussian cur-
vatures (Figure5(a)) andelliptic vertices having positive
Gaussian curvatures (Figure5(b)). Here, the Gaussian cur-
vature at each vertex is de�ned as the difference of 2p (i.e.
360 degrees) and the sum of the angles spanned by adjacent
edges emanating from that vertex. It is obvious from Figure5
that at each hyperbolic vertex we have to introduce at least

(a) (b)

Figure 5: (a) A hyperbolic vertex and (b) an elliptic vertex.

two cut edges to avoid local self-overlaps because the sum
of the corner angles around that vertex exceeds 2p, while we
just require only one cut edge for an elliptic vertex.

The above observation implies that we can generally
avoid local self-overlaps by updating the number of cut
edges at each vertex whenever we split and merge the mesh
surface. As for the global self-overlaps, there are no effec-
tive means of detecting them and thus we just transform the
unfolded patches onto the 2D plane for detecting possible
self-overlaps. However, as a preprocess, we roughly check
the possible self-overlaps using the bounding boxes of the
unfolded patches, which accelerates the necessary geomet-
ric computation signi�cantly.

3.4. Processing pipeline

In fact, there are two extreme choices for seeking an overlap-
free mesh unfolding: the �rst is to expand the spanning tree
of cut edges adaptively over the 3D mesh, and the second is
to compose the mesh unfolding by iteratively merging a set
of single triangular faces. The �rst choice can never �nd such
overlap-free unfoldings because we cannot evaluate how the
current set of cut edges is close to the optimal solutions. The
work by Straub et al. [SP05] is an example of this category.
On the other hand, the second choice is unlikely to reach
the optimal solutions due to excessive degrees of freedom
in merging mesh faces. This observation suggests that we
should explore the best tradeoff between the two extreme
choices so that we can �nd an optimal unfolding within a
certain period of time. This is why we decompose the in-
put 3D mesh into a set of small unfolded patches �rst, and
then stitch them together while avoiding undesirable self-
overlaps. In practice, the success of this approach depends
on how we control appropriate degrees of freedom in com-
posing the �nal mesh unfolding, as will be discussed later.

Thus, the overall processing pipeline of our approach con-
sists of three stages. The �rst stage of the pipeline is to seek
a set of clustered faces by computing a set of spanning sub-
trees of dual edges. The clustered faces are then stitched to-
gether along boundary edges while avoiding self-overlaps
in the second stage. As the �nal stage, we optionally rear-
range the con�guration of the unfolded patches so that we
can avoid cases where the previous switching stage cannot
fully optimize the number of connected patches. These three
stages will be detailed in Sections4-6.

c 2011 The Author(s)
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(a) (b)

Figure 6: Initial decomposition of a 3D mesh. (a) Spanning
subtrees of dual edges together with face connectivity are
drawn in different colors over the mesh. (b) The set of small
unfolded patches, where 65% of the dual edges are discon-
nected. Gray line segments indicate stitchable edges.

4. Mesh Decomposition

Our �rst task here is to decompose the input 3D mesh into a
set of patches having a small number of faces.

4.1. Constructing spanning subtrees of dual edges

For obtaining unfolded patches having a small number of
faces, we �rst extract the dual graph of the 3D mesh, and
then assign an appropriate weight to each edge of the dual
graph. Here, we borrow theminimum perimeterheuristic
from [SP05], and de�ne the weight value for the dual edgee
asw(e) = ( lmax� l )=(lmax� lmin); by referring to the length
of its corresponding primary edgel , where lmin and lmax
denote the minimum and maximum lengths of all the pri-
mary edges, respectively. Finally, we compose spanning sub-
trees over the dual mesh by employing the dual edges whose
weights are less than the prede�ned threshold. Note that the
minimum perimeter weight assignment seeks the minimal
total length of the seams (i.e., cut edges) over the mesh, and
thus the seams are more likely to pass around its concave re-
gions. This allows us to intuitively infer the shape semantics
of the target mesh from the layout of the seams.

Selecting the appropriate threshold for the weights of dual
edges is another important task because it controls appropri-
ate degrees of freedom in composing the �nal mesh unfold-
ing. Our experiments showed that we should try three dif-
ferent thresholds that disconnect 65%, 70%, and 75% of the
dual edges in producing the initial con�gurations of small
patches. As will be described in Section7, we can usually
obtain satisfactory results with one of these thresholds if the
number of mesh faces is less than 500.

4.2. Resolving self-overlaps in an unfolded patch

We also would like to resolve possible global self-overlaps
contained in each decomposed patch. This is accomplished
by �nding a pair of faces that intersect with each other on
the 2D plane, then tracking the path between the faces on
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#3

#3

#4
#4

#5

#5

#6
#6

#7
#7

#2

Figure 7: Stitchable edges (in red), which are also indicated
by gray line segments drawn from the center of the triangle.

the unfolded patch, and �nally cutting the patch along some
edge on that path [SP05]. Note that this process also detects
exceptional local self-overlaps that we cannot avoid just by
counting the number of cut edges at mesh vertices. This ex-
ception occurs when the total sum of triangular corner angles
exceeds 3p (i.e., 540 degrees), or the two cut edges span
a very small angle around a hyperbolic vertex. In practice,
the number of these exceptional cases is very small and we
can usually reject the local self-overlaps by just managing
the number of cut edges at each vertex. Figure6(b) shows
an initial set of small unfolded patches for the bunny model
(Figure6(a)), where 65% of dual edges are disconnected.

5. Stitching Unfolded Patches

Our next task is to stitch together a pair of unfolded patches
one by one, so that we can minimize the number of unfolded
patches while avoiding any self-overlaps.

5.1. Selecting stitchable boundary edges

First, we describe how to select boundary edges along which
we try to stitch the corresponding pair of distinct patches. As
described in Section3.3, we can instantly identify bound-
ary edges that are free of local self-overlaps by checking
the number of cut edges at the corresponding end vertices
together with their surface curvature types. We call such
boundary edgesstitchable edgesin this paper. Figure7
shows an example of unfolded patches and their stitchable
edges where each edge is labeled by its corresponding ID. Of
course, the stitchable edges still cause global self-overlaps
(and a small number of exceptional local self-overlaps as de-
scribed in Section4.2), while we still signi�cantly limit the
number of edges for which we have to rigorously check the
possible self-overlaps. Actually, this considerably reduces
the search space for the optimized mesh unfolding, and thus
can effectively accelerate the computation.

5.2. Encoding the order of stitchable edges

Now we focus on how to select a set of stitchable edges
along which we stitch together the unfolded patches, in or-
der to form an optimized layout of mesh unfolding. In our
approach, we employ agenetic algorithm(GA) for seeking
an optimal order of stitchable edges that successfully avoids

c 2011 The Author(s)
c 2011 The Eurographics Association and Blackwell PublishingLtd.



S. Takahashi, H.-Y. Wu, S. H. Saw, C.-C. Lin & H.-C. Yen / Optimized Topological Surgery for Unfolding 3D Meshes

unwanted self-overlaps. Here, at �rst glance, one might ex-
pect the technique ofdynamic programmingto give a satis-
factory solution, while a closer look reveals that various opti-
mization issues in 3D mesh unfolding fail to comply with the
so-called “optimal substructure” property in general, which
is needed for dynamic programming to be applicable. On
the other hand, the GA will provide better local search in the
neighborhoods of the current solutions in the sense that the
child solutions share good partial orders of stitchable edges
with the parent solutions. In our setup, the order of stitchable
edges is encoded as a chromosome with a sequence of edge
IDs, as shown in Figure8(a).

In the actual computation, we prepare an initial popula-
tion of such chromosomes by generating randomly ordered
edge IDs. However, we still need to rearrange the order of
edge IDs, according to whether the corresponding stitchable
edge can actually introduce a self-overlap-free combination
of unfolded patches or not. Suppose that we have a chromo-
some as shown at the top of Figure8(a). The edge ID in a
white box corresponds to a stitchable edge along which we
can successfully merge a pair of unfolded patches, while a
gray box corresponds to a failure case due to self-overlaps.
In our algorithm, we move the IDs of successful edges to
the head of the chromosome while we push those of the fail-
ure cases to the back, as shown at the bottom of Figure8(a).
Rearranging the edge IDs is usually conducted when evalu-
ating the �tness of the chromosome (Section5.3), and helps
us conduct further evolutional computation using crossover
and mutation operations (Section5.4). Note that a stitchable
edge can become unstitchable due to local self-overlaps dur-
ing the stitching stage, while this can be easily detected by
faithfully updating the numbers of cut edges at the corre-
sponding end vertices.

5.3. Function for evaluating the �tness

Another important factor is to de�ne an objective function
that evaluates the �tness of each chromosome. In our ap-
proach, we formulate the objective functionf to penalize
several factors of mesh unfoldings and minimize it to �nd
the best chromosome. In practice,f is de�ned as:

f = l pNp + l l Rl + l mRm+ l bRb: (1)

Here,Np is the number of unfolded patches,Rl = Fl =Ft 2
[0;1] whereFl represents the number of faces excluded from
the largest patch andFt represents the total number of faces,
Rm 2 [0;1] is the relative ratio of the exterior margin around
the mesh unfolding on the sheet, andRb = Eb=Et 2 [0;1]
whereEb is the average number of edges between each pair
of the duplicated boundary edges andEt is the total num-
ber of boundary edges, respectively.l p, l l , l m, andl b are
weight values for the four terms, respectively.

Since our primary objective here is to minimize the num-
ber of connected components, we �rst introduce the number
as the �rst term of f . The second term is introduced due
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Figure 8: Operations for chromosomes: (a) Reordering. (b)
Crossover. (c) Mutation. Edge IDs in white and gray boxes
correspond to successful and failure cases, respectively.

to the observation that the computation often converges to
an equilibrium solution if multiple patches share almost the
same number of faces. (See Section7.3also.) The third term
is employed just for maximizing the relative area of the un-
folded patches. Note that we use the approximate bin pack-
ing algorithm [IC01] in our approach, and freely change the
scale of the unfolded patches so that we can minimize the
area of the margin. The fourth term has been introduced to
make each pair of duplicated boundary edges close to each
other along the patch boundary. This certainly facilitates our
papercraft construction since we are more likely to �nd pairs
of corresponding boundary edges within a small neighbor-
hood along the patch boundary. Note that we set the weight
values asl p = l l = 10l m = 100l b by default in our im-
plementation, because minimizing the number of unfolded
patches is our �rst priority and maximizing the coverage of
the paper sheet is the next.

5.4. Crossover and mutation operations

Having prepared the initial population, we generally synthe-
size the next population by applying crossover and mutation
operations to existing chromosomes. In our GA setup, these
two operations are speci�cally designed for our problem so
that we can produce better child chromosomes effectively.

Suppose that, before applying the crossover operation, we
have two chromosomesp1 andq1, where the successful and
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(a) (b) (c)

Figure 9: Rearranging unfolded patches: (a) Two unfolded
patches are initially separated. (b) The two patches are
stitched regardless of self-overlaps. (c) Cut the stitched patch
along a different edge to avoid self-overlaps.

unsuccessful edge IDs have already been separated as shown
in Figure8(b). We then extract the intersections of the two
sets of successful edge IDs, and rearrangep1 andq1 in a way
that the edge IDs contained in the intersection (i.e.f #4g)
come �rst in the new chromosomep2 andq2 while the rel-
ative orders of edge IDs are preserved. The same can be ap-
plied to the two sets of unsuccessful edge IDs while com-
mon edge IDs (i.e.f #2;#3;#5;#7g) are pushed to the tail of
each chromosome. Now we have remaining edge IDs that
are contained neither in the successful nor unsuccessful in-
tersections, in the centers ofp2 andq2, which are bounded
by green broken lines in the �gure. Actually, we limit our
crossover operation to those ranges, where the starting and
ending positions for the actual crossover operation are ran-
domly chosen in our genetic algorithm. This is more likely to
produce child chromosomes that we have never encountered
before, since we replace IDs of edges whose effects are not
shared by the two parent chromosomes. In Figure8(b), the
crossover operation is performed to the sequences bounded
by blue broken lines (from the second to third edge IDs),
where #6 inp2 is replaced with #0 inq2 and #0 inp2 is
changed into #6 accordingly. The similar process is also ap-
plied to q2 while guaranteeing that each edge ID appears
only once in each chromosome. Here,p3 andq3 respectively
represent the rearranged version ofp1 andq1 to which we
have applied our crossover operation. After this step, we ap-
ply inverse reordering operations top3 andq3 so that we can
retrieve the original order of edge IDs as inp4 andq4.

As for the mutation operation, we just randomly select one
edge ID from each of the successful and unsuccessful edge
ID sets, and then swap them as shown in Figure8(c). This
is because we may generate chromosomes we tested before
just by swapping the edge IDs within the set of successful or
unsuccessful edges. In our computation, the population will
be updated in this way until the best score of the population
will converge. Figure1(b) exhibits the minimized layout of
unfolded patches for the bunny model after this stage.

6. Rearranging Unfolded Patches

After a series of stitching operations based on the GA, we
can usually obtain a single unfolded patch or otherwise a

few unfolded patches at most. The reason why we may have
more than one connected component is that the GA compu-
tation cannot fully optimize the con�guration of mesh un-
folding. However, the remaining unfolded patches can of-
ten be merged into a single patch by applying the local re-
merge and re-split operations. In practice, we have imple-
mented Type II operation in Figure3 for rearranging the
partition of unfolded patches in our approach. Figure9 il-
lustrates how such a rearrangement operation will be carried
out. First, we mark all the boundary edges asvisited, which
are colored in red as shown in Figure9(a). We then �nd the
boundary edge having the smallest weight value, and stitch
together the corresponding pair of unfolded patches along
that boundary edge, regardless of possible self-overlaps as
shown in Figure9(b). Finally, we compute the path between
the faces having overlaps, cut the unvisited edge having the
largest weight value, and mark the new cut edge as visited
again, as shown in Figure9(c). We continue this process un-
til we can reduce the mesh unfolding into a single connected
component.

7. Experimental Results

This section presents experimental results together with
statistics and timing measurements for example papercraft
models, followed by user studies and a discussion on
our proposed approach. The source code of our approach
together with a set of unfolded patterns is available at
http://www.tak-lab.org/research/unfolding/.

7.1. Results

Our prototype system is implemented on a laptop PC with an
Intel Core i7 CPU (2.67GHz, 4MB cache) and 8GB RAM,
and the source code has been written in C++ using OpenGL
and GLUT. In addition, we employed CGAL library for the
mesh representation, Boost Graph Library for computing
spanning subtrees, and GNU Scienti�c Library for laying out
2D unfolded patches on a paper sheet.

Figure 10 shows several examples of mesh unfoldings.
In this computation, we prepared three initial sets of small
unfolded patches for composing the �nal mesh unfoldings,
where 65%, 70%, and 75% of dual edges were disconnected,
respectively, as explained in Section4.1. Table1 shows the
corresponding statistics and timings, where input meshes
were transformed into a single unfolded patch in many cases
just through the GA-based stitching stage, and in all the
cases after the mesh unfoldings had been rearranged (cf.
Section6), as indicated by the arrows in Table1. In our ex-
periment, we could always �nd a single unfolded patch for
any model having up to 500 faces if we tried the three ini-
tial mesh decompositions at least. For composing the �nal
unfolded patch presented in Figure10, we selectively em-
ployed a set of initial patches for each mesh as indicated in
red in Table1, so as to maximize the corresponding coverage
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Figure 10: Examples of mesh unfoldings: horse (312 faces), dragon (344 faces), hand (336 faces), knot (480 faces), cat (702
faces), and �sh (950 faces) from top left to bottom right. In each case, cutpaths over the 3D mesh are indicated on the left and
its corresponding 2D unfolding is presented on the right. See Table1 for the corresponding initial set of unfolded patches.

Table 1: Statistics and timing. f : Number of faces. n: Number of unfolded patches. t: Time for mesh unfolding (in seconds). r:
coverage of the sheet (in percentage). The arrow means that we employed the optional rearrangement stage as a post-process.

model f
MST Ours(65%) Ours(70%) Ours(75%)

n r n t r n t r n t r
bunny 348 13 36.6 1 31.8 30.9 1 19.0 20.5 1 40.8 27.6
horse 312 12 35.2 1 14.8 23.8 1 87.9 31.8 1 24.4 23.3

dragon 344 13 27.1 1 48.6 26.8 1 16.4 20.0 1 14.2 21.1
hand 336 18 32.5 1 54.3 30.9 2! 1 18.3 20.4 1 24.0 16.6
knot 480 14 22.4 1 86.5 32.2 1 42.9 13.2 1 33.7 22.2
cat 702 28 32.2 1 332.2 32.0 4! 1 202.3 14.1 2! 1 244.5 20.1
�sh 950 31 30.7 3! 1 785.5 21.4 3! 1 227.4 31.3 2! 1 463.4 24.4

of the sheet. In practice, we can accomplish almost the same
coverage as that of the conventional MST-based method on
average. The computation time basically increases as the
number of mesh faces becomes large, while the time also de-
pends on the variation in the surface curvature of that mesh.
For example, articulated models such as the horse, dragon,
and hand meshes are harder to unfold because they have high
negative curvatures around the joint parts. Note that in our
GA computation, each population consists of 64 chromo-
somes and, at each generation update, half of them will be
replaced with those obtained by crossover and mutation op-

erations, where the probabilities of crossover and mutation
are set to be 0.9 and 0.1, respectively.

Figure11exhibits some of these models assembled as pa-
percrafts by hand together with the construction times. When
compared with existing techniques, these construction times
are signi�cantly reduced to an acceptable period of time,
with the help of a commercially available cutting plotter. We
also equipped our system with an interface for specifying
a series of edges as a seam in the �nal mesh unfolding by
controlling the weights of the corresponding dual edges.
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bunny horse dragon hand knot
34:01 41:57 55:46 33:55 46:13

Figure 11: Hand-made papercraft models and construction
times (min:sec).

Table 2: Timing of the �rst user study (min:sec). “F” and
“M” represents female and male participants, respectively.

MST Ours MST Ours MST Ours
A(M) 33:5525:52 D(M) 19:1919:40 G(F) 18:0114:53
B(M) 13:5210:31 E(M) 19:5418:15 H(M) 18:1514:10
C(F) 17:3715:56 F(M) 17:5816:41

7.2. User studies

We conducted a user study to validate the effectiveness of
our approach. We asked 8 participants (Participants A-H,
aged 18-30) to construct a simpli�ed bunny papercraft model
(128 faces). We provided 6 distinct unfolded patches ob-
tained by the conventional MST-based approach [SP05] (la-
beled “MST”), and a single unfolded patch generated using
our approach (labeled “Ours”). Table2 shows the results of
this user study, where almost all the participants gave us
positive responses to our ideas for providing a single un-
folded patch in order to facilitate the papercraft construction,
and visualizing correspondence between a pair of boundary
edges using arrows of different colors. Note that Participants
A-D tackled the multiple patches �rst while Participants E-H
started with the single patch, in order to eliminate possible
in�uence caused by learning effects. The construction time
for the single unfolded patch was shorter than that for the
multiple patches by 171.6 seconds on average.

We also conducted an additional user study by recruit-
ing 6 additional participants (Participants I-N, aged 22-30)
and asking them to construct the bunny model from a single
unfolded patch (labeled “Ours”) and those where hints on
the order of stitching boundary edges were printed (labeled
“Hint”). In this case, we ordered boundary runs so that the
user can stitch the sharp edges at earlier stages and end by
merging �at edges. This successfully reduced the total pa-
percraft construction times by 167.7 seconds of the partici-
pants (I-N) on average as shown in Table3, since the hints
helped them start with the ears and face of the bunny model
and then end with the back and bottom. Note that Partici-
pants I-K tackled the single patch without hints �rst while
Participants L-N started by following the hints again.

Finally, we asked a 9-year-old boy to construct the same
bunny model. He spent 23:53, 21:38, and 15:43 (min:sec) for
the 3 different unfoldings (“MST”, “Ours”, and “Hint”), re-
spectively. This means that our atomic operations for stitch-

Table 3: Timing of the second user study (min:sec). “F” and
“M” represents female and male participants, respectively.

Ours Hint Ours Hint Ours Hint
I(M) 20:5017:51 K(M) 22:1517:00 M(F) 20:5919:22
J(M)16:4515:20 L(M) 14:2010:30 N(M) 23:4022:00

ing boundary edges together with the hints fully facilitated
the child to perform the papercraft construction.

7.3. Discussion

As described in Section4.1, the quality of the papercraft
patterns fairly depends on the initial set of small patches.
For example, multiple patches obtained by the conventional
MST-based approach [SP05] do not provide enough degrees
of freedom in composing a single unfolded patch as shown
in Figure12(a). We also tested different strategies such as
a weighted perfect matching [GE04], while we learned that
our scheme based on spanning subtrees of dual edges with
the minimum perimeter heuristic is the best. This is because
the heuristic naturally inserts two or more cut edges at each
hyperbolic vertex in concave regions, and thus avoids intro-
ducing unnecessary cut edges around elliptic vertices for bet-
ter control of the degrees of freedom.

Another problem is to appropriately de�ne the objective
function that evaluates the �tness of each chromosome in
the genetic-based composition of mesh unfolding. Actually,
the second term in Eq. (1) plays an important role in our
approach. Without this term, the genetic-based optimiza-
tion is often trapped in an equilibrium state where multi-
ple patches share almost the same number of faces (Fig-
ure12(b)). Tweaking the probabilities of crossover and mu-
tation operations is also important to stabilize the optimiza-
tion. We tested different sets of probabilities for the two
operations and learned that our choice of 0.9 and 0.1 for
the probability of crossover and mutation operations, respec-
tively, provides feasible evolutional computation in the sense
that the choice explores child chromosomes effectively in
the neighborhood of the current chromosome. In practice,
changing these two probabilities fails to compose a single
unfolded patch or degrades the coverage of the sheet at least.

Indeed, we often fail to �nd a single unfolded patch for a
mesh having more than 1,000 faces (Figure12(c)), because
the degree of dif�culty for unfolding 3D meshes mainly de-
pends on the number of mesh faces. A large-sized population
in GA is more likely to provide a better solution in these dif-
�cult cases while it increases the computation time on the
other hand. Adjusting such tradeoff between the population
size and computation ef�ciency adaptively according to the
input 3D mesh is an important technical issue. However, as
described earlier, we can basically limit the number of faces
up to approximately 500 so that we can construct the corre-
sponding papercraft model within a certain period of time.
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(a) (b) (c)

Figure 12: Failure cases where each unfolded patch is drawn in a different color. (a) We cannot compose a single patch from
multiple ones obtained by the MST-based approach. (b) Our genetic-based optimization is trapped in a equilibrium state without
the second term of the objective function. (c) We fail to unfold the mannequin model (1,376 faces) into a single connected patch.

8. Conclusion

This paper has presented a new heuristic approach to trans-
forming 3D meshes into an optimized layout of 2D un-
foldings. The key ideas have been inspired by the concept
of topological surgery, which allows us to construct paper-
craft models through atomic operations of stitching together
boundary edges of the mesh unfolding. For this purpose,
we have developed a genetic-based algorithm for optimizing
the number of 2D unfolded patches together with the cov-
erage of the paper sheet and the distance between each pair
of boundary edges around the 2D unfolding. Several experi-
mental results together with user studies and a discussion on
our framework are included to justify the present approach.
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