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Abstract
Recent development in the design of multi-dimensional transfer functions allows us to automatically generate com-
prehensible visualization images of given volumes by taking into account local features such as differentials and
curvatures. However, especially when visualizing volumes obtained by scientific simulations, observers usually
exploit their knowledge about the simulation settings as the clues to the effective control of visualization param-
eters for their own specific purposes. This paper therefore presents an objective-based framework for visualizing
simulated volume datasets by introducing a new set of topological attributes. These topological attributes are cal-
culated from the level-set graph of a given volume dataset, and thus differ from the conventional local attributes in
that they also illuminate the global structure of the volume. The present framework provides a systematic means of
emphasizing the underlying volume features, such as nested structures of isosurfaces, configuration of isosurface
trajectories, and transitions of isosurface’s topological type. Several combinations of the topological attributes
together with the associated transfer function designs are devised and applied to real simulated datasets in order
to demonstrate the feasibility of the present framework.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Display algorithms

1. Introduction

The recent development of high-performance computer sys-
tem has made it easier for us to obtain large simulated vol-
ume datasets. Direct volume rendering is a standard tech-
nique for projecting all optically-encoded samples onto the
screen at once to peer into the inner structures involved
in a volume data. Data-centric approaches to the design of
transfer functions (TFs) have recently been well-established,
which perform mathematical analysis of the data prior to
pertinent rendering.

The advent of multi-dimensional TFs is one of the lat-
est major achievements in the volume visualization research.
As opposed to the traditional one-dimensional TFs that only
consider a voxel’s scalar field value, the multi-dimensional
TFs assign auxiliary attributes to the voxels to construct their
sophisticated parametric domains. For example, if we take
into account additional attributes, such as higher-order gradi-
ent fields, as well as the original scalar field, we can generate
more comprehensible visualization images, where the rela-
tive geometric positions and subtle differences among the
volumetric features are revealed in an accentuated manner.

Such multi-dimensional TFs have played an important role
in gaining clear insights into a target volume data, especially
for the cases without any prior knowledge about the data.

In actual situations, however, observers usually might
want to exploit their background knowledge about a target
volume data as the clues to perform detailed analysis of the
data. For example, when visualizing volumes obtained by
scientific simulations, they can utilize their own knowledge
about the simulation settings to extract the global charac-
teristics of the volumes and to locate regions of particular
interest. If they are allowed to design multi-dimensional TFs
using proper attributes so as to encapsulate such advance
knowledge, they can readily yield visualization results to ful-
fill their purposes.

Nevertheless, nearly all attributes for the conventional
multi-dimensional TFs are based on local features, such as
differentials and curvatures, and cannot capture the global
structure of the volume contrary to the observer’s purposes.
As such, the observers are forced to design their TFs by jux-
taposing the explicitly-described local features together with
the global structure in their mind, and thus leading to cogni-
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tive load as well as qualitative limitations of resultant visu-
alization images.

This paper therefore introduces a new set of topological
attributes to establish a new framework that is intended to
realize objective-based assistance, especially for visualizing
simulated volume datasets. In our framework, transfer func-
tions are designed so that feature isosurfaces which repre-
sent topological features of a given volume dataset are em-
phasized. However, only the feature isosurfaces selected ac-
cording to observer’s purposes instead of all the feature iso-
surfaces are emphasized using topological attributes. Topo-
logical attributes proposed herein are derived from the level-
set graph of a given volume, which delineates the topological
evolution of an isosurface with respect to the scalar field. The
level-set graph can capture not only the local features but
also the global structure of the volume because each node lo-
cates the local topological change in the evolving isosurface,
and its link the global connection in between. To the best
of the authors’ knowledge, topological attributes derivable
from the level-set graph can be viewed as the only attributes
that can reflect the global structure as well as local features
of the volume, and can be used to encapsulate the observer’s
intentions fully into the multi-dimensional TFs. Needless to
say, these topological attributes are expected to provide more
valuable analysis clues than the conventional local feature-
based attributes when visually exploring unknown volume
datasets along with background knowledge.

In our framework, a specific kind of level-set graph, called
volume skeleton tree (VST), is extracted robustly through
a method, called topological volume skeletonization, even
from practical discrete volume samples involving high-
frequency noise and/or zero-gradients [TTF04, TNTF04].
Topological attributes based on the VST can provide a sys-
tematic means of emphasizing the underlying volume fea-
tures, including nested structures of isosurfaces, configura-
tion of the isosurface trajectories, and transitions of isosur-
face’s topological type. This paper develops several com-
binations of these topological attributes together with the
associated TF designs, and applies them to real simulation
datasets in order to demonstrate the feasibility of the present
framework.

The remainder of this paper is organized as follows. Sec-
tion 2 describes previous work related to ours. Section 3 out-
lines the construction and notation of the VST, upon which
we will build to come up with topological attributes. Sec-
tion 4 proposes a set of topological attributes for construct-
ing more powerful multi-dimensional TFs, and describes
how these attribute values are calculated from the VST. Sec-
tion 5 evaluates the effectiveness of the designs of topolog-
ical multi-dimensional TFs empirically with applications to
several real simulated datasets. Lastly, Section 6 concludes
the paper with possible future research themes.

2. Related Work

Visualization design is generally divided into the con-
secutive three steps, i.e., conceptual design, articula-
tion [KASS91], and parameter tweaking. Transfer functions
(TFs) are used in the third and last step for parameter tweak-
ing as the final determinant of effects obtained by visualizing
a single 3D scalar field according to the observers’ purposes.
For the sake of enhanced expressiveness, much energy has
been devoted to the invention of multi-dimensional TFs.

The idea of multi-dimensional TFs can be traced back
to Levoy’s pioneering work [Lev88], where he used gradi-
ent magnitude proficiently as an auxiliary attribute value for
designing an opacity TF which can capture some features
of a volume data. Kindlmann and Durkin [KD98] were in-
spired by the work, and formalized a data structure called
histogram volume, that is spanned by a scalar field value,
and its first and second partial derivatives, in order to design
TFs that effectively emphasize boundaries between differ-
ent neighboring materials within the volume data. The idea
was generalized later by Kniss et al. [KKH02] to propose
the design of three-dimensional TFs. Meanwhile, Hladůvka
et al. [HKG00] proposed another type of multi-dimensional
TF that employs as its attributes, the maximum and mini-
mum principal curvatures of the volume function. Recently,
this framework has been further sophisticated by Kindlmann
et al. [KWTM03]. However, all of these attributes employed
in multi-dimensional TFs capture only local features of a
volume, and are expected to be effective to strike up object
boundaries embedded in unknown datasets, but having their
limit to convey any intentions of the observers. On the con-
trary, Tenginakai et al. [TLM01] proposed a global attribute
value that is derivable from statistical analysis of the volume
data. However, this attribute can be defined independently of
volumetric local properties, and cannot be used in the full-
fledged volume visualization.

This becomes a strong incentive for us to rivet our focus
on level-set graphs. While Fujishiro et al. [FAT99, FATT00,
FTTY02] and Weber et al. [WSHH02] presented methods
for locating topological changes of isosurfaces for this pur-
pose, they still considered local features around the critical
points only and ignored their associated global connectiv-
ity. Our approach to TF design [TTFN05] made it possible
to emphasize such global structures efficiently by extract-
ing the topological transitions of isosurfaces from input vol-
umes. It is still difficult to generate visualization images with
observer’s purposes only from one topological attribute. The
observer therefore should use more attributes effectively. Al-
though the specific set of optimal parameter values cannot be
uniquely determined for each volume dataset, the parameter
values which are calculated automatically from our method
play a role to obtain the initial guess for the further analysis.
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Figure 1: The connectivity of a critical point of each type in the VST.

3. Volume Skeleton Tree

Prior to calculating topological attributes, we extract a level-
set graph of a given volume dataset using the topological
volume skeletonization algorithm [TNTF04]. The level-set
graph, called volume skeleton tree (VST) [TTF04], allows
us to evaluate the topological attributes of each voxel by il-
luminating both the global and local features of the volume
dataset.

A node of the VST represents critical point that has the
change either in the number of connected isosurface compo-
nents or in the genus of each of the isosurface components.
Critical points are classified into four groups: maxima (C3),
saddles (C2, C1), and minima (C0), which represent isosur-
face appearance, merging, splitting, and disappearance, re-
spectively, as the scalar field value reduces. Here, an index
of a critical point represents the number of negative eigenval-
ues of the Hessian matrix there. A link of the VST represents
an topology-preserving transition of an isosurface connected
component. A link is defined solid if its isosurface compo-
nent expands as the scalar field value reduces while hollow
if it shrinks.

The isosurface merging at C2 and splitting at C1 have both
four topological transition paths with different isosurface
spatial configurations, as shown in Figure 1. In what follows,
the VST uses the notation for the critical points with its own
connectivity as illustrated in Figure 1, where the solid inci-
dent link represents a solid isosurface while the broken link
represents hollow. Saddle points of Ci(i = 1,2) are classi-
fied into 3-Ci and 2-Ci, according to their degree (valence).

For later convenience, all the boundary voxels are assumed
to be connected to the virtual minimum having −∞ as its
scalar field value [TTF04]. Note that the link incident to the
C0 node is solid when the node is the virtual minimum as
shown in Figure 1. An example of the VST together with
isosurface transitions is illustrated in Figure 2. In our imple-
mentation, a node has its coordinates and scalar field value,
and a link has its genus and index of adjacent nodes.

The VST has much in common with the contour
tree [BPS97] in the mathematical sense. However, the VST
decomposes a multiple (degenerate) critical node into simple
ones to extract the global structures such as nested structure
of isosurfaces, whereas the contour tree keeps critical points
of multiple degrees directly without resolving them into sim-
ple ones.

4. Formulation of Topological Attributes

This section introduces a new set of visualization parameters
called topological attributes to incorporate user’s objectives
into volume visualization. In our framework, the topological
attributes are formulated using the VST, and thus success-
fully inherit both global and local features of the volume
from the VST. This means that the attributes can serve as
auxiliary variables for multi-dimensional TFs that illuminate
volume features according to the user’s objectives. In the re-
mainder of this section, these topological attributes are clas-
sified into three categories: inclusion levels (Section 4.1),
isosurface-trajectory distances (Section 4.2), and isosurface
genera (Section 4.3).
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Figure 2: The process of calculating (a) the inclusion levels and (b) isosurface-trajectory distances.

4.1. Inclusion levels

A volume dataset often includes a complicated nested struc-
ture where one feature subvolume completely encloses oth-
ers within some range of the scalar field. Conventional
single-dimensional TFs cannot discriminate between such
inner and outer feature subvolumes because they depend
only on the scalar field, and thus assign the same color
and opacity values to both of the subvolumes. This moti-
vates us to introduce an inclusion level together with multi-
dimensional TFs. Here, the inclusion level of a voxel rep-
resents the depth of its associated isosurface in the nested
structure at the corresponding scalar field value, and serves
as an additional variable for the multi-dimensional TFs that
emphasize such nested structures. For computing the inclu-
sion levels, our framework employs the algorithm described
in [TTFN05].

It is clear from Figure 1 that isosurface nested structures
originate only from the transition paths in C2(b) and C1(b).
This suggests that we can locate such isosurface inclusions
directly from the VST if we can identify all the nodes that
correspond to the above transition paths. Indeed, this can be
done by identifying all the links of the VST with solid or
hollow while tracing the VST thoroughly.

Let us calculate the inclusion level for each link of the
VST shown in Figure 2(a) by detecting isosurface nested
structures. The tracing process starts from the virtual min-
imum P8 because its incident link P6P8 is known to be solid
(See Section 3). The first node to be traversed is P6, which
can be identified with the node of the 3-C1(b) type in Fig-

ure 1. This is because the node has one upward and two
downward incident links and one of the downward links (i.e.
P6P8) has already turned out to be solid. Simultaneously, it
becomes apparent from Figure 1 that the links P5P6 and P6P7
are solid and hollow, respectively, and the isosurface compo-
nent of the link P6P8 includes that of P6P7 within the scalar
field range from 20 to 60. Repeating this process makes it
possible to identify all the links with solid and hollow iso-
surfaces by referring to the connectivity patterns in Figure 1,
and thus to locate all the nested structures in the volume. In
this example, the inclusion level of the link P6P7 is 1 while
those of the other links are 0. Note that our framework can
assign an appropriate inclusion level to each voxel because a
link of the VST possesses a list of voxels associated with it.

4.2. Isosurface-trajectory distances

Considering the transition of each connected isosurface
component according to the scalar field, it is preferable to
formulate a measure of closeness between any two of the
isosurface components in the volume. In our framework, the
distance between two isosurface components is defined as
the length of the shortest path between the two correspond-
ing points on the VST. This new topological attribute is re-
ferred to as isosurface-trajectory distance in this paper.

Let us calculate the distance of two isosurface compo-
nents along the isosurface trajectory. Suppose that the points
p and q on the VST correspond to the two isosurface com-
ponents, respectively. The distance D(p,q) is defined as the
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difference in the scalar field between p and q along the short-
est path on the VST.

For example, as shown in Figure 2(b), we define the iso-
surface component on the link P2P4 with the scalar field
value 160 as a starting point s. In this case, the shortest
path of each critical point from s is indicated by the cor-
responding arrow in the figure. The distance from s to P2,
which is denoted as D(s,P2), amounts to be the difference
in the scalar field value between s and P2 along the link
P2P4 because s lies on that link, which gives the distance
as D(s,P2) = |200− 160| = 40. The shortest path between
s and P3 is the route s–P4–P3, and thus the corresponding
distance can be obtained as D(s,P3) = D(s,P4)+D(s,P3) =
|160−150|+ |150−180| = 40. Using the same calculation
process, we obtain D(s,P1) = 60, D(s,P4) = 10, D(s,P5) =
50, D(s,P6) = 100, and D(s,P7) = 140.

The formulation of this distance inspires the defini-
tion of another topological attribute called integral of the
isosurface-trajectory distance function, which represents the
balance of the isosurface transitions along its trajectories.
We can employ it to emphasize the topological changes (iso-
surface appearance and disappearance) around maxima and
minima. The new attribute is obtained by calculating the in-
tegral of the trajectory distance between two points by mov-
ing one point over the VST while fixing the other. Its math-
ematical definition can be written as:

I(p) =
Z

q∈G
D(p,q)dG,

where G represents the domain of the VST. In practice, we
take a set of uniform sample points on the VST as Q, and
approximate the integral by

I(p) = ∑
q∈Q

D(p,q).

The idea of this topological attribute originates from the
histogram of the shortest distance between two random
points on the 3D surface by Osada et al. [OFCD01], and the
geodesic distance between two points along the surface by
Hilaga et al. [HSKK01]. An important property of this inte-
gral is that the global minimum represents the center of the
isosurface trajectory with respect to scalar field.

Assume that the virtual minimum has 0 as its scalar field
value. By sampling the points over the VST with an interval
of 1, the integrals of P1 in Figure 2(b) for instance can be
calculated as

I(P1) = ∑
t∈P1P2

D(P1, t)+ ∑
t∈P2P4

D(P1, t)+ ∑
t∈P3P4

D(P1, t)

+ ∑
t∈P4P5

D(P1, t)+ ∑
t∈P5P6

D(P1, t)

+ ∑
t∈P6P7

D(P1, t)+ ∑
t∈P6P8

D(P1, t)

=
D(P1,P2)

∑
n=1

n+
D(P1,P4)

∑
n=D(P1,P2)+1

n+
D(P1,P3)

∑
n=D(P1,P4)+1

n

+
D(P1,P5)

∑
n=D(P1,P4)+1

n+
D(P1,P6)

∑
n=D(P1,P5)+1

n

+
D(P1,P7)

∑
n=D(P1,P6)+1

n+
D(P1,P8)

∑
n=D(P1,P6)+1

n

= 34,095.

Using the same calculation process, we obtain I(P2) =
28,695, I(P3) = 29,270, I(P4) = 18,695, I(P5) = 16,695,
I(P6) = 18,695, I(P7) = 28,695, and I(P8) = 30,685. The
global minimum is found at the point on the link P4P5 with
the scalar field value 105.

In our framework, integral of the isosurface-trajectory dis-
tance is assigned to each voxel just like inclusion level.

4.3. Isosurface genera

Another topological attribute in our framework is an isosur-
face genus, which is equivalent to the number of holes on
each of the isosurface components. Actually, the change in
this number often outlines some distinctive feature subvol-
ume embedded in the given dataset. This attribute is already
accessible in our framework because our framework com-
putes the attribute value for each voxel in the process of the
topological volume skeletonization [TNTF04]. Employing
this attribute as an auxiliary variable for multi-dimensional
TFs allows us to emphasize isosurface components accord-
ing to the number of holes on them in our visualization pro-
cess.

5. Designing Multi-Dimensional Transfer Functions
with Topological Attributes

In this section, we illustrate that adaptive usage of those
topological attributes, which were formulated in the previ-
ous section, makes it possible to obtain visualization results
emphasizing various structures of volumes effectively. As
described in Section 2, in the modern volume visualization,
local feature-based attributes usually have been specified as
auxiliary variables for multi-dimensional TFs. It should be
urged here again that unlike those local traditional attributes,
our topological attributes can capture the global structure of
the volume as well.

First, we describe how we make TFs depend on a sin-
gle scalar field, which is an indispensable variable for any
volume visualization (Section 5.1). Then, we will design
objective-based multi-dimensional TFs which use topolog-
ical attributes as their auxiliary variables in addition to the
scalar field for real simulated datasets (Sections 5.2–5.4).
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Figure 3: Basic design principle of 1D transfer functions (TFs).

5.1. Basic design of 1D transfer functions

Our basic principle to design a 1D TF depending on a scalar
field is to accentuate the topological change of an isosurface
within the volumetric domain [TTF04].

The scalar field value corresponding to a critical point is
referred to as critical field value here. In our implementation,
a scalar filed value is transformed affinely into an unsigned 8
bit integer value in [0,255]. Here, m− 1 critical field values
are denoted with c1,c2, · · · ,cm−1 in a descending order of
the scalar field, and let c0 and cm be 255 and 0, respectively.
Then the 1D TFs can be designed as in Figure 3.

As shown in Figure 3(a), the color TF is defined piece-
wise using the range of the HSV hex-cone [0,2π] so that
the function value decreases linearly over an evenly-divided
hue interval for each of the field intervals [ci+1,ci]. This set-
ting allows us to assign a steep color gradation to the re-
gions where the consecutive critical field values are located
in closer proximity.

For the opacity TF, as shown in Figure 3(b), we define the
mid-value of each of the intervals [ci+1,ci](i = 0, . . . ,m−1)
bounded by consecutive critical field values as the represen-
tative field value ri = (ci+1 + ci)/2. The actual opacity TF
accentuates the representative isosurfaces corresponding to
the m representative filed values r0, . . . ,rm−1. Furthermore,
in order to accentuate each of the representative isosurfaces
individually, we assign the zero value to all the field domain,
except for local hat functions centered at the representative
field values r0, . . . ,rm−1. In our framework at the design of
1D TFs, since the outermost solid isosurface does not shrink
as the field value decreases, we minimize the occlusion arti-
facts induced by the isosurface nested structure by decreas-
ing the height of the hat functions for rm−1 through r0 by a
fixed amount.

Generally, the level-set graph including the VST is too
sensitive to high-frequency noise in the volume datasets,
and thus often detects many minor critical points. Conse-
quently, the VST should be simplifyed by removing such
unnecessary critical points to reduce the number of feature
isosurfaces until the isosurfaces can be distinguished each

other [TNTF04,CSvdP04]. In our framework, the number of
isosurfaces is reduced to ten or less empirically [TNTF04].

5.2. Revealing isosurface nested structures

Some volume datasets may be characterized with their iso-
surface nested structures. Figure 4 visualizes a snapshot
volume for 3D fuel density distribution excerpted from a
time-varying dataset simulating the process of implosion in
laser fusion [SMSY02], where small bubble-spike structures
evolve around a contact surface between a fuel ball (inner)
and pusher (outer) during the stagnation phase. The fuel-
pusher contact surface can be identified with an isosurface
extracted by observing the rapid gradients of the fuel den-
sity field. We can learn from the specific simulation setting
that the extracted isosurface has two nested connected com-
ponents, and the contact surface of our interest is occluded
by the other outer component residing in the pusher do-
main, which is nothing but a phantom surface induced by
the action-reaction effect [SMSY02].

Figure 4(a) shows the VST for the implosion dataset,
where the skeletal structure of the complex fuel density dis-
tribution has been extracted with an intentional control of
VST simplification. A glance at the VST around the field in-
terval [14,176] finds a nested structure where connected iso-
surface components corresponding to the links P2P3, P3P4,
and P3P5 are included by another connected isosurface com-
ponent corresponding to the link P2P6.

A volume-rendered image is shown with the
topologically-accentuated 1D opacity TF in Figure 4(b),
from which we can see that after the scalar field itself has
been topologically-accentuated, we still suffer from a prob-
lem that the inner isosurface components of interest for the
observer are indeed occluded by the outer spherical isosur-
face component. Contrary to that, as shown in Figure 4(c), if
we devise the 2D opacity TF which depends on the inclusion
level as well to assign a lower opacity value to voxels on the
outer isosurface component than to voxels on the inner ones,
we can observe the optically-deeper bubble-spike structures
more clearly than in Figure 4(b). Furthermore, by assigning
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Figure 4: Visualizing simulated implosion in laser fusion: (a) The corresponding VST, (b) with topologically-accentuated 1D
opacity TF, (c) with 2D opacity TF depending also on the inclusion level, and (d) with 2D opacity TF that visually extracts
inner structures.

zero opacity to the outermost representative isosurfaces, we
can visually extract the involved nested structure only as
shown in Figure 4(d). These two visualization results surely
reflect the above-mentioned simulation setting.

Note that throughout the three cases, we consistently use
the 1D color TF, which was designed based on the basic prin-
ciple described in Section 5.1.

5.3. Trailing symmetric isosurface trajectories

Simulated volume datasets such as distributions of energy
functions often contain a symmetric isosurface trajectory
with respect to the scalar field. In such dataset, the isosur-
face component at the center value of symmetry occupies
the entire volume domain. This type of dataset is often diffi-
cult to visualize because we cannot discriminate interesting
features such as maxima and minima that invoke the iso-
surface appearance and disappearance. However, our frame-
work can effectively alleviate this problem using the inte-
gral of the isosurface-trajectory distance function described
in Section 4.2, because this topological attribute successfully
identifies the center of isosurface trajectory. This leads us to
the idea for clearly illuminating the important interior fea-
tures by lowering the opacity of the voxels belonging to the
occluding isosurface.

For example, as shown in Figure 5, the High Potential Iron
Protein (HIPIP) dataset has a symmetric wave function with
respect to the scalar field, and thus the isosurface component
around the center value of the isosurface trajectory covers up
the entire volume. Figure 5(a) shows the VST of the HIPIP
dataset, and Figure 5(b) shows a visualization result obtained
using the topologically-accentuated 1D opacity TF. As seen
in Figure 5(a), the VST is almost symmetric and it has many

critical points around the mean scalar field value 127. How-
ever, the corresponding isosurface component actually oc-
cludes many significant features as shown in Figure 5(b) if
we assign a large opacity value to each representative field
value uniquely. This observation lets us improve the result as
shown in Figure 5(c) by lowering the opacity values of the
voxels that have the small integral values. Indeed, this allows
us to eliminate the occluding isosurface component from the
important structures inside the volume. Note that since most
voxels have the scalar field values and integral values near
the dashed line overlaid in the TF definition in Figure 5(c),
the opacity value gets substantially higher as the isosurface
components shrink with scalar field value less than the mean
127.

5.4. Accentuating specific isosurface genera

The change in genus of each component of an isosurface
may provide an important clue which allows us to visu-
ally understand the complexity of the structures embedded
in a volume dataset. For example, Figure 6 visualizes the
half domain of positive charge distribution simulated around
two 16O nucleons [Mei], where the other nucleon is located
above the visualized domain.

Figure 6(a) shows the VST for this dataset, where the
number on the left side of each link represents its genus.
From the VST, we can see that two isosurface components
corresponding to the links P6P9 and P7P8 are included by
the outer isosurface component. By assigning higher opacity
values to the voxels on the two included isosurface compo-
nents, we can depict the included isosurface structures in an
accentuated manner. The visualization result in Figure 6(b)
certainly provides useful information for us to understand
the nested structure, though the image cannot be said to pro-
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Figure 5: Visualizing the HIPIP dataset: (a) The corresponding VST, (b) with topologically-accentuated 1D opacity TF, and (c)
with 2D opacity TF depending also on the integral of the isosurface-trajectory distance function.

vide sufficient information for us to realize the complex in-
teraction between the two nucleons. This motivates us to use
the genus of isosurface component instead of the inclusion
level as a topological attribute to design the new 2D TF that
is intended to accentuate the regions topologically equivalent
to a torus. A resultant image rendered with the new 2D TF
is shown in Figure 6(c), where voxels which belong to iso-
surface components of genus 1 (corresponding to the links
P2P4 and P4P5) are emphasized. In fact, the region topo-
logically equivalent to a torus coincides with the subspace
having complex interactions between the two nucleons, and
attracts much attention from the observers. Furthermore, the
visualization result pinpoints the locations where the change
in genus is invoked, and provides the observers with impor-
tant visual cues about the detailed spatial configuration of
each of the 16O nucleons.

6. Conclusion

In this paper, we proposed a set of topological attributes de-
rived from the level-set graph of a given volume, and pre-
sented the basic design principles of multi-dimensional TFs
depending on these attributes.

Since the present topological attributes can encapsulate
the global structure as well as local features of the volume
data, they make it much easier for observers to express their
objectives than using the traditional local feature-based TFs,
and thus resulting in comprehensible images so as to richly
convey the structures embedded in the data. The feasibility
of the present framework was proven empirically with appli-
cations to several scientific simulation datasets.

Remaining issues for our future research are as follows.
First is to enrich the set of topological attributes towards

more powerful analysis not only for real simulated datasets
but for measured ones. Second is to identify the mutual re-
lationships between the topological attributes and the tradi-
tional local features such as gradients and curvatures for re-
alizing more advanced visualization operations. The last is
to develop an intuitive tool for assisting TF design, where
the observer’s objectives are semi-automatically interpreted
to suggest the best multi-dimensional TFs involving proper
topological attributes.
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