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Abstract. Hand-drawn pictures differ from ordinary perspective images
in that the entire scene is composed of local feature regions each of which
is projected individually as seen from its own vista point. This type of
projection, called nonperspective projection, has served as one of the
common media for our visual communication while its automatic gener-
ation process still needs more research. This paper presents an approach
to automatically generating aesthetic nonperspective images by simulat-
ing the deformation principles seen in such hand-drawn pictures. The
proposed approach first locates the optimal viewpoint for each feature
region by maximizing the associated viewpoint entropy value. These opti-
mal viewpoints are then incorporated into the 3D field of camera param-
eters, which is represented by regular grid samples in the 3D scene space.
Finally, the camera parameters are smoothed out in order to eliminate
any unexpected discontinuities between neighboring feature regions, by
taking advantage of image restoration techniques. Several nonperspective
images are generated to demonstrate the applicability of the proposed
approach.

1 Introduction

In computer graphics, ordinary perspective projection is commonly used to
transform 3D scenes onto the 2D screen space to simulate the effects of the pin-
hole camera model. On the other hand, hand-drawn pictures often differ from
such ordinary perspective images in that the entire scene is composed of local
feature areas each of which is projected as seen from its own optimal viewpoint.
This type of projection, called nonperspective projection, has been synthesized by
selecting such local viewpoints so that they retain the visual consistency with the
overall scene composition. Furthermore, employing such local viewpoints allows
us to emphasize/suppress specific objects and to avoid unexpected occlusions
between objects, which is especially useful in drawing 3D map illustrations and
artistic paintings.

Several models for nonperspective projection have been proposed by simu-
lating the process of hand-drawn pictures and effects of magnification lenses.
Agrawala et al. [1] proposed artistic multiprojection rendering, where they pro-
jected each individual object from a different viewpoint and merged the projected
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Fig. 1. Nonperspective image of a 3D scene generated using our method. (a) Ordi-
nary perspective image. (b) Nonperspective image with non-smooth blending of local
viewpoints. (c) Nonperspective image with smooth blending of local viewpoints.

images pixel by pixel consistently. Kurzion et al. [2] simulated 3D object defor-
mations by bending the sight rays together with hardware-assisted 3D texturing.
Singh et al. [3] presented a generalized approach, called a fresh perspective, to
generate smoothly deformed nonperspective images by arranging 3D local cam-
eras and interpolating the corresponding camera parameters in the 3D scene
space, and extended it to realize an interactive interface that directly manip-
ulates 2D image deformations [4]. Deforming the target 3D objects allows us
to simulate the effect of composing nonperspective images as seen from multi-
ple viewpoints. This idea can be traced back to the concept of view-dependent

geometry proposed by Rademacher [5]. Martin et al. [6] implemented observer

dependent deformations by relating user-defined nonlinear transformations of 3D
objects to the viewing distance and camera orientation. Takahashi et al. opti-
mally deformed 3D terrain models for generating mountain guide-maps [7] and
occlusion-free route navigation [8].

Basically, the process of designing nonperspective images consists of three
steps: (1) segmenting the entire scene into local feature regions, (2) selecting
the optimal viewpoint for each local region, and (3) generating a composite im-
age from local regions each of which is projected as seen from its viewpoint. In
practice, the above existing approaches successfully provide us with an interface
for designing such nonperspective images, however, its design still needs a time-
consuming trial and error process. This is because the design of nonperspective
images inherently has excessive degrees of freedom in nature, and existing inter-
faces do not provide any guidelines for selecting appropriate viewpoints for local
feature regions and aesthetically blending the corresponding camera parameters
within the 3D scene space. Figure 1(b) shows such an example where excessive
image distortions occur due to inappropriate selection and interpolation of local
viewpoints assigned to the feature objects as indicated in Figure 1(a).

This paper presents an approach to generating an aesthetic nonperspective
image from a set of segmented feature regions in the target 3D scene. Our
approach automates the latter two steps in the above nonperspective design
process, the selection of optimal viewpoints for feature regions and its visu-
ally plausible blending in the final composite image. The viewpoint selection
is accomplished by employing adaptive Monte Carlo sampling of the viewpoint
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entropy function around the user-specified global viewpoint. The obtained local
viewpoints will be interpolated over the 3D scene to compose a nonperspective
image in a visually plausible manner, by taking advantage of image restoration
techniques. The proposed formulation allows us to synthesize nonperspective im-
ages only by adjusting a single parameter that controls the smoothness of the
viewpoint transition over the entire 3D scene. Several design examples includ-
ing Figure 1(c) will be exhibited to demonstrate the feasibility of the proposed
approach.

The remainder of this paper is organized as follows: Section 2 explains how we
can calculate the optimal viewpoint for each feature region using the Monte Carlo
sampling technique. Section 3 introduces a 3D field of camera parameters as the
data structure to retain the calculated local viewpoints. Section 4 describes a
method of interpolating such local viewpoints over the 3D scene using the image
restoration techniques. After presenting several design examples in Section 5,
Section 6 concludes this paper and refers to possible future extensions.

2 Selecting Optimal Viewpoints

Our design process starts with an ordinary perspective image projected from
the user-specified global viewpoint, and then tries to find nonperspective image
deformation by incorporating a locally optimal viewpoint calculated for each fea-
ture region. In our approach, users are requested to specify a set of representative
objects so that the target 3D scene can be segmented into local feature regions.
In this section, we explain how to select the optimal viewpoint for each feature
region by the Monte Carlo sampling of the corresponding viewpoint entropy
function.

2.1 Viewpoint Entropy

For finding the optimal viewpoints for representative objects, we employ the
formulation of the viewpoint entropy proposed by Vázquez et al. [9]. In this
formulation, the optimality of a viewpoint is evaluated by the following entropy
function:

I = −

N
∑

j=0

Aj

S
log2

Aj

S
, (1)

where N represents the number of faces that compose a 3D polygonal model
of the target object, and Aj is the projected area of the j-th polygonal face
of that model on the 2D screen. Here, we assume that A0 represents the area
of the background region and thus the overall area of the screen S holds the
following condition: S =

∑N

j=0 Aj . Eq. (1) implies that the definition of the
viewpoint entropy is equivalent to that of the Shannon entropy, when we think
of the relative ratio Aj/S as the probability of the corresponding face visibility.
Thus, we can find the optimal viewpoint by exploring the best balance of the
face visibilities based on the entropy formulation.
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Fig. 2. Global viewpoint and locally optimal viewpoints. Each viewpoint is represented
by the 3D geometric position and view direction.

Fig. 3. Optimal viewpoint selection on the viewing sphere using Monte Carlo sampling.

This search for optimal viewpoints can be replaced with a more sophisticated
version based on surface curvatures [10] if we put more weight on the salient fea-
tures of the object shapes, or semantic-based approaches if the target scene has
domain-specific context [11–13]. Readers can refer to an excellent overview [14]
of this interesting subject.

2.2 Viewpoint Selection based on Monte Carlo Sampling

Before going into the details of the actual viewpoint calculation, we introduce
our notation. In this paper, we represent each viewpoint by the 3D geometric
position and view direction. Figure 2 illustrates this notation where the position
and view direction for the k-th object are denoted by V k and Dk, respectively,
while V 0 and D0 correspond to those for the user-specified global viewpoint for
the initial perspective projection. In addition, we refer to the plane perpendicular
to the view direction D0 as the global view plane, and denote the horizontally
and vertically aligned vectors that span the plane by Dx and Dy.

In practice, we can compute the optimal viewpoint of the k-th object as
follows: First, the viewpoint V k for the k-th object is initialized to V 0, and
the view direction Dk is set to be a vector emanating from V 0 to the center
of the k-th object Ok. For exploring the best viewpoint, as shown in Figure 3,
we iteratively perform the Monte Carlo sampling in the vicinity of the current
position V k over the viewing sphere of the k-th object, and replace it with the
new position if it has a higher value of the viewpoint entropy than the current
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Fig. 4. Projecting the local viewpoint
onto the global view plane associated with
the global viewpoint.

Fig. 5. 2D displacement vector and the
depth value of the viewpoint to be stored
in the 3D field of camera parameters.

value. We also set Dk to the vector from V k to Ok at each updating step. This
iterative computation will terminate when we reach a local maximum around
the the position of initial global viewpoint, and employ the corresponding V k

and Dk as the optimal viewpoint for that object.

3 3D Field of Camera Parameters

Before synthesizing nonperspective images by interpolating the obtained local
viewpoints, we introduce a 3D field of camera parameters on regular grid samples
in the target 3D scene. This is because, from the 3D field of camera parameters,
we can retrieve a locally optimal viewpoint at any 3D position in the target
scene by trilinearly interpolating the eight nearest neighbor samples. Further-
more, the regular grid samples permit us to naturally incorporate image restora-
tion techniques into this framework when smoothly blending the locally optimal
viewpoints in a visually plausible manner. In what follows, we first introduce the
representation of a locally optimal viewpoint for each object in our framework,
then store the corresponding viewpoint information into the 3D field of camera
parameters, and finally synthesize the corresponding nonperspective image with
reference to that 3D field.

3.1 Approximating the Locally Optimal Viewpoints

In the 3D field of camera parameters, we first store the 2D displacements of
the local viewpoints from their original position for generating the initial per-
spective image, while having fixed other parameters such as the focal length,
view direction, up vector, size of the screen and its orientation. This setting ef-
fectively allows us to control the associated nonperspective projection without
worrying about the excessive degrees of freedom inherent in the design of such
nonperspective images. However, we cannot describe a locally optimal viewpoint
assigned to each representative object only with the 2D displacement, and thus
have to approximate the position of the local viewpoint by projecting it to the
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Fig. 6. Registering camera parameters to the 3D field: (Left) Storing the camera pa-
rameters to the nearest eight grid samples. (Right) Retrieving the camera parameters
by trilinearly interpolating those at the nearest eight grid samples.

global view plane along the corresponding view direction. Figure 4 shows such
an viewpoint approximation where the original viewpoint for the k-th object V k

is projected onto the new position V ′

k as:

V ′

k =
(Ok − V 0) · D0

(Ok − V k) · D0
(V k − Ok) + Ok. (2)

This approximation effectively allows us to store the information about the local
viewpoints into the 3D field of camera parameters.

3.2 Storing Camera Parameters in the 3D Field

As described earlier, the 2D displacement of each locally optimal viewpoint can
be obtained by calculating the difference in position between the new viewpoint
and original global viewpoint along the global view plane, as V ′

k −V 0. Thus, as
shown in Figure 5, the 2D displacement vector P k = (Pkx, Pky) to be stored in
the 3D field can be given by

Pkx = (V ′

k − V 0) · Dx and Pky = (V ′

k − V 0) · Dy. (3)

In addition to the 2D viewpoint displacement, we also associate the distance
between the global view plane to the target representative object, as its depth
value. Figure 5 again indicates the depth value of the k-th object, which can be
given by

dk = (Ok − V 0) · D0. (4)

These 2D displacement vectors and depth values for local viewpoints are recorded
as the camera parameters at the grid samples in the 3D field.
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3.3 Synthesizing Nonperspectives with the Camera Parameters

Suppose that the target scene has been composed of a set of 3D meshes. For
synthesizing the nonperspective image of the target scene, we have to retrieve
the camera parameters of each vertex on the meshes from the 3D field of camera
parameters. However, since the mesh vertices do not necessarily coincide with the
grid samples of the 3D field geometrically, we have to register the aforementioned
2D displacement vectors and depth values of the mesh vertices appropriately to
the 3D field. In our implementation, we propagate the camera parameters of
each mesh vertex to the eight nearest grid samples as shown on the left of
Figure 6. Here, in this figure, the 2D displacement of the viewpoint P k and
depth value dk for the k-th object are distributed to the l-th grid sample as
Ql and el, respectively. On the other hand, when synthesizing nonperspective
images by referring to the 3D field of camera parameters, we compute the camera
parameters at the 3D position of a mesh vertex by trilinearly interpolating those
at the eight nearest grid samples as shown on the right of Figure 6.

In practice, we simulate the effects of nonperspective projection by project-
ing each mesh vertex with reference to the corresponding 2D displacement of
viewpoint and depth value. Figure 7 shows such an example where the change in
the viewpoint position results in the deformation of the target object in the final
nonperspective image. Note that, when synthesizing the nonperspective image
in this scheme, we fix the center of each representative object in the 3D scene
space. This implies that, as shown in Figure 8, we have to translate the vertex
x along the global view plane by:

r =
(d − dk

dk

)

P k and d = (x − V 0) · D0, (5)

where d represents the depth value of the vertex x in the global view coordinates.
This formulation successfully allows us to synthesize nonperspective images if an
appropriate 3D field of camera parameters is provided. Note that the registered
locally optimal camera parameters are not used directly; they will be smoothed
out when synthesizing aesthetic nonperspective images as described in the next
section.

4 Blending Local Viewpoints

In generating final nonperspective images, we have to fully smooth out the 3D
field of camera parameters. Otherwise, we may incur unexpected visual inconsis-
tency such as folds and breaks over the projected images around possible sudden
changes in the camera parameters. In this section, we introduce a method of
smoothly blending the locally optimal viewpoints that correspond to the rep-
resentative objects in the 3D scene, by taking advantage of image restoration
techniques [15].
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Fig. 7. Simulating nonper-
spective projection by deform-
ing the target object.

Fig. 8. Displacement of a vertex according to the
change in the position of the corresponding view-
point.

Fig. 9. Image restoration process by minimizing an energy function. The parameter γ

controls the smoothness of the restored image.

4.1 Energy Function for Blending Viewpoints

Basically, image restoration techniques restore a degraded noisy image by seeking
smooth spatial change in intensity value, while minimizing the difference between
the degraded image and newly restored image. For example, we can transform
the degraded image g into the restored image f , by minimizing the following
function F (Figure 9):

F =
1

2

L
∑

i

(gi − fi)
2 +

γ

2

∑

(j,k)

(fj − fk)2, (6)

where fi and gi represent the intensity values at the i-th pixel in f and g, re-
spectively, and L corresponds to the number of pixels in the images. In addition,
∑

(j,k) indicates that we calculate the summation of the corresponding terms

for all the pairs of neighboring pixels in the image. (The j-th and k-th pixels
are immediate neighbors in this case.) On the right side of Eq. (6), the first
term represents the error between the degraded image g and restored image f ,
and the second term evaluates the smoothness of the intensity values over the
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restored image f , while γ denotes the relative ratio of the reliability of f with
respect to g. The best restored image can be obtained by minimizing the energy
function F .

A similar strategy can be used to achieve the smooth interpolation between
local viewpoints, by smoothing out the transition of camera parameters in the
3D space while maximally respecting the calculated locally optimal viewpoints.
In practice, this problem can be formulated by introducing an energy function
that evaluates the quality of the 3D field of camera parameters, with reference to
the definition of the energy function in Eq. (6). Let sl denote the displacement
of the position at the l-th grid sample in the 3D field of camera parameters, as
shown on the left of Figure 6. We define the energy function that evaluates the
quality of the 3D field of camera parameters as

E =
1

2

N
∑

i=1

(sn
i − so

i )
2 +

γ

2

∑

(j,k)

(sn
j − sn

k )2, (7)

where so
i and sn

i represent the displacement before and after the optimization,
and

∑

(j,k) indicates that we calculate the summation of the corresponding terms
for all the pairs of neighboring grid samples in the 3D field. In the same way as
in Eq. (6), the first term on the right side of Eq. (7) represents the difference
between the 3D field of camera parameters obtained by calculated local view-
points and its updated version, while the second term represents the smoothness
of the updated 3D field. Here, the parameter value γ controls the smoothness
of the 3D field of camera parameters and can be adjusted by users for tweaking
aesthetic continuity of the interpolated local viewpoints in the nonperspective
scene.

4.2 Iteratively Updating Camera Parameters

Given an appropriate parameter value γ, we explore the 3D field of camera
parameters that minimizes the energy function in Eq. (7), which provides us
with the optimal interpolation of local viewpoints assigned to the representative
objects. In our approach, this is achieved by iteratively updating the camera
parameters using the steepest descend method to seek the minimal value of the
energy function. For each update, we replace the old displacement of the l-th
grid sample so

l with the new one sn
l , by zeroing the derivative of Eq. (7) with

respect to sn
l , as

∂E

∂sn
l

= (sn
l − so

l ) + γ
∑

m∈nearest

(sn
l − so

m) = 0. (8)

Here,
∑

m∈nearest represents the summation of the corresponding terms for all
the nearest grid samples of the l-th sample, while the number of the nearest
samples is 6 in this 3D case because the l-th sample has two neighbors along
each of the three coordinate axes. This means that we can rewrite Eq. (8) as

sn
l =

so
l + γ

∑

m∈nearest so
m

1 + 6γ
(9)
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(a) (b) (c) (d) (e) (f)

Fig. 10. Representative objects for synthesizing the nonperspective image in Figure 1,
where each object is projected as seen from its own optimal viewpoint.

By applying the above updates to all the grid samples, we can iteratively opti-
mize the 3D field of camera parameters. If the difference in the energy function
between the current field and updated field becomes less than some specific
threshold, we consider that the 3D field has been converged to the optimal one
and terminate this iterative process. Finally, we employ the final 3D field of cam-
era parameters to synthesize aesthetic compositions of nonperspective images.

5 Results

This section provides several design examples to demonstrate the capability of
the proposed method. First, Figure 10 shows the set of representative objects
specified by users for synthesizing the nonperspective scene in Figure 1, where
each of which is projected as seen from its own optimal viewpoint. Note that
Figure 1(a) shows how the representative objects look like in the ordinary per-
spective projection where they are projected with the given global viewpoint.
We cannot inevitably avoid undesirable breaks and folds in the projected image
as seen in Figure 1(b) by just storing the locally optimal viewpoints for the rep-
resentative objects to the 3D field of camera parameters, because we have several
stepwise discontinuities in the 3D field without any smoothing operations. Af-
ter having smoothed out the 3D field using our approach, we can successfully
interpolate the locally optimal viewpoints over the scene to synthesize a visu-
ally plausible nonperspective image as shown in Figure 1(c). Note that we use
γ = 10.0 when minimizing the energy function in Eq. (7) in this case.

This design example nonetheless suggests that we cannot necessarily retain
the locally optimal view of each representative object, for example, as seen
through the comparison between optimal local views in Figure 10(a), (b), and (c)
and the final synthesized image in Figure 1(c). Thus, we like to observe how the
nonperspective image deformation changes according to the parameter value of
γ. Figure 11 presents such an example, where we use another set of representative
objects as our target scene, and generate nonperspective images with different
values of γ. Figure 11(a) shows the corresponding ordinary perspective image,
while Figures 11(b)-(f) present how the different values of γ will influence on
the overall interpolation of local viewpoints. The associated results reveal that
the small value of γ will not maintain the smoothness of the 3D field of camera
parameters, as shown in Figure 11(b). On the other hand, the large value of γ
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(a) (b) (c)

(d) (e) (f)

Fig. 11. Results with different values of γ. (a) Ordinary perspective image. Nonper-
spective images with smooth fields obtained by optimizing the energy function with
(b) γ = 3.0, (c) γ = 7.0, (d) γ = 10.0, (e) γ = 12.0, and (f) γ = 20.0.

will excessively decrease the flexibility of the nonperspective image deformation,
and thus make the projected image close to the original perspective image, as
shown in Figure 11(f). This implies that we can control the visual plausibility
of the nonperspective image deformation by controlling only one parameter γ,
which is still manually adjusted by users in our implementation. Adaptively con-
trolling the value of γ in the 3D target scene would help us improve the aesthetic
interpolation of local viewpoints.

6 Conclusion

This paper has presented an approach for automatically synthesizing aesthetic
nonperspective images by interpolating locally optimal viewpoints assigned to
the given set of representative objects in the scene. The plausible interpolation
of local viewpoints can be accomplished by adjusting only single control param-
eter so that the optimal view of each representative object can be sufficiently
reflected in the final nonperspective image. Currently, our scheme cannot neces-
sarily preserve all the locally optimal viewpoints in the synthesized nonperspec-
tive image, for example, when the corresponding viewpoints are quite different in
its direction from the global viewpoint, or when different viewpoints are assigned
to multiple representative objects within a relatively small region. Adaptively
adjusting the control parameter in 3D scene space, together with non-regular
samples of camera parameters, will allow us to respect the spatial configuration
of representative objects in the final nonperspective image. Applying the present
approach to nonperspective animations will demand more systematic control of
camera parameters, and thus will an interesting theme for future research.
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