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ABSTRACT

The bag-of-features models is one of the most popular
and promising approaches for extracting the underlying
semantics from image databases. However, the associ-
ated image categorization based on machine learning
techniques may not convince us of its validity since we
cannot visually verify how the images have been classi-
fied in the high-dimensional image feature space. This
paper aims at visually rearrange the images in the pro-
jected feature space by taking advantage of a set of rep-
resentative features called visual words obtained using
the bag-of-features model. Our main idea is to asso-
ciate each image with a specific number of visual words
to compose a bipartite graph, and then lay out the over-
all set of images using anchored map representation in
which the ordering of anchor nodes is optimized through
a genetic algorithm. For handling relatively large image
datasets, we adaptively merge a pair of most similar im-
ages one by one to conduct the hierarchical clustering
through the similarity measure based on the weighted
Jaccard coefficient. Voronoi partitioning has been also
incorporated into our approach so that we can visually
identify the image categorization based on support vec-
tor machine. Experimental results are finally presented
to demonstrate that our visualization framework can ef-
fectively elucidate the underlying relationships between
images and visual words through the anchored map rep-
resentation.
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1. INTRODUCTION

Sophisticating methods for image categorization be-
comes more crucial in content-based retrieval of im-
age databases due to the rapid increase in their data
sizes. While the associated techniques have been signif-
icantly improved until recently, it is still labor intensive
to sufficiently infer the underlying semantics from im-
ages. This problem primarily arises from the fact that
we cannot precisely identify specific objects embedded
in the images regardless of possible variations in their
view, lighting, and occlusion conditions. The bag-of-
features (BoF) model [21, 3] successfully alleviates this
problem for effective image retrieval. A main idea be-
hind the BoF model is to seek an analogy of methods
for inferring text categorization based on the bag-of-
words model, where each document is represented as
a sparse vector of representative words by referring to
their occurrence without worrying about their associ-
ated orders. In practice, the BoF model allows us to
associate an individual image with a small weighted set
of visual words, each of which stands for a group of lo-
cal features in the high-dimensional feature space and
thus corresponds to some specific image content in the
image.

Nonetheless, the correctness of the image categorization
based on such BoF models is not always convincing even
with the help of classification methods based on ma-
chine learning algorithms, since the actual mechanism
for the associated image categorization has not been
fully visualized due to the high-dimensionality of the
image feature space. In this study, we solve this prob-
lem by encoding the relationship between images and
visual words as a bipartite graph first, and then em-
ploying anchored map representation [14] to rearrange
the image set on the 2D screen space, as shown in Fig-
ure 1(a). Here, we have coin and eyeglass images as
the input set of images and try to group them into the



(a) (b)

Figure 1. Using anchored maps to visualize the bag-of-features image categorization for coin and eyeglass images. (a)
Original layout. (b) Enhanced layout with an optimized circular ordering of visual words annotated with representative
images. Images in same category are brought closer to each other. ( #{input images} = 20, #{visual words} = 24. )

two categories according to the image contents. Ge-
netic algorithms have also been employed to optimize
the circular ordering of visual words around the image
feature space, so that we can reduce the number of edge
crossings and thus visually elucidate the underlying re-
lationship between images and visual words, as shown
in Figure 1(b). Furthermore, we introduced hierarchical
representation of the images by adaptively merging im-
ages according to their similarity values for effectively
handling a large set of images. This hierarchical rep-
resentation also facilitates users to conduct the image
categorization according to their preference, by inter-
actively selecting a training set of images for machine
learning techniques.

The remainder of this paper is organized as follows: Sec-
tion 2 first provides a brief survey on conventional tech-
niques for image categorization together as well as visu-
alization of high-dimensional space. Section 3 then ex-
plains how we can extract image features and construct
the dictionary of visual words by extracting low-level
image features. This is followed by our main contribu-
tion of this paper, where we present a novel approach to
transforming the high-dimensional image feature space
to an anchored map representation by referring to the
bipartite relationships between images and visual words
in Section 4. After having presenting several experimen-
tal results to demonstrate the feasibility of our proto-
type system in Section 5, we conclude this paper and
refer to future work in Section 6.

2. RELATED WORK

Content-based image retrieval has been a hot topic in
the research on image processing, computer graphics,
and multimedia. For effective search for specific con-
tents, it is important to classify images into several
categories by inferring semantics of visual features em-
bedded in them. The bag-of-features (BoF) model is a
well-known approach for such image representation and
helps us categorize images by computing the number
of occurrence of particular visual features contained in
each image [21, 3]. This idea originates from the con-
cept of bag-of-words that naturally allows us to classify
documents by counting the number of particular words
defined in the dictionary [8]. Indeed, this concept has
been extended to the image databases where a set of
local features called visual words is employed as the dic-
tionary for the analysis of image contents.

In the early stage of approaches of this type, several
studies focused on detecting global image features for
encoding the image as a whole. Nonetheless, these
features appeared to be inappropriate for the purpose
of categorizing images because they are too sensitive
to image transformations including translation, scaling,
and rotation together with lighting conditions and oc-
clusions. Lowe presented an feature detection technique
called scale-invariant feature transform (SIFT) [12],
which allows us to extract local image features in a way
that they are robust enough to the prescribed condi-
tions. In practice, the visual words were obtained by
collecting the SIFT features from a set of training im-
ages and employing the conventional k-means cluster-
ing to identify the corresponding cluster centers as the
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Figure 2. The BoF model. (a) SIFT feature vectors extracted from images are plotted in the 128 dimensional feature
space. (b) The k-means clustering algorithm is employed to identify a visual word as the center of each cluster. (c)
Each image is encoded as normalized histogram coordinates in terms of the visual words.

visual words.

As for practical approaches for image categorization, we
first encode each image in the database as a weighted
sum of the relevant visual words. Indeed, the BoF
model facilitates us to assign a sparse vector represen-
tation of visual words to each image by quantizing it
in terms of its associated visual words [21, 3]. Sup-
port vector machine (SVM) has been often employed
as a standard classifier since it produces high accuracy
in image categorization [3, 4]. As an extension, Bosch
et al. [1] revisited the recognition scheme and apply it
to the video by employing probabilistic latent semantic
analysis (pLSA) followed by k-nearest neighbor (k-NN)
classification. Over the years, a wide range of methods
have been developed to improve the quality of the im-
age categorization. A state-of-the-art technique is spa-
tial pyramid matching (SPM) proposed by Lazebnik et
al. [11], where they incorporated spatial gradient infor-
mation of images at multiple scales into the BoF model.
More studies also focused on improving the discrimina-
tive power of the visual words dictionary. For example,
Winn et al. [24] introduced a statistical measure for the
optimization framework to make the dictionary of the
visual words more compact, while Perronnin [18] com-
bined local and global feature detection frameworks to
exhibit higher performance. However, the space of im-
age features extracted by these approaches is always
high-dimensional and too abstract to understand the
meaningful structures hidden behind that space.

Visualizing high-dimensional feature space often suc-
cessfully elucidates the image classification obtained
through machine learning techniques. A dimensional-
ity reduction technique called multidimensional scaling
(MDS) [23, 10] is one of the common techniques to

project the high-dimensional space onto a 2D screen
space for better readability. The MDS has been also
adapted as a visualization tool for exploring feature sub-
spaces from high-dimensional data [22, 25]. Sedlmair et
al. [20] conducted an empirical data study to seek the
reasonable guidance on the choice of dimensionality re-
duction techniques and scatterplot representations. Re-
cently, Paulovich et al. [17], Joia et al. [9], and Mamani
et al. [13] developed dimensionality reduction frame-
works that allows us to interactively edit the under-
lying structures of the high-dimensional space through
screen-space manipulations. Furthermore, Mizuno et
al. [16] presented a framework for interactively explor-
ing feature space that is specific to the BoF models, by
referring to the relationships between images and visual
words. In our approach, we also focus on the such rela-
tionships specific to the BoF models and encode them
as anchored map representations [14, 19] for visualiza-
tion purposes. Technical details of the present approach
will be detailed in what follows.

3. BOF MODELS FOR IMAGE CATEGORIZATION

This section first provides a brief overview of the BoF
model for encoding images as feature vectors, and de-
scribes how images are categorized using machine learn-
ing techniques.

3.1 Image Representation Based on BoF Models

In general, the BoF model consists of the three steps:
feature extraction, visual words dictionary formation and
image-histogram representation. The first step of the
BoF construction is the feature extraction, where we ex-
tract SIFT features from the respective images. Here,
the SIFT features are described as 128-dimensional fea-
ture vectors and plotted within the corresponding fea-
ture space as shown in Figure 2(a). For conducting the
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Figure 3. Bipartite relationships between images and visual words in the BoF model. (a) An original bipartite graph.
(b) A sparse bipartite graph after edge pruning. (c) The corresponding anchored map representation.

second step for the visual words dictionary formation,
all the SIFT features are grouped into a specific number
of clusters. The simplest technique for this purpose is
the conventional k-means clustering algorithm, where
the number of clusters k is predefined. Now we are
ready to identify the center of each cluster as a rep-
resentative feature called a visual word, and compose
the list of k visual words as the dictionary as exhib-
ited in Figure 2(b). Our last step is image histogram
representation, where we encode each image as a his-
togram coordinates in terms of the visual words. This
is accomplished by quantizing each SIFT feature vector
contained in the image to the visual word of the cor-
responding cluster in the 128-dimensional feature space
first, and then counting the occurrence of each visual
word to construct the histogram. This process usually
allows us to represent each image as a sparse vector of
visual words, by normalizing the bins of the histogram
to compose the normalized histogram coordinates as
shown in Figure 2(c).

3.2 Image Categorization Using Support Vector Machine

In the BoF model, the support vector machine (SVM)
is employed as the simplest learning models for classify-
ing images by partitioning the high-dimensional space
spanned by the extracted visual words [3]. In prac-
tice, the classifier finds the maximum marginal hyper-
surface that separates positive and negative samples in
the training dataset, and further classifies each of the
unknown samples by referring to the separating hyper-
surface. In this paper, we introduce the SVM-based im-
age categorization process proposed by Csurka et al. [3]
and visualize how the bounding hypersurface encloses
the images of specific type according to the input train-
ing samples provided by users. In our approach, we
employed radial basis functions (RBFs) kernels for rep-
resenting such separating hyperplanes to better classify
the complicated configuration of images in the high-
dimensional space, and visualize the associated image
classification in the screen space for more convincing

representation.

4. HIERARCHICAL BIPARTITE GRAPH VISUALIZATION

In this section, we describe how to visualize image cate-
gorization via an anchored map representation by refer-
ring to the bipartite relationships between images and
visual words. We also introduce the weighted Jaccard
similarity index for adaptively clustering images so that
we can hierarchically represent large scale image sets
within the framework of the anchored maps.

4.1 Bipartite Network Composition

The most common way of visualizing the high-dimen-
sional image feature space is to employ dimensionality
reduction techniques. Nonetheless, it is often the case
that we still cannot fully discriminate each image cat-
egory from others if the images are simply projected
onto the low-dimensional space as described previously.
Our novel idea for alleviating this problem is to extract
bipartite relationships between images and visual words
from the BoF model first, and then transform them into
a network structure so that we can take advantage of
existing graph drawing techniques for better visualiza-
tion.

For this purpose, we first establish edge connections be-
tween each image and its relevant visual words if they
correspond to non-zero histogram coordinates of that
image. Note that here we represent images and visual
words as nodes of the bipartite graph, while we asso-
ciate each normalized histogram coordinate value with
the corresponding edge as its weight value as shown in
Figure 3(a). Furthermore, we would like to make the
bipartite graph as sparse as possible for better read-
ability of the resulting graph visualization. Thus, we
sort the edges in an ascending order according to the
weight values, and prune the edge having the minimum
weight one by one until we cannot remove edges any
more without decomposing the graph into multiple con-
nected components, as shown in Figure 3(b). In this
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Figure 4. Hierarchical structure of bipartite graph visualization. (a) An example bipartite graph between images and
visual words. (b) Dendrogram-based representation of clustered images.

way, we construct a sparse representation of the bipar-
tite graph over the image and visual word nodes.

4.2 Anchored Map Representation

As for the visualization of the bipartite relationships,
we employ anchored map representations formulated
by Misue [14, 15]. In the anchored map representa-
tion, nodes in one of the two disjoint sets of the bi-
partite graph are equally spaced along the boundary of
a disk region, while nodes of the other set are free to
move within the disk, as shown in Figure 3(c). In the
figure, we release the image nodes within the central
disk region of the anchored map and fixed the visual
word nodes along its circular boundary. The conven-
tional spring embedder algorithm is also applied to the
free nodes to avoid unnecessary overlap among images
in the central region, where we also incorporate edge
weights into our formulation so that each image will be
brought closer to its relevant visual words according to
their corresponding normalized histogram coordinates.

In our sparse representation of the bipartite graph, each
image usually depends on a small number of visual
words. This means that our scheme is more likely to
bring images of the same category close to each other
in the anchored map representation since they usually
share almost the same set of visual words in their his-
togram representation. Furthermore, this visual read-
ability of the image categorization can be enhanced if we
carefully reorder the visual word nodes along the circu-
lar boundary of the disk to make each image node have
its neighbor visual word nodes within its vicinity. This
is accomplished by devising genetic-based algorithms
for optimizing the circular ordering of visual words,
where we define a chromosome as a value-encoding se-

quence of visual word IDs. For fully discriminating be-
tween image categories, we optimize the chromosome
sequence by defining the cost function so that, for each
image node, every pair of its adjacent visual word nodes
become closer to each other. This amounts to calculat-
ing the circular distance between adjacent visual word
nodes for each image node, and summing up the squared
distances except for the largest one [14]. This genetic-
based optimization provides us with better anchored
maps in the sense that images in the same category
will be closer to each other in the central disk region as
shown in Figure 1(b). Note that, in our implementa-
tion, we replace each visual word with an image having
the highest occurrence of that word, so that we can
enhance the visual readability of the resulting image
categorization as shown in Figure 1. Furthermore, the
genetic-based optimization also potentially reduces the
number of edge crossings in order to alleviate the dis-
tracting visual clutter.

4.3 Hierarchical Clustering of Images

As the number of input images increases, the central
disk region of the anchored map will be more crowded
with the images. For improving the scalability of the an-
chored map representation, we also introduced hierar-
chical representation of the anchored map by adaptively
clustering images according to their image similarities.
More specifically, we compose a dendrogram tree struc-
ture of images by merging a pair of the most similar
images one by one iteratively [19]. For evaluating the
similarity among images, we employ the conventional
Jaccard similarity index, which is the most popular sim-
ilarity measure between a pair of sets [2]. Let us con-
sider two sets X and Y for example. The conventional
Jaccard index is defined as J(X,Y ) = |X ∩Y |/|X ∪Y |,



where |Z| represents the number of elements contained
in the set Z. However, in our case, the weighted Jac-
card similarity index [7, 2] is more appropriate in the
sense that we can incorporate the importance of each
relevant visual word when evaluating the image similar-
ities, rather than simply counting the number of rele-
vant visual words in the union and intersection of the
two sets.

As described earlier, our bipartite graph is composed by
connecting an image with its relevant visual words, and
the weight of each edge is equivalent to the normalized
histogram coordinate value of the corresponding visual
word with respect to that image. Thus we can easily
compute the weighted Jaccard similarity index between
a pair of images by referring to their corresponding sets
of visual words X and Y , together with their corre-
sponding edge weights, as follows:

WJ(X,Y ) =

∑
n

i=1
min(Xi, Yi)∑

n

i=1
max(Xi, Yi)

(1)

where n denotes the total number of visual words con-
tained in the union of X and Y . Note that the numer-
ator is obtained by summing up the minimum values
between two weights of the edges emanating from vi-
sual words in X and Y , while the denominator is the
sum of the maximum values. Figure 4(a) shows an ex-
ample, where the Xi and Yi are defined as normalized
histogram coordinates for the image nodes x and y, and
thus we can set (Xi) = (0.1, 0.3, 0.3, 0.2, 0.1, 0.0) and
(Yi) = (0.0, 0.0, 0.2, 0.4, 0.3, 0.1). This means that we
can compute the weighted Jaccard similarity index be-
tween the image nodes x and y as

WJ(X,Y ) =
0.0 + 0.0 + 0.2 + 0.2 + 0.1 + 0.0

0.1 + 0.3 + 0.3 + 0.4 + 0.3 + 0.1
=

1

3
.

Using the weighted Jaccard measure, we can iteratively
merge a pair of the most similar images into a group
one by one, and encode the clustering process as a den-
drogram tree representation as shown in Figure 4(b).
As illustrated in this figure, we incorporate an image
node having a smaller number of child nodes into the
other image node representing more child nodes in our
implementation.

4.4 Visualizing SVM-based Image Classification

We also equip our prototype system with an interface
for classifying images using support vector marching
(SVM). In practice, users are allowed to interactively
specify a subset of images as a training set for SVM-
based classifier together with the tags that represent
whether the corresponding images are classified into a
specific category or not. Nonetheless, conventional BoF
models just present the classification results only and
do not provide us with any information about how the
images are classified in the high-dimensional image fea-
ture space. When projecting the high-dimensional im-
age categorization onto the central disk region within
the anchored map, we introduced the Voronoi tessella-
tion technique in order to clarify how the region is parti-

tioned according to the image categorization. Here, we
employ the position of each image node as a seed point
for the Voronoi cell, and assign a specific color to that
cell according to its image category obtained through
the SVM classification. This is reasonable because the
image nodes are uniformly distributed at the final stage
with the help of the spring-embedder algorithm and
thus the associated Voronoi tesselation usually produces
visually plausible partitioning of the central region of
the anchored map. The overall classification process
makes us convinced with the image categorization pro-
vided by the SVM-based classifier by visualizing the as-
sociated image categorization within the anchored map
representation. Note that, in our implementation, we
incorporated a hardware-assisted algorithm for comput-
ing Voronoi diagrams [6] and restrict the drawing area
to the central disk region of the anchored map using the
stencil buffer.

5. RESULTS

Our prototype system has been implemented on a lap-
top PC with an Intel Core i7 CPU (2GHz, 4MB cache)
and 8GB RAM, and the source code has been written in
C++ using the OpenGL library for drawing graph lay-
outs, OpenCV library for SIFT feature extraction and
SVM learning models, Boost Graph Library for con-
structing the graph data structures, and GAlib library
for the implementation of the genetic-based algorithm.
The images datasets used in this paper were collected
from Caltech256 [5].

Figure 1 exemplifies how the underlying image catego-
rization can be better visualized by taking advantage of
the optimal ordering of visual words around the circular
boundary of the anchored map representation. Here,
Figure 1(a) shows the initial ordering of visual words
and layout of images in the dataset where images of
coins and eyeglasses are intricately mixed. On the other
hand, images of two categories are sufficiently discrimi-
nated in Figure 1(b) when we rearrange the ordering of
the visual words using genetic-based optimization.

The image set exhibited in Figure 5 contains images of
three different objects, i.e., cars, tomatoes, and grapes
from which we try to discriminate car images specifi-
cally from the others. For effectively handling a large
number of images, we first compute a small number of
image groups through hierarchical clustering of images,
and distinguish car images from the others as our target
using the SVM-based image categorization. Note that
here the images outlined in red are labeled as example
images within the specific category (i.e. car images),
while those in blue are images that are out of our tar-
get. We then gradually decompose each image cluster
into smaller clusters, and adjust the image categoriza-
tion by interactively labeling a small number of images
as the training set according to their categories. This
successfully allows us to enclose car images within yel-
low background region from the coarsest level to the
finest (i.e. original) level as shown in Figure 5.
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Figure 5. Discriminating car images using the support vector machine at multiple hierarchical levels. Images of the
training set are labeled as red (car images) and blue (others). The inferred region of the car images is rendered in
yellow through the Voronoi tessellation. (a) 10%, (b) 30%, (c) 40%, and (d) 100% of images. ( #{input images} = 240,
#{visual words} = 100. )

Figure 6 demonstrates how we can categorize images of
a specific category even when we train our image classi-
fier indirectly with similar looking images. In this case,
we represent each image in terms of visual words ob-
tained from training images containing tomatoes, coins,
and cars and try to collect images of round shapes.
However, we also take as input images of additional
categories such as CDs and glasses in this example,

while we still can categorize images of round objects
into our target category using the SVM-based classifier,
and clearly visualize the associated image categorization
both at coarse and fine levels through the anchored map
representation as shown in the figure.

A user study has been also conducted for evaluating the
feasibility of the proposed visualization approach in the
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Figure 6. Categorizing images of round objects from images of five different categories (tomatoes, coins, cars, CDs,
and glasses). (a) Coarse level. (b) Fine level. ( #{input images} = 420. #{visual words} = 100. )



Table 1. Results of a user study. Each column represents
the number of participates who returned the correspond-
ing response.

Figure 1 Figure 5
Yes No Yes No

Q1. Does the anchored map
provide a better layout than
MDS?

10 0 10 0

Q2. Do the optimal circular
orders improve the layout? 10 0 10 0

Q3. Is the hierarchical im-
age clustering useful? NA NA 9 1

Q4. Are you satisfied with
our scheme for interactively
categorizing images?

10 0 10 0

cases of Figures 1 and 5. We recruited 10 participants
(4 females and 6 males) ranging in age from 22 to 30,
where all of them worked on research on visualization
and image synthesis. In our user study, we asked them
the following yes/no questions:

1. Does the anchored map provide a better layout than
MDS?

We prepared the low-dimensional layout obtained us-
ing MDS and asked them to compare it with the
anchored map representations generated by our ap-
proach.

2. Do the optimal circular orders improve the layout?

We generated an initial anchored map layout and its
improved version by optimizing the circular ordering
of anchored nodes for each case, and asked them to
compare between these two layouts.

3. Is the hierarchical image clustering useful?

Especially in the second case of Figure 5 where we
take more images as input, we demonstrated that how
we can change the level of details in the anchored
map representation and asked them to evaluate its
effectiveness.

4. Are you satisfied with our scheme for interactively
categorizing images?

We also asked users to interactively annotate images
according to the prescribed image categorization, and
then evaluate whether they were satisfied with our
proposed scheme.

Table 1 summarizes the results we obtained through the
user study. Overall, the participants gave us positive
responses to all the questions, which basically supports
our visualization scheme for image categorization based
on the BoF model.

6. CONCLUSION

In this paper, we have presented an approach to visual-
izing image categorization within the high-dimensional
feature space by taking advantage of the characteristics

of the BoF model. The idea behind our approach is
to extract the bipartite relationships between the input
images and visual words first and then visualize them
as a network using the anchored map representation.
This new type of dimensionality reduction framework
successfully convinces us of the plausibility of result-
ing image categorization based on the BoF model. The
readability of the anchored map representation has been
further enhanced by seeking the optimal circular order-
ing of visual words and dendrogram-based hierarchical
representation of images. Voronoi-based partitioning
has been also incorporated into the central disk region
of the anchored map to visualize the border of some
specific image category.

Fully classifying images of multiple categories according
to users’ preference remains to be tackled. The readabil-
ity of the anchored map representations also depends
on the quality of the sparse vector representations of
the images in terms of the extracted visual words. Ap-
plying hierarchical clustering to the set of visual words
together with an input set of images will further alle-
viate the scalability issue of the present approach. It
is interesting to seek more visually plausible layout of
image nodes by incorporating the underlying Voronoi
partitioning of the central disk region. Enhancing the
interactivity of the present image retrieval system is also
left as a future research theme.
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