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2024/1/22 1MA06 Complex Analysis (複素関数論)

10.1 (Complex) Power Series (複数)冪級数

10.2 (Complex) Taylor Series (複数)テイラー級数
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10.1  (Complex) Power Series 

(複数)冪級数
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Definition 1: Power Series (冪級数)

A power series (centered at 𝑧0) is an infinite series of the form 



𝑛=0

∞

𝑎𝑛 𝑧 − 𝑧0
𝑛 = 𝑎0 + 𝑎1 𝑧 − 𝑧0 + 𝑎2 𝑧 − 𝑧0

2 +⋯

where the coefficients (係数) 𝑎𝑛 are complex constants.

(6.1.11)

10.1 (Complex) Power Series (複数)冪級数
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Theorem 1  Radius of Convergence (収束半径)

Let σ𝑛=0
∞ 𝑎𝑛 𝑧 − 𝑧0

𝑛 be a power series (centered at 𝑧0). 

Then there is 𝑅, where 0 ≤ 𝑅 ≤ +∞, we have

(i) σ𝑛=0
∞ 𝑎𝑛 𝑧 − 𝑧0

𝑛 converges absolutely if 𝑧 − 𝑧0 < 𝑅.

(ii) σ𝑛=0
∞ 𝑎𝑛 𝑧 − 𝑧0

𝑛 diverges if 𝑧 − 𝑧0 > 𝑅.

We call 𝑅 the radius of convergence of the series.

𝑅

𝑧 − 𝑧0 < 𝑅 converges 

𝑧 − 𝑧0 > 𝑅 diverges

𝑧 − 𝑧0 = 𝑅, inconclusive
𝑧0

10.1 (Complex) Power Series (複数)冪級数
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EXAMPLE (例題) 6.1.5   Circle of  Convergence

Evaluate the convergence condition of the power series σ𝑛=1
∞ 𝑧𝑛+1

𝑛
. 

Solution (解答): 

Thus the series converges absolutely for 𝐿 = |𝑧| < 1. 

The circle of convergence is |𝑧| = 1 and then the radius of convergence is 𝑅 = 1. 

lim
𝑛→∞

𝑧 𝑛+1 +1

𝑛 + 1
𝑧𝑛+1

𝑛

= lim
𝑛→∞

𝑛

𝑛 + 1

𝑧𝑛+2

𝑧𝑛+1
= lim

𝑛→∞

𝑛

𝑛 + 1
𝑧 = lim

𝑛→∞

1

1 +
1
𝑛

𝑧 = 𝑧By the ratio test (6.1.9)

This does not say that the series diverges on the circle of convergence. 

In fact, at 𝑧 = −1, σ𝑛=1
∞ −1 𝑛+1

𝑛
is the convergent alternating harmonic series. 

It can be shown that the series converges at all points on the circle |𝑧| = 1 except at 𝑧 = 1.

Note that on the circle of convergence |𝑧| = 1, the series does not converge absolutely

because σ𝑛=1
∞ 1

𝒏
is the well-known divergent harmonic series. 

10.1 (Complex) Power Series (複数)冪級数
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It should be clear from Theorem 6.4 in Lecture 9 and Example 6.1.5 

that for a power series σ𝑛=0
∞ 𝑎𝑛 𝑧 − 𝑧0

𝑛, the limit (6.1.9) depends 

only on the coefficients 𝑎𝑛. Thus, if

Notice the radius of convergence for Ratio Test

(i) If lim
𝑛→∞

𝑎𝑛+1

𝑎𝑛
= 𝐿 ≠ 0, the radius of convergence is 𝑅 =

1

𝐿
.

(ii) If lim
𝑛→∞

𝑎𝑛+1

𝑎𝑛
= 0, then the radius of convergence 𝑅 = ∞.

(iii) If lim
𝑛→∞

𝑎𝑛+1

𝑎𝑛
= ∞, the test is inconclusive 𝑅 = 0.

(6.1.12)

(6.1.13)

(6.1.14)

10.1 (Complex) Power Series (複数)冪級数
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EXAMPLE (例題) 6.1.6   Radius of  Convergence by Ratio Test

For the power series σ𝑛=1
∞ −1 𝑛+1

𝑛!
𝑧 − 1 − 𝑖 𝑛, find its radius of 

convergence and the condition that it converges absolutely.  

Solution (解答): 

Identify that 𝑎𝑛 =
−1 𝑛+1

𝑛!
then

lim
𝑛→∞

−1 (𝑛+1)+1

𝑛 + 1 !
−1 𝑛+1

𝑛!

= lim
𝑛→∞

𝑛!

𝑛 + 1 !

−1 𝑛+2

−1 𝑛+1
= lim

𝑛→∞

𝑛!

𝑛! (𝑛 + 1)

−1 𝑛+2

−1 𝑛+1
= lim

𝑛→∞

1

𝑛 + 1
=0

Hence by (6.1.13) the radius of convergence 𝑅 is ∞; 
the power series with center 𝑧0 = 1 + 𝑖 converges absolutely
for all 𝑧, that is, for |𝑧 − (1 + 𝑖)| < ∞.

10.1 (Complex) Power Series (複数)冪級数

𝑧 − (1 + 𝑖) 𝑛
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Additional EXAMPLE (例題) 1   Radius of  Convergence by Ratio Test

Find the radius of convergence of the following power series:

(1) σ𝑛=0
∞ 2𝑛𝑧𝑛 (2) σ𝑛=0

∞ 𝑛

6𝑛
𝑧𝑛 (3) σ𝑛=0

∞ 𝑛2𝑧𝑛

(1) 𝑅 =
1

𝐿
=

1

lim
𝑛→∞

𝑎𝑛+1
𝑎𝑛

= lim
𝑛→∞

𝑎𝑛

𝑎𝑛+1
= lim

𝑛→∞

2𝑛

2𝑛+1
= lim

𝑛→∞

1

2
=

1

2

(2) 𝑅 =
1

𝐿
= lim

𝑛→∞

𝑎𝑛

𝑎𝑛+1
= lim

𝑛→∞

𝑛

6𝑛
6𝑛+1

𝑛+1
= lim

𝑛→∞

𝑛

6𝑛
6𝑛∙6

𝑛+1
= lim

𝑛→∞

6𝑛

𝑛+1
= lim

𝑛→∞

6

1+
1

𝑛

= 6

(3) 𝑅 =
1

𝐿
= lim

𝑛→∞

𝑎𝑛

𝑎𝑛+1
= lim

𝑛→∞

𝑛2

𝑛+1 2 = lim
𝑛→∞

𝑛2

𝑛2+2𝑛+1
= lim

𝑛→∞

1

1+
2

𝑛
+

1

𝑛2

= 1

Solution (解答): 

10.1 (Complex) Power Series (複数)冪級数

By (6.1.12),  
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Similar conclusions can be made for the root test (6.1.10) by using

lim
𝑛→∞

𝑛
𝑎𝑛 (6.1.15)

Notice the radius of convergence for Root Test

(i) If lim
𝑛→∞

𝑛
𝑎𝑛 = 𝐿 ≠ 0, the radius of convergence is 𝑅 =

1

𝐿
.

(ii) If lim
𝑛→∞

𝑛
𝑎𝑛 = 0, then the radius of convergence 𝑅 = ∞.

(iii) If lim
𝑛→∞

𝑛
𝑎𝑛 = ∞, the test is inconclusive 𝑅 = 0.

10.1 (Complex) Power Series (複数)冪級数
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EXAMPLE (例題) 6.1.7   Radius of  Convergence by Root Test

For the power series σ𝑛=1
∞ 6𝑛+1

2𝑛+5

𝑛
𝑧 − 2𝑖 𝑛, find its radius of 

convergence and the condition that it converges absolutely. 

Solution (解答): 

Identify that 𝑎𝑛 =
6𝑛+1

2𝑛+5

𝑛
then

lim
𝑛→∞

𝑛
𝑎𝑛 = lim

𝑛→∞

6𝑛 + 1

2𝑛 + 5
= lim

𝑛→∞

6 +
1
𝑛

2 +
5
𝑛

= 3

By previous slides, we conclude that the radius of convergence of the series is 𝑅 =
1

3
. 

The circle of convergence is |𝑧 − 2𝑖| =
1

3
; 

the power series converges absolutely for |𝑧 − 2𝑖| <
1

3
.

10.1 (Complex) Power Series (複数)冪級数
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10.2  (Complex) Taylor Series 

(複数)テイラー級数
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James Gregory 
ジェームス・グレゴリー

(1638–1675)

Brook Taylor 
ブルック・テイラー

(1685-1731)

Colin Maclaurin 
コリン・マクローリン

(1698–1746)

10.2 (Complex) Taylor Series (複数)テイラー級数

Background: 
The Taylor Series subject was formulated by the Scottish mathematician James Gregory and formally 
introduced by the English mathematician Brook Taylor in 1715. If the Taylor series is centered at zero, 
then that series is also called a Maclaurin series, after the Scottish mathematician Colin Maclaurin, who 
made extensive use of this special case of Taylor series in the 18th century.
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Notice: A power series defines or represents a function 𝑓.

Theorem 6.6  Continuity

A power series σ𝑛=0
∞ 𝑎𝑛 𝑧 − 𝑧0

𝑛 represents a continuous function 𝑓

within its circle of convergence 𝑧 − 𝑧0 = 𝑅, namely, 𝑧 − 𝑧0 < 𝑅.

10.2 (Complex) Taylor Series (複数)テイラー級数

𝑅

𝑧 − 𝑧0 < 𝑅 converges 

𝑧 − 𝑧0 > 𝑅 diverges

𝑧 − 𝑧0 = 𝑅, inconclusive
𝑧0
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Theorem 6.7 Term-by-Term (項別に) Differentiation

A power series σ𝑛=0
∞ 𝑎𝑛 𝑧 − 𝑧0

𝑛 can be differentiated term-by-term 

within its circle of convergence |𝑧 − 𝑧0| = 𝑅, namely, 𝑧 − 𝑧0 < 𝑅.

Differentiating a power series term-by-term gives,

𝑑

𝑑𝑧


𝑛=0

∞

𝑎𝑛 𝑧 − 𝑧0
𝑛 = 

𝑛=0

∞

𝑎𝑛
𝑑

𝑑𝑧
𝑧 − 𝑧0

𝑛 = 

𝑛=1

∞

𝑎𝑛𝑛 𝑧 − 𝑧0
𝑛−1

Note that the summation index in the last series starts with 𝑛 = 1 because the 
term differentiation corresponding to 𝑛 = 0 is zero.

Differentiation (微分) and Integration (積分) of Power Series

10.2 (Complex) Taylor Series (複数)テイラー級数
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Theorem 6.8 Term-by-Term Integration

A power series σ𝑛=0
∞ 𝑎𝑛 𝑧 − 𝑧0

𝑛 can be integrated term-by-term 

within its circle of convergence |𝑧 − 𝑧0| = 𝑅 (namely, 𝑧 − 𝑧0 < 𝑅), 

for every contour 𝐶 lying entirely within the circle of convergence.

This theorem gives that

න
𝐶



𝑛=0

∞

𝑎𝑛 𝑧 − 𝑧0
𝑛 𝑑𝑧 = 

𝑛=0

∞

𝑎𝑛න
𝐶

𝑧 − 𝑧0
𝑛 𝑑𝑧

whenever 𝐶 lies in the interior of |𝑧 − 𝑧0| = 𝑅.

Differentiation (微分) and Integration (積分) of Power Series

10.2 (Complex) Taylor Series (複数)テイラー級数
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Taylor Series

Suppose a power series represents a function 𝑓 within |𝑧 − 𝑧0| = 𝑅, 
that is,

It follows from Theorem 6.7 that the derivatives of 𝑓 are the series

and so on. 

𝑓 𝑧 = 

𝑛=0

∞

𝑎𝑛 𝑧 − 𝑧0
𝑛 = 𝑎0 + 𝑎1 𝑧 − 𝑧0 + 𝑎2 𝑧 − 𝑧0

2 +⋯ (6.2.1)

𝑓′ 𝑧 = 

𝑛=1

∞

𝑎𝑛𝑛 𝑧 − 𝑧0
𝑛−1 = 𝑎1 + 2𝑎2 𝑧 − 𝑧0 + 3𝑎3 𝑧 − 𝑧0

2 +⋯

𝑓′′ 𝑧 = 

𝑛=2

∞

𝑎𝑛𝑛 𝑛 − 1 𝑧 − 𝑧0
𝑛−2 = 2 ∙ 1 ∙ 𝑎2 + 3 ∙ 2 ∙ 𝑎3 𝑧 − 𝑧0 +⋯

𝑓′′′ 𝑧 = 

𝑛=3

∞

𝑎𝑛𝑛 𝑛 − 1 𝑛 − 2 𝑧 − 𝑧0
𝑛−3 = 3 ∙ 2 ∙ 1 ∙ 𝑎3 + 4 ∙ 3 ∙ 2 ∙ 𝑎4 𝑧 − 𝑧0 +⋯

(6.2.2)

(6.2.3)

(6.2.4)

10.2 (Complex) Taylor Series (複数)テイラー級数
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A power series represents an analytic function within its circle of 
convergence.

There is a relationship between the coefficients 𝑎𝑛 in (6.2.1) and the 
derivatives of 𝑓. Evaluating (6.2.1), (6.2.2), (6.2.3), and (6.2.4) at 𝑧 = 𝑧0
we have

In general,

Taylor Series

𝑓 𝑧0 = 𝑎0, 𝑓′ 𝑧0 = 1! 𝑎1, 𝑓′′ 𝑧0 = 2! 𝑎2, 𝑓′′′ 𝑧0 = 3! 𝑎3,

𝑓(𝑛) 𝑧0 = 𝑛! 𝑎𝑛, or

𝑎𝑛 =
𝑓(𝑛) 𝑧0

𝑛!
, 𝑛 ≥ 0 (6.2.5)

10.2 (Complex) Taylor Series (複数)テイラー級数
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When 𝑛 = 0 in (6.2.5), we interpret the zero-order derivative as 

𝑓(𝑧0) and 0! = 1, so that the formula gives 𝑎0 = 𝑓(𝑧0) . 

Substituting (代入する ) (6.2.5) into (6.2.1), we have

Taylor Series

(6.2.6)

Definition 2:  Taylor series (テイラー級数)

The Taylor series for 𝑓 centered at 𝑧0 is of the form 

𝑓 𝑧 = 

𝑛=0

∞
𝑓(𝑛) 𝑧0

𝑛!
𝑧 − 𝑧0

𝑛

10.2 (Complex) Taylor Series (複数)テイラー級数
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𝑓 𝑧 = 

𝑛=0

∞
𝑓(𝑛) 0

𝑛!
𝑧𝑛

Maclaurin Series (マクローリン級数)

(6.2.7)

Definition 3:  Maclaurin series (マクローリン級数)

The Maclaurin series is a special Taylor series with center 𝑧0 = 0, i.e.

10.2 (Complex) Taylor Series (複数)テイラー級数



2024/1/22 MA06 Complex Analysis (複素関数論) 20

If we are given a function 𝑓 that is analytic in some domain 𝐷, 

can we represent it by a power series of the form (6.2.6) or (6.2.7)?

Question

Check the answer in the following Theorem 6.9.

10.2 (Complex) Taylor Series (複数)テイラー級数
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Theorem 6.9  Taylor’s Theorem

Let 𝑓 be analytic within a domain 𝐷 and let 𝑧0 be a 

point in 𝐷. Then 𝑓 has the series representation

which is valid for the largest circle 𝐶 with center 

at 𝑧0 and radius 𝑅 that lies entirely within 𝐷.

𝑓 𝑧 = 

𝑛=0

∞
𝑓(𝑛) 𝑧0

𝑛!
𝑧 − 𝑧0

𝑛 (6.2.8)

10.2 (Complex) Taylor Series (複数)テイラー級数
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Some Important Maclaurin Series

𝑒𝑧 = 1 +
𝑧

1!
+
𝑧2

2!
+⋯ = 

𝑛=0

∞
𝑧𝑛

𝑛!

sin 𝑧 = 𝑧 −
𝑧3

3!
+
𝑧5

5!
− ⋯ = 

𝑛=0

∞

−1 𝑛
𝑧2𝑛+1

2𝑛 + 1 !

cos 𝑧 = 1 −
𝑧2

2!
+
𝑧4

4!
−⋯ = 

𝑛=0

∞

−1 𝑛
𝑧2𝑛

2𝑛 !

(6.2.12)

(6.2.13)

(6.2.14)

10.2 (Complex) Taylor Series (複数)テイラー級数
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EXAMPLE (例題) 6.2.1   Radius of  Convergence

Suppose the function 𝑓 𝑧 =
3−𝑖

1−𝑖+𝑧
is expanded in a Taylor series 

with center 𝑧0 = 4 − 2𝑖. What is its radius of convergence 𝑅?

Solution (解答): 

Observe that the function is analytic at every point 
except at 𝑧 = −1 + 𝑖, which is an isolated singularity of 𝑓. 
The distance from 𝑧 = −1 + 𝑖 to 𝑧0 = 4 − 2𝑖 is

𝑧 − 𝑧0 = −1 − 4 2 + 1 − −2
2
= 34

This last number is the radius of convergence 𝑅 for the 
Taylor series centered at 4 − 2𝑖.

10.2 (Complex) Taylor Series (複数)テイラー級数
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EXAMPLE (例題) 6.2.2   Maclaurin Series

Find the Maclaurin expansion of 𝑓 𝑧 =
1

1−𝑧 2.

Solution (解答): 

We could begin by computing the coefficients using (6.2.8). However, recall from (6.1.6) in 
Lecture 9 that for |𝑧| < 1,

If we differentiate both sides with respect to 𝑧, then

or

Since we are using Theorem 6.7, the radius of convergence of the last power series is the same 
as the original series, 𝑅 = 1.

1

1 − 𝑧
= 1 + 𝑧 + 𝑧2 + 𝑧3 +⋯

𝑑

𝑑𝑧

1

1 − 𝑧
=

𝑑

𝑑𝑧
1 +

𝑑

𝑑𝑧
𝑧 +

𝑑

𝑑𝑧
𝑧2 +

𝑑

𝑑𝑧
𝑧3 +⋯

1

1 − 𝑧 2
= 0 + 1 + 2𝑧 + 3𝑧2 +⋯ = 

𝑛=1

∞

𝑛𝑧𝑛−1

(6.1.6) 

10.2 (Complex) Taylor Series (複数)テイラー級数
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EXAMPLE (例題) 6.2.3   Taylor Series

Expand 𝑓 𝑧 =
1

1−𝑧
in a Taylor series with center 𝑧0 = 2𝑖.

Solution (解答): 
We use the geometric series (6.1.6) in Lecture 9. 
By adding and subtracting 2𝑖 in the denominator of 1/(1 − 𝑧) , we can write

We now write 
1

1−
𝑧−2𝑖

1−2𝑖

as a power series by using (6.1.6) with that 𝑧 replaced by 
𝑧−2𝑖

1−2𝑖

Because the distance from the center 𝑧0 = 2𝑖 to the nearest singularity 𝑧 = 1 is 5, 

we conclude that the circle of convergence for (6.2.17) is 𝑧0 − 2𝑖 = 5. 
This can be verified by the ratio test of the Lecture 9.

1

1 − 𝑧
=

1

1 − 𝑧 + 2𝑖 − 2𝑖
=

1

1 − 2𝑖 − 𝑧 − 2𝑖
=

1

1 − 2𝑖

1

1 −
𝑧 − 2𝑖
1 − 2𝑖

1

1 − 𝑧
=

1

1 − 2𝑖
1 +

𝑧 − 2𝑖

1 − 2𝑖
+

𝑧 − 2𝑖

1 − 2𝑖

2

+
𝑧 − 2𝑖

1 − 2𝑖

3

+⋯ (6.2.17)

10.2 (Complex) Taylor Series (複数)テイラー級数
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Review for Lecture 10

• (Complex) Power Series

• Radius of Convergence

• (Complex) Taylor Series

• (Complex) Maclaurin Series

Please Check http://web-ext.u-aizu.ac.jp/~xiangli/teaching/MA06/index.html

Exercise
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