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Recall Laurent Series ( A — 7 > #R#1 )

We know that f can expanded in a series of the form given in (6.3.1) that is valid for all z near z;:

a_q

@ =4 it oy G0t (e = 20) +ay(z = 20) 4 6.3.1)

Here z = z, is an isolated singularity.

Using summation notation, we can write (6.3. 1) as the sum of two series

e e e e = e e e e = e =

£(2) =iz an(z — 29) "4 Z a, (2 —ZO)" (6.3.3)

e e — — — — ——————————— \_________________.

The two series on the right-hand side in (6.3.3) are given special names, for example,

the part with negative powers of z — Zo, that is,

e e e o e e e e

| a_
:Z a_n(z —zy) M= = (6.3.4)
! ! (z — zp)"
n=1__ ; n=1

is called the principal part of the series (6.3.1) and will converge for —| <rror equivalently

—40
for|z—zy| >1/r* =7,
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12.1 Zeros (E55) & Poles (%)

The discussion that follows we will assign different names to the isolated sinqularity z = z,

according to the number of terms in the principal part.

Classification of Isolated Singular Points

This classification depends on whether the principal part (6.3.4) of its Laurent expansion (6.3.3)

in Lecture 11 contains zero, a finite number, or an infinite number of terms.

(i) If the principal part is zero, that is, all the coefficients a_, in (6.3.4) are zero, then z = z; is
called a removable singularity.

(ii) If the principal part contains a finite number of nonzero terms, then z = z, is called a pole (f).
If, in this case, the last nonzero coefficientin (6.3.4) is a_,, n = 1, then we say that z = z, is
a pole of order n.

If z = z, is pole of order 1, then the principal part (6.3.4) contains exactly one term with
coefficient a_,. A pole of order 1 is commonly called a simple pole.

(iii) If the principal part (6.3.4) contains infinitely many nonzero terms, then z = z, is called

an essential singularity.
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12.1 Zeros (Z55) & Poles (1)

Table 6.1 summarizes the form of a Laurent series for a function f when z = z; is

one of the above types of isolated singularities. Of course, R in the table could be .

Table 6.1 Forms of Laurent series

z = zg Laurent Series for 0 < [z — zg| < R
Removable singularity | ag + aq1(z — z9) + as(z — 29)? + - - -
a_ aA_(n—1 a—
Pole of order n - — ( )_ + -+ +ag+a1(z — zp) +
(2 — z0) ("—" Z— 20
Simple pole +ao+ ai(z — z0) + az(z — :.:U)2 + ..
. — Z(
L . a_s a_1 :
Essential singularity |-+ + —— 5 +—— +tao+ ai1(z — z0) + as(z — :.:9)2 + .-
(.f..r - .-'"..rD) PR -f-r'D
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12.1 Zeros (E55) & Poles (%)

EXAMPLE (f51%8) 6.4.1 Removable singularity
Classify the isolated singularity for the given function f(z) =

sin z

Z

Solution (£#Z): oz oz z 7
San—Z—a-I-E—ﬁ—Fa—...

Following the Example 6.3.1 of Lecture 11, we expand sin z as the Maclaurin

series, and then divide by z, we have

Sin Z Z Z (6.4.3)
Z 3! 5l
that all the coefficients in the principal part of the Laurent series are zero.

sin z

Hence z = 0 is a removable singularity of the function f(z) =

Z L]
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12.1 Zeros () & Poles (&)

If a function f has a removable singularity at the point z = z,, then
we can always supply an appropriate definition for the value of
f(zy) so that f becomes analytic at z = z,.
Sin z Z Z
f =20 T (6.4.3)
For instance, since the right-hand side of (6.4.3) is 1 when we set
z = 0, it makes sense to define f(0) = 1.

Sin 7z

Hence the function f(2) = —, as given in (6.4.3), is now defined
and continuous at every complex number z.

Indeed, f Is also analytic at z = 0 because It Is represented by the

2 4

Taylor series 1 — ; + ZS' —... centered at 0 (a Maclaurin series).
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12.1 Zeros (Z55) & Poles (1)

EXAMPLE (f51%8) 6.4.2 Poles and Essential Singularity
Classify the isolated singularity for the given function

(a) f(2) = Siznzz validforo < |z| < o (b) f(2) = )2(z )valid for

0<|z—-1| <2 (c)f(z)=e§validfor0< |z| < o

Solution (f2Z): (a) Dividing the Maclaurin series for sin z by z2
principal part
/JH

sinz 1 2z z°
P TR

f(z) =
for0 < |z| < oo.
From this series we see that a_; # 0 and so z = 0 is a simple pole of the function

sin z

f(2) ==

For Example 6.3.1 of Lecture 11, we see that z = 0 is a pole of order 3 of the function f(z) =
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12.1 Zeros (F ) & Poles (1)
Solution (f2Z)(cont.):
(b) In Example 6.3.3 of Lecture 11 we showed that the Laurent expansion of

f(z)— )2(z )valid for0<|z—1| < 2was
principal part
;- - A
1 1 1 1
& === 2= 8 1% P
Sincea_, = —% + 0, we conclude that z = 1 is a pole of order 2.

(c) In Example 6.3.6 of Lecture 11 we see from (6.3.19) that the principal part of the

3
Laurent expansion of the function f(z) = ez valid for 0 < |z| < o« contains an

infinite number of nonzero terms. This shows that z = 0 is an essential singularity
of f.
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12.1 Zeros (Z55) & Poles (1)

T

Zeros (B

Recall, a number z, is zero of a function f if f(z,) = 0.

We say that an analytic function f has a zero of order n at z = z, if

Zo IS a zero of f and of its first n — 1 derivatives
A

]/C(ZO) =0,1(20) =0, f'(2z9) =0, ..., f*V(z,) = O\, but f™(z,) # 0 (6.4.4)

For example, for f(z) = (z — 5)3 we see that f(5) =0, f'(5) =0, f”(5) = 0, but
f"(5) = 6 # 0. Thus f has a zero of order (or multiplicity) 3 at z, = 5.

A zero of order 1 is called a simple zero.
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12.1 Zeros (Z55) & Poles (1)

Theorem 6.11 Zero of Order n

A function f that is analytic in some disk |z — z,| < R has

a zero of order n at z = z, if and only if f can be written

f(2) = (z—2))"$(2) (6.4.5)

where ¢ is analytic at z = z;, and ¢(z,) # 0.
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12.1 Zeros () & Poles (&)

EXAMPLE (f1%€) 6.4.3 Order of a Zero
Determine the order of the zero for the given function

f(2) = zsin(z?%)

Solution (fZ):
The analytic function f(z) = z sinz? has a zero at z = 0.
If we replace z by z# in Maclaurin Series of sin z of (6.2.13) of Lecture 10, we

obtain the Maclaurin expansion

6 10
sin(z?%) = z% — 2! + ZS! — = 2z2¢(2)
Then by factoring z2 out of the foregoing series we can rewrite f as
4 8
f(2) = zsin(z?) = 222¢(2) = (2 — 0)’p(2Iwhere §(x) =1 -+ - (646)

and ¢(0) =1 # 0. When compared to (6.4.5), the result in (6.4.6) shows that
z = 01s a zero of order 3 of f.
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12.1 Zeros (Z55) & Poles (1)
Poles (f)

We can characterize a pole of order n in a manner analogous to (6.4.5).

Theorem 6.12 Pole of Order n

A function f analytic in a punctured disk 0 < |z — z,| < R has

a pole of order n at z = z, if and only If f can be written
f(z) = Z—z" ¢(2) (6.4.7)

where ¢ Is analytic at z = z; and ¢(z,) # 0.
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12.1 Zeros (Z55) & Poles (1)

More about Zeros

A zero z = z, of an analytic function f is /isolated in the sense that there
exists some neighborhood of z, for which f(z) = 0 at every point z in that

neighborhood except at z = z,.

As a consequence, if z, is a zero of a nontrivial analytic function f, then the

function % has an isolated singularity at the point z = z,.

The following result enables us, in some circumstances, to determine the poles
of a function by inspection.

2024/1/29 MAO6 Complex Analysis (8 & EA%LER) 14



12.1 Zeros (Z55) & Poles (1)

Theorem 6.13 Pole of Order n

If the functions g and h are analytic at z = z, and h has

a zero of ordern at z = z, and g(z,) # 0, then the function

f(z) = 92) 1135 a pole of order n at z = Zy.
h(z) P

Proof
Because the function h has zero of order n, (6.4.5) gives h(z) = (z — zy)"¢(2),
where ¢ is analytic at z = z, and ¢(z,) # 0. Thus f can be written

g((zz)_/"zbf)zz (6.4.10)
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12.1 Zeros (B5) & Poles (1H)

Proof (Cont.)

Since g and ¢ are analytic at z = z, and ¢(z,) # 0, it follows that the function %

g(zp)
b (2o)

Theorem 6.12 that the function f has a pole of order n at z,. _

+ 0. We conclude from

IS analytic at z,. Moreover, g(z,) # 0 implies

When n = 11in (6.4.10), we see that a zero of order 1, or a simple zero, in

g(z)
h(z)

the denominator h of f(z) = corresponds to a simple pole of f.
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12.1 Zeros (E55) & Poles (%)

EXAMPLE (f5l%€) 6.4.4 Order of Poles

Determine the order of the poles for the given function.

@) f(2) = s () f(2) = ooms

Solution (F2%):
(a) Inspection of the rational function

B 2Z+5
&) = e r9e =27

shows that the denominator has zeros of order 1 at z = 1 and z = —5, and a zero of order 4 at

z = 2. Since the numerator is not zero at any of these points, it follows from Theorem 6.13

and (6.4.10) that f has simple polesat z =1 and z = —5, and a pole of order 4 at z = 2.

(b) In Example 6.4.3 we saw that z = 0 is a zero of order 3 of z sin z%. From Theorem 6.13 and

1
Z sin z?2

(6.4.10) we conclude that the reciprocal function f(z) = has a pole of order 3 at z = 0.
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12.2 Residues (B %) &

Residue Theorem (B #E18)

Part 1
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12.2 Residues (B#1) & Residue Theorem (B EE) Part 1

Residues (B#)
_ a-2 ! 2
f(z) = (Z ~ )2 +a_q Z—2) +ag+a.(z—2zy) +ay,(z —z5)* +

The coefficient a_; of In the Laurent series given above is called the residue

ZZO

of the function f at the isolated singularity z,. We shall use the notation

d_1 = ReS(f(Z),Zo)

to denote the residue of f at z,.
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12.2 Residues () & Residue Theorem (B EIE) Part 1

EXAMPLE (f51&8) 6.5.1 Residues
Find the residues for (a) The part (b) of Example 6.4.2;
(b) The Example 6.3.6 of Lecture 11.

Solution (fZ):
(a) In part (b) of Example 6.4.2 in this Lecture, we saw that z = 1 is a pole of order 2 of the

function f(2) = From the Laurent series obtained in that example valid for the

(z—1)2(z-3)’

deleted neighborhood of z = 1 defined by 0 < |z — 1| < 2,

a_1
1 [ 2 1 \
F@) = Rt 2 (1)~ -
(z—1)% (z—1) 8 16
we see that the coefficient ofﬁ ISa_; = Res(f(2),1) = —i.
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12.2 Residues (88#1) & Residue Theorem (EB#(EE) Part 1

Solution (f2Z)(cont.):

(b) In Example 6.3.6 of Lecture 11 we saw that z = 0 is an essential singularity

3
of f(z) = ez. Inspection of the Laurent series obtained in that example,

a1
—
3 3 3% 33
ez =1+ 4+ + + ...

(z—0) 2!z% 3!z3

0 < |z| < o0, shows that the coefficient ofﬁ ISa_,; = Res(f(2),0) = 3.
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12.2 Residues () & Residue Theorem (B EIE) Part 1

We will see why the coefficient a_; is so important later on in this Lecture.

In the meantime we are going to examine ways of obtaining this complex

number when z, is a pole of a function f without the necessity of expanding f

In a Laurent series at z,.

We begin with the residue at a simple pole.
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12.2 Residues () & Residue Theorem (B EIE) Part 1

Theorem 6.14 Residue at a Simple Pole

If f has a simple pole at z = z,, then

Res(f(z),zy) = lim (z — zy) f(2) (6.5.1)
Z—Z)
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12.2 Residues () & Residue Theorem (B EIE) Part 1

Theorem 6.15 Residue at a Pole of Order n

If f has a pole of order n at z = z,, then
n-—1

1
Res(f(2),2) = Gy fim g (2 = 20)*f (@) (65
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12.2 Residues (B#{) & Residue Theorem (B#{E?

EXAMPLE (f51%E) 6.5.2 Residue at a Pole
The function f(z) = PRI To— has a simple pole at z = 3 and a pole
of order 2 at z = 1. Use Theorems 6.14 and 6.15 to find the residues.

LLIT

2) Part 1

Solution (F2%):

Since z = 3 Is a simple pole, we use (6.5.1):
1

1 1
Res(f(z),3) = Li_rg(z —3)f(2) = gi_r)r%(z —3) (z—12(z—3) él_r)r% z—1)2 4

Now at the pole of order 2, the result in (6.5.2) gives
1 d d 1 —1 1
— —|j —_— — 2 — | — b = — —
Res(f(2), 1) = qylim = (z = D7 (2) = lim = - = Im =32 = — 3

zZ—1
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Review for Lecture 12

« Classification of Isolated Singular Points
- Zeros (BER
« Poles (#dx)

« Residues (BB

Exercise

Please Check http://web-ext.u-aizu.ac.jp/~xiangli/teaching/MAQO6/index.htm|
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