
2024/1/29 1MA06 Complex Analysis (複素関数論)

Lecture  12

12.1 Zeros (零点) & Poles (極)

12.2 Residues (留数) & Residue Theorem (留数定理) Part 1
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12.1 Zeros (零点) & Poles (極)
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We know that 𝑓 can expanded in a series of the form given in (6.3.1) that is valid for all 𝑧 near 𝑧0:

Here 𝑧 = 𝑧0 is an isolated singularity.

Using summation notation, we can write (6.3.1) as the sum of two series

The two series on the right-hand side in (6.3.3) are given special names, for example, 

is called the principal part of the series (6.3.1) and will converge for 
1

𝑧−𝑧0
< 𝑟∗ or equivalently 

for |𝑧 − 𝑧0| > 1/𝑟∗ = 𝑟.

𝑓 𝑧 = 

𝑛=1

∞

𝑎−𝑛 𝑧 − 𝑧0
−𝑛 +

𝑛=0

∞

𝑎𝑛 𝑧 − 𝑧0
𝑛



𝑛=1

∞

𝑎−𝑛 𝑧 − 𝑧0
−𝑛 = 

𝑛=1

∞
𝑎−𝑛

𝑧 − 𝑧0
𝑛

(6.3.3)

(6.3.4)

Recall Laurent Series （ローラン級数）

the part with negative powers of 𝑧 − 𝑧0, that is,

𝑓 𝑧 = ⋯+
𝑎−2

𝑧 − 𝑧0
2
+

𝑎−1
𝑧 − 𝑧0

+ 𝑎0 + 𝑎1 𝑧 − 𝑧0 + 𝑎2 𝑧 − 𝑧0
2 +⋯ (6.3.1)
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12.1  Zeros (零点) & Poles (極)

Classification of Isolated Singular Points

The discussion that follows we will assign different names to the isolated singularity 𝑧 = 𝑧0

according to the number of terms in the principal part.

This classification depends on whether the principal part (6.3.4) of its Laurent expansion (6.3.3) 

in Lecture 11 contains zero, a finite number, or an infinite number of terms.

(i) If the principal part is zero, that is, all the coefficients 𝑎−𝑛 in (6.3.4) are zero, then 𝑧 = 𝑧0 is 
called a removable singularity.

(ii) If the principal part contains a finite number of nonzero terms, then 𝑧 = 𝑧0 is called a pole (極). 
If, in this case, the last nonzero coefficient in (6.3.4) is 𝑎−𝑛, 𝑛 ≥ 1, then we say that 𝑧 = 𝑧0 is 
a pole of order 𝑛. 
If 𝑧 = 𝑧0 is pole of order 1, then the principal part (6.3.4) contains exactly one term with 
coefficient 𝑎−1. A pole of order 1 is commonly called a simple pole.

(iii) If the principal part (6.3.4) contains infinitely many nonzero terms, then 𝑧 = 𝑧0 is called 
an essential singularity.



2024/1/29 MA06 Complex Analysis (複素関数論) 5

Table 6.1 summarizes the form of a Laurent series for a function 𝑓 when 𝑧 = 𝑧0 is 

one of the above types of isolated singularities. Of course, 𝑅 in the table could be ∞.

Table 6.1 Forms of Laurent series

12.1  Zeros (零点) & Poles (極)
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EXAMPLE (例題) 6.4.1   Removable singularity

Classify the isolated singularity for the given function 𝑓(𝑧) =
sin 𝑧

𝑧

Solution (解答): 

Following the Example 6.3.1 of Lecture 11, we expand sin 𝑧 as the Maclaurin 

series, and then divide by 𝑧, we have

𝑓(𝑧) =
sin 𝑧

𝑧
= 1 −

𝑧2

3!
+
𝑧4

5!
−⋯

that all the coefficients in the principal part of the Laurent series are zero. 

Hence 𝑧 = 0 is a removable singularity of the function 𝑓(𝑧) =
sin 𝑧

𝑧
.

(6.4.3)

12.1  Zeros (零点) & Poles (極)

sin 𝑧 = 𝑧 −
𝑧3

3!
+
𝑧5

5!
−
𝑧7

7!
+
𝑧9

9!
− ⋯
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If a function 𝑓 has a removable singularity at the point 𝑧 = 𝑧0, then 
we can always supply an appropriate definition for the value of 
𝑓(𝑧0) so that 𝑓 becomes analytic at 𝑧 = 𝑧0. 

12.1  Zeros (零点) & Poles (極)

For instance, since the right-hand side of (6.4.3) is 1 when we set 
𝑧 = 0, it makes sense to define 𝑓(0) = 1. 

Hence the function 𝑓(𝑧) =
sin 𝑧

𝑧
, as given in (6.4.3), is now defined 

and continuous at every complex number 𝑧. 

Indeed, 𝑓 is also analytic at 𝑧 = 0 because it is represented by the 

Taylor series 1 −
𝑧2

3!
+

𝑧4

5!
−··· centered at 0 (a Maclaurin series).

𝑓(𝑧) =
sin 𝑧

𝑧
= 1 −

𝑧2

3!
+
𝑧4

5!
−⋯ (6.4.3)
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EXAMPLE (例題) 6.4.2   Poles and Essential Singularity

Classify the isolated singularity for the given function

(a) 𝑓 𝑧 =
sin 𝑧

𝑧2
valid for 0 < |𝑧| < ∞ (b) 𝑓(𝑧) =

1

𝑧−1 2 𝑧−3
valid for 

0 < |𝑧 − 1| < 2 (c) 𝑓(𝑧) = 𝑒
3

𝑧 valid for 0 < |𝑧| < ∞

Solution (解答): (a) Dividing the Maclaurin series for sin 𝑧 by 𝑧2

for 0 < |𝑧| < ∞. 
From this series we see that 𝑎−1 ≠ 0 and so 𝑧 = 0 is a simple pole of the function 

𝑓(𝑧) =
sin 𝑧

𝑧2
. 

𝑓(𝑧) =
sin 𝑧

𝑧2
=
1

𝑧
−
𝑧

3!
+
𝑧3

5!
− ⋯

12.1  Zeros (零点) & Poles (極)

principal part

For Example 6.3.1 of Lecture 11, we see that 𝑧 = 0 is a pole of order 3 of the function 𝑓(𝑧) =
sin 𝑧

𝑧4
.
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(b) In Example 6.3.3 of Lecture 11 we showed that the Laurent expansion of 

𝑓(𝑧) =
1

𝑧−1 2 𝑧−3
valid for 0 < |𝑧 − 1| < 2 was

Since 𝑎−2 = −
1

2
≠ 0, we conclude that 𝑧 = 1 is a pole of order 2.

𝑓(𝑧) = −
1

2 𝑧 − 1 2
−

1

4 𝑧 − 1
−
1

8
−

1

16
𝑧 − 1 −⋯

12.1  Zeros (零点) & Poles (極)

principal part

Solution (解答)(cont.): 

(c) In Example 6.3.6 of Lecture 11 we see from (6.3.19) that the principal part of the 

Laurent expansion of the function 𝑓(𝑧) = 𝑒
3

𝑧 valid for 0 < |𝑧| < ∞ contains an 

infinite number of nonzero terms. This shows that 𝑧 = 0 is an essential singularity

of 𝑓.
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Zeros (零点) 

12.1  Zeros (零点) & Poles (極)

Recall, a number 𝑧0 is zero of a function 𝑓 if 𝑓(𝑧0) = 0. 

We say that an analytic function 𝑓 has a zero of order 𝑛 at 𝑧 = 𝑧0 if

For example, for 𝑓(𝑧) = 𝑧 − 5 3 we see that 𝑓(5) = 0, 𝑓’(5) = 0, 𝑓’’(5) = 0, but 

𝑓’’’ 5 = 6 ≠ 0. Thus 𝑓 has a zero of order (or multiplicity) 3 at 𝑧0 = 5. 

𝑓(𝑧0) = 0, 𝑓’(𝑧0) = 0, 𝑓’’ 𝑧0 = 0, …, 𝑓(𝑛−1) 𝑧0 = 0, but 𝑓(𝑛) 𝑧0 ≠ 0 (6.4.4)

𝑧0 is a zero of 𝑓 and of its first 𝑛 − 1 derivatives

A zero of order 1 is called a simple zero.
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12.1  Zeros (零点) & Poles (極)

Theorem 6.11  Zero of Order 𝒏

A function 𝑓 that is analytic in some disk |𝑧 − 𝑧0| < 𝑅 has 

a zero of order 𝑛 at 𝑧 = 𝑧0 if and only if 𝑓 can be written

where 𝜙 is analytic at 𝑧 = 𝑧0 and 𝜙 𝑧0 ≠ 0.

𝑓 𝑧 = 𝑧 − 𝑧0
𝑛𝜙 𝑧 (6.4.5)
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12.1  Zeros (零点) & Poles (極)

EXAMPLE (例題) 6.4.3   Order of  a Zero

Determine the order of the zero for the given function
𝑓(𝑧) = 𝑧 sin(𝑧2)

Solution (解答): 
The analytic function 𝑓(𝑧) = 𝑧 sin 𝑧2 has a zero at 𝑧 = 0. 
If we replace 𝑧 by 𝑧2 in Maclaurin Series of sin 𝑧 of (6.2.13) of Lecture 10, we 
obtain the Maclaurin expansion

Then by factoring 𝑧2 out of the foregoing series we can rewrite 𝑓 as

and 𝜙(0) = 1 ≠ 0. When compared to (6.4.5), the result in (6.4.6) shows that 
𝑧 = 0 is a zero of order 3 of 𝑓.

sin(𝑧2) = 𝑧2 −
𝑧6

3!
+
𝑧10

5!
−⋯ = 𝑧2𝜙 𝑧

𝑓 𝑧 = 𝑧 sin(𝑧2) = 𝑧𝑧2𝜙 𝑧 = (𝑧 − 0)3𝜙 𝑧 𝜙 𝑧 = 1 −
𝑧4

3!
+
𝑧8

5!
−⋯where (6.4.6)
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12.1  Zeros (零点) & Poles (極)

Poles (極)

We can characterize a pole of order 𝑛 in a manner analogous to (6.4.5).

Theorem 6.12  Pole of Order 𝒏

A function 𝑓 analytic in a punctured disk 0 < |𝑧 − 𝑧0| < 𝑅 has 

a pole of order 𝑛 at 𝑧 = 𝑧0 if and only if 𝑓 can be written

where 𝜙 is analytic at 𝑧 = 𝑧0 and 𝜙 𝑧0 ≠ 0.

𝑓 𝑧 =
1

𝑧 − 𝑧0
𝑛
𝜙 𝑧 (6.4.7)



2024/1/29 MA06 Complex Analysis (複素関数論) 14

12.1  Zeros (零点) & Poles (極)

More about Zeros

A zero 𝑧 = 𝑧0 of an analytic function 𝑓 is isolated in the sense that there

exists some neighborhood of 𝑧0 for which 𝑓(𝑧) = 0 at every point 𝑧 in that

neighborhood except at 𝑧 = 𝑧0.

The following result enables us, in some circumstances, to determine the poles 

of a function by inspection.

As a consequence, if 𝑧0 is a zero of a nontrivial analytic function 𝑓, then the

function
1

𝑓 𝑧
has an isolated singularity at the point 𝑧 = 𝑧0.



2024/1/29 MA06 Complex Analysis (複素関数論) 15

12.1  Zeros (零点) & Poles (極)

Theorem 6.13  Pole of Order 𝒏

If the functions 𝑔 and ℎ are analytic at 𝑧 = 𝑧0 and ℎ has 

a zero of order 𝑛 at 𝑧 = 𝑧0 and 𝑔(𝑧0) ≠ 0, then the function 

𝑓(𝑧) =
𝑔 𝑧

ℎ 𝑧
has a pole of order 𝑛 at 𝑧 = 𝑧0.

Proof

Because the function ℎ has zero of order 𝑛, (6.4.5) gives ℎ(𝑧) = 𝑧 − 𝑧0
𝑛𝜙(𝑧) , 

where 𝜙 is analytic at 𝑧 = 𝑧0 and 𝜙 𝑧0 ≠ 0. Thus 𝑓 can be written

𝑓(𝑧) =
𝑔(𝑧)/𝜙(𝑧)

𝑧 − 𝑧0
𝑛 (6.4.10)



2024/1/29 MA06 Complex Analysis (複素関数論) 16

12.1  Zeros (零点) & Poles (極)

When 𝑛 = 1 in (6.4.10), we see that a zero of order 1, or a simple zero, in 

the denominator ℎ of 𝑓(𝑧) =
𝑔 𝑧

ℎ 𝑧
corresponds to a simple pole of 𝑓.

Since 𝑔 and 𝜙 are analytic at 𝑧 = 𝑧0 and 𝜙 𝑧0 ≠ 0, it follows that the function 
𝑔

𝜙

is analytic at 𝑧0. Moreover, 𝑔 𝑧0 ≠ 0 implies 
𝑔 𝑧0

𝜙 𝑧0
≠ 0. We conclude from 

Theorem 6.12 that the function 𝑓 has a pole of order 𝑛 at 𝑧0.                    ∎

Proof (Cont.)
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12.1  Zeros (零点) & Poles (極)

EXAMPLE (例題) 6.4.4   Order of  Poles

Determine the order of the poles for the given function.

(a) 𝑓 𝑧 =
2𝑧+5

𝑧−1 𝑧+5 𝑧−2 4 (b) 𝑓(𝑧) =
1

𝑧 sin 𝑧2

Solution (解答): 

(a) Inspection of the rational function

shows that the denominator has zeros of order 1 at 𝑧 = 1 and 𝑧 = −5, and a zero of order 4 at 

𝑧 = 2. Since the numerator is not zero at any of these points, it follows from Theorem 6.13 

and (6.4.10) that 𝑓 has simple poles at 𝑧 = 1 and 𝑧 = −5, and a pole of order 4 at 𝑧 = 2.

(b) In Example 6.4.3 we saw that 𝑧 = 0 is a zero of order 3 of 𝑧 sin 𝑧2. From Theorem 6.13 and 

(6.4.10) we conclude that the reciprocal function 𝑓(𝑧) =
1

𝑧 sin 𝑧2
has a pole of order 3 at 𝑧 = 0.

𝑓 𝑧 =
2𝑧 + 5

𝑧 − 1 𝑧 + 5 𝑧 − 2 4
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12.2 Residues (留数) & 

Residue Theorem (留数定理) 

Part 1
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12.2  Residues (留数) & Residue Theorem (留数定理) Part 1

Residues (留数)

The coefficient 𝑎−1 of 
1

𝑧−𝑧0
in the Laurent series given above is called the residue

of the function 𝑓 at the isolated singularity 𝑧0. We shall use the notation

to denote the residue of 𝑓 at 𝑧0. 

𝑎−1 = Res 𝑓 𝑧 , 𝑧0

𝑓 𝑧 = ⋯+
𝑎−2

𝑧 − 𝑧0
2
+ 𝑎−1

1

𝑧 − 𝑧0
+ 𝑎0 + 𝑎1 𝑧 − 𝑧0 + 𝑎2 𝑧 − 𝑧0

2 +⋯
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EXAMPLE (例題) 6.5.1   Residues

Find the residues for (a) The part (b) of Example 6.4.2; 
(b) The Example 6.3.6 of Lecture 11. 

Solution (解答): 

(a) In part (b) of Example 6.4.2 in this Lecture, we saw that 𝑧 = 1 is a pole of order 2 of the 

function 𝑓(𝑧) =
1

𝑧−1 2(𝑧−3)
. From the Laurent series obtained in that example valid for the 

deleted neighborhood of 𝑧 = 1 defined by 0 < |𝑧 − 1| < 2,

we see that the coefficient of 
1

𝑧−1
is 𝑎−1 = Res 𝑓 𝑧 , 1 = −

1

4
.

𝑓 𝑧 =
−
1
2

𝑧 − 1 2
+

−
1
4

𝑧 − 1
−
1

8
−

1

16
𝑧 − 1 −⋯

𝑎−1

12.2  Residues (留数) & Residue Theorem (留数定理) Part 1
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(b) In Example 6.3.6 of Lecture 11 we saw that 𝑧 = 0 is an essential singularity 

of 𝑓(𝑧) = 𝑒
3

𝑧. Inspection of the Laurent series obtained in that example,

0 < |𝑧| < ∞, shows that the coefficient of 
1

𝑧
is 𝑎−1 = Res(𝑓(𝑧), 0) = 3.

𝑒
3
𝑧 = 1 +

3

(𝑧 − 0)
+

32

2! 𝑧2
+

33

3! 𝑧3
+⋯

𝑎−1

12.2  Residues (留数) & Residue Theorem (留数定理) Part 1

Solution (解答)(cont.): 
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We will see why the coefficient 𝑎−1 is so important later on in this Lecture. 

In the meantime we are going to examine ways of obtaining this complex 

number when 𝑧0 is a pole of a function 𝑓 without the necessity of expanding 𝑓

in a Laurent series at 𝑧0. 

We begin with the residue at a simple pole.

12.2  Residues (留数) & Residue Theorem (留数定理) Part 1
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Theorem 6.14  Residue at a Simple Pole

If 𝑓 has a simple pole at 𝑧 = 𝑧0, then

Res 𝑓 𝑧 , 𝑧0 = lim
𝑧→𝑧0

𝑧 − 𝑧0 𝑓(𝑧) (6.5.1)

12.2  Residues (留数) & Residue Theorem (留数定理) Part 1
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Theorem 6.15  Residue at a Pole of Order 𝒏

If 𝑓 has a pole of order 𝑛 at 𝑧 = 𝑧0, then

Res 𝑓 𝑧 , 𝑧0 =
1

𝑛 − 1 !
lim
𝑧→𝑧0

𝑑𝑛−1

𝑑𝑧𝑛−1
𝑧 − 𝑧0

𝑛𝑓(𝑧) (6.5.2)

12.2  Residues (留数) & Residue Theorem (留数定理) Part 1
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EXAMPLE (例題) 6.5.2   Residue at a Pole

The function 𝑓(𝑧) =
1

𝑧−1 2 𝑧−3
has a simple pole at 𝑧 = 3 and a pole 

of order 2 at 𝑧 = 1. Use Theorems 6.14 and 6.15 to find the residues.

Solution (解答): 

Since 𝑧 = 3 is a simple pole, we use (6.5.1):

Res 𝑓 𝑧 , 1 =
1

1!
lim
𝑧→1

𝑑

𝑑𝑧
𝑧 − 1 2𝑓(𝑧) = lim

𝑧→1

𝑑

𝑑𝑧

1

𝑧 − 3
= lim

𝑧→1

−1

𝑧 − 3 2
= −

1

4

Res 𝑓 𝑧 , 3 = lim
𝑧→3

𝑧 − 3 𝑓(𝑧) = lim
𝑧→3

𝑧 − 3
1

𝑧 − 1 2 𝑧 − 3
= lim

𝑧→3

1

𝑧 − 1 2
=
1

4

Now at the pole of order 2, the result in (6.5.2) gives

12.2  Residues (留数) & Residue Theorem (留数定理) Part 1
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Review for Lecture 12

• Classification of Isolated Singular Points

• Zeros (零点) 

• Poles (極)

• Residues (留数) 

Please Check http://web-ext.u-aizu.ac.jp/~xiangli/teaching/MA06/index.html
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