

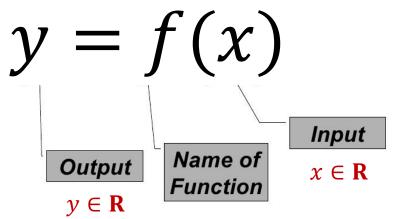
2.1 Complex Functions (複素関数)

2.2 Complex Function as Mappings (写像、変換)

2.3 Limits (極限) and Continuity (連続性)

2.1 Complex Functions

2.1 Complex Functions (複素関数)



OutputName of
FunctionInput
 $z \in C$ w \in CSecond statecomplex-valued function of a
complex variable (複素変数)

w = f(z)

real-valued functions (実数値関数) of a real variable (実変数)

Definition (定義) 2.1 Complex Function (複素関数)

A complex function (複素関数) is a function f whose domain (定義域) and range (值域) are subsets of the set C of complex numbers.

We denote the domain and range of a function f by Dom(f) and Range(f), respectively.

2.1 Complex Functions (複素関数)

EXAMPLE (例題) 2.1.1 Complex Function (複素関数) (a) Evaluate $f(z) = z^2 - (2 + i)z$ when (1) z = i and (2) z = 1 + i(b) Evaluate $q(z) = z + 2\operatorname{Re}(z)$ when (1) z = i and (2) z = 2 - 3iSolution (解答): (a) (1) $f(i) = i^2 - (2+i)(i) = -1 - 2i + 1 = -2i$. (2) $f(1+i) = (1+i)^2 - (2+i)(1+i)$ = (1 + 2i - 1) - (2 + 2i + i - 1) = -1 - i. (b) (1) $g(i) = i + 2\text{Re}(i) = i + 2 \cdot (0) = i$ (2) $q(2-3i) = (2-3i) + 2\text{Re}(2-3i) = 2 - 3i + 2 \cdot (2) = 6 - 3i$ Notice: When the domain (定義域) of a complex function (複素関数) is not explicitly stated, we

assume the domain (定義域) to be the set of all complex numbers z for which f(z) is defined.

2.1 Complex Functions (複素関数)

Real and Imaginary Parts of a Complex Function

If w = f(z) is a complex function (複素関数), then the **image (写像)** of a complex number z = x + iy under f is a complex number w = u + iv.

For example, suppose we have the complex function $w = f(z) = z^2$, then

$$w = z^{2} = (x + iy)^{2} = (x^{2} - y^{2}) + 2xyi$$

$$= u + iv$$
where $u(x, y) = x^{2} - y^{2}$
 $v(x, y) = 2xy$
(2.1.1)

It shows that, if w = u + iv = f(z) = f(x + iy) is a complex function, then both u and v are real functions of the two real variables x and y, i.e.

$$w = f(z) = u(x, y) + iv(x, y)$$
 (2.1.2)

The functions u(x, y) and v(x, y) in (2.1.2) are called the real and imaginary parts of f, respectively.

EXAMPLE (例題) 2.1.2

If z = x + iy, find the real and imaginary parts (実部と虚部) of the functions (a) $f(z) = z^2 - (2 + i)z$ (b) g(z) = z + 2Re(z)

Solution (解答): (a) $f(z) = z^2 - (2+i)z = (x+iy)^2 - (2+i)(x+iy)$ $= x^{2} + 2xyi - y^{2} - (2x + 2yi + ix - y)$ $= x^{2} - 2x + y - y^{2} + (2xy - x - 2y)i$ Therefore $u(x, y) = x^2 - 2x + y - y^2$ v(x, y) = 2xy - x - 2y(b) q(z) = z + 2Re(z) = x + iy + 2Re(x + iy) = x + iy + 2x = 3x + iyTherefore u(x, y) = 3x v(x, y) = y

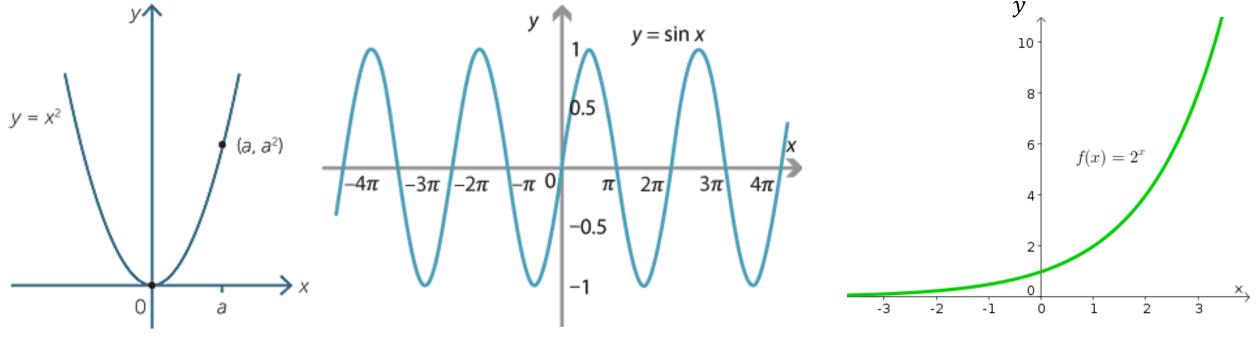
2.2 Complex Function as Mappings

(写像、変換)

2.2 Complex Function as Mappings (写像、変換)

We can plot the graph (グラフ) of real-valued function!

Recall that in *Calculus I*, if y = f(x) is a real-valued function (実数値 関数) of a real variable x, then the graph (グラフ) of f is defined to be the set of all points (x, f(x)) (i.e. (x, y)) in the two-dimensional Cartesian plane (i.e. 2次元空間) (デカルト座標系、直交座標系).



Can we plot a graph of complex function?

However, if w = f(z) is a complex function, then both z and w lie in a complex plane (複素平面).

It follows that the set (集合) of all points (z, f(z)) (i.e. (z, w)) lies in **four-dimensional space (4**次元空間) (two dimensions from the input *z* and two dimensions from the output *w*).

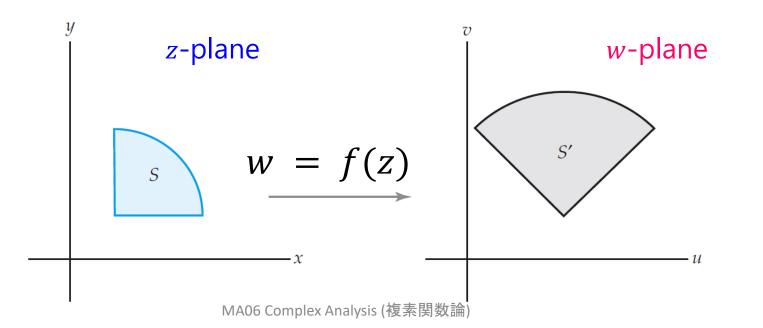
Therefore,

We can not directly draw the graph of a complex function.

Instead (代わりに), we use the idea of mapping (写像、変換).

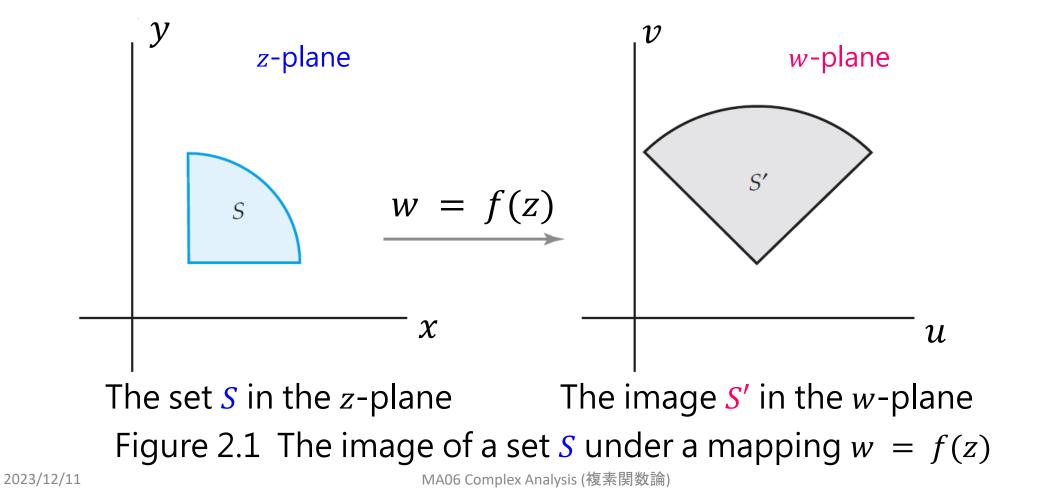
Complex Function as Mappings (写像、変換)

- Define two complex planes.
- The point z in the z-plane is associated with the unique point w = f(z) in the w-plane.
- Every complex function w = f(z) describes a correspondence (i.e. mapping) between points in two complex planes.



Complex Function as Mappings (写像、変換)

If w = f(z) is a complex mapping and if *S* is a set of points in the *z*-plane, we call **the set of images of the points in** *S* **under** *f* the **image** of *S* **under** *f*, and we denote this set by the symbol *S'*.

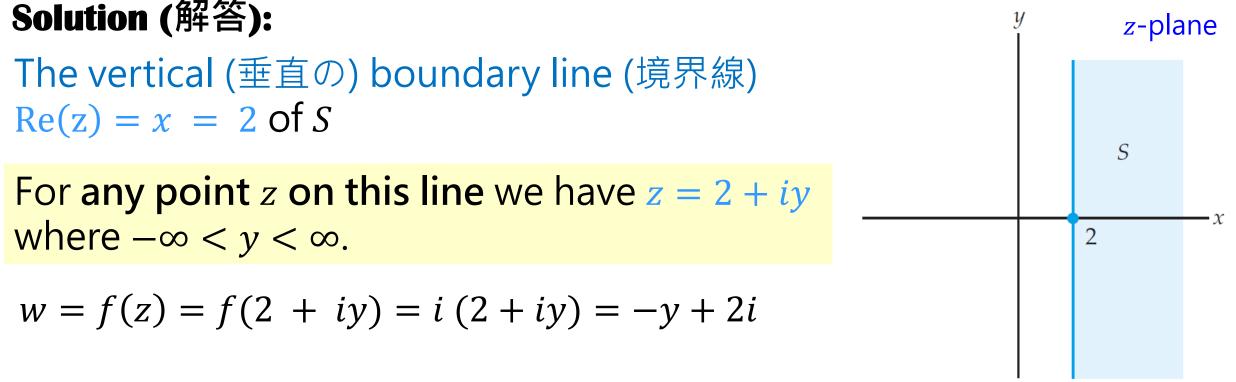


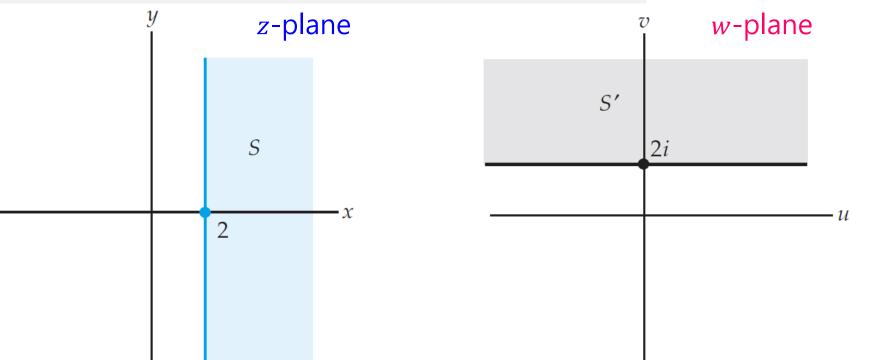
2.2 Complex Function as Mappings (写像、変換)

EXAMPLE (例題) 2.2.1 Image of a Half-Plane under w = iz

Find the image of the half-plane $Re(z) \ge 2$ under the complex

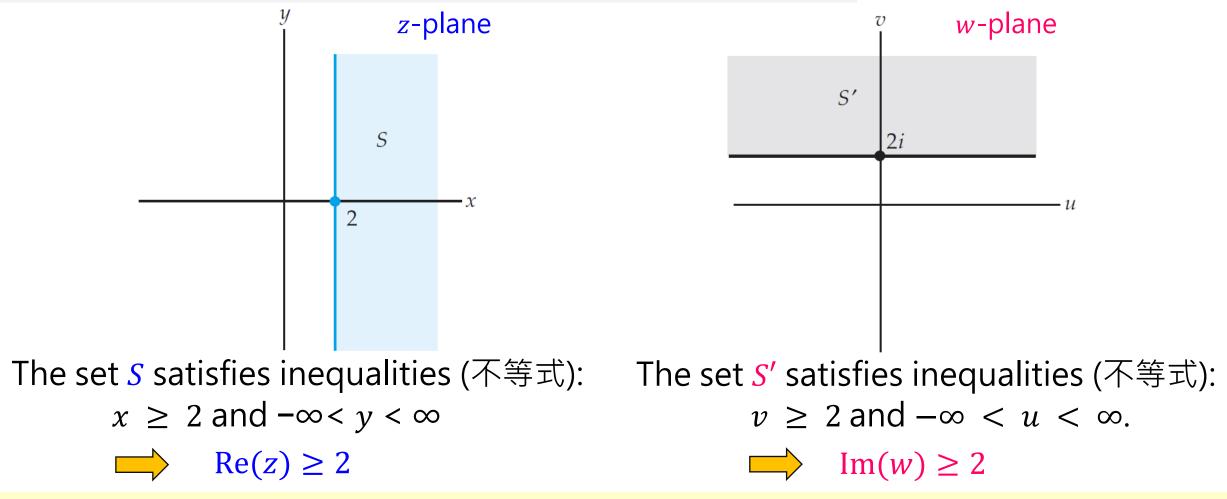
mapping w = f(z) = iz and represent the mapping graphically.





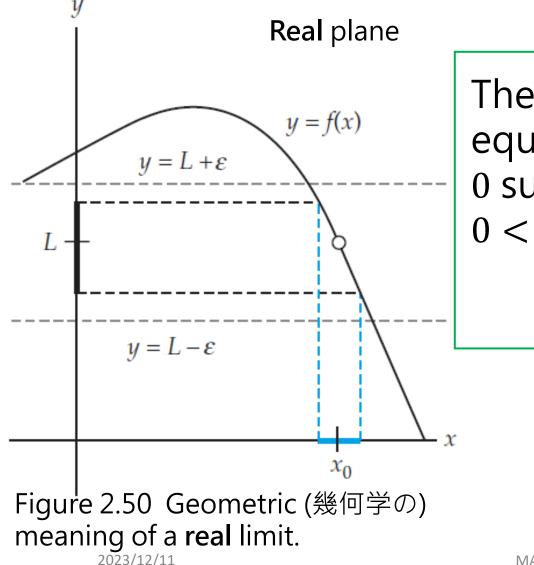
Because the set of points w = -y + 2i, $-\infty < y < \infty$, is the line v = 2 in the *w*-plane,

We conclude that the vertical line (垂直線) x = 2 in the *z*-plane is mapped onto the horizontal line (水平線) v = 2 in the *w*-plane by the mapping w = f(z) = iz.



In summary, the half-plane $\text{Re}(z) \ge 2$ shown in blue color of left figure is mapped onto the half-plane $\text{Im}(w) \ge 2$ shown in gray color (灰色) in right figure by the complex mapping w = f(z) = iz.

Limit of Real Function

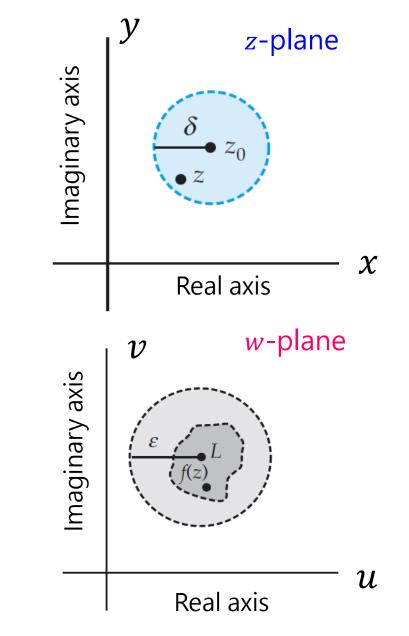


The limit of f as $x \in \mathbf{R}$ tends x_0 exists and is equal to L if for every $\varepsilon > 0$ there exists a $\delta >$ 0 such that $|f(x) - L| < \varepsilon$ whenever $0 < |x - x_0| < \delta$. $\lim_{x \to x_0} f(x) = L$

Limit of Complex Function (複素関数の極限)

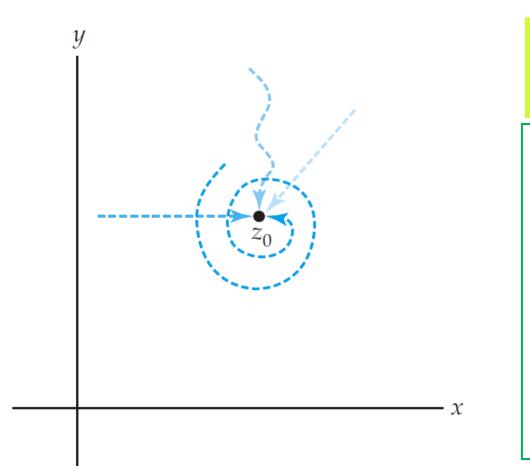
Definition (定義) 2.8 Limit of a Complex Function (複素関数の極限)

Suppose that a complex function f is defined in a deleted neighborhood of z_0 and suppose that L is a complex number. The limit of f as $z \in C$ tends to z_0 exists and is equal to L, written as $\lim_{z \to z_0} f(z) = L$, if for every $\varepsilon > 0$ there exists a $\delta > 0$ such that $|f(z) - L| < \varepsilon$ whenever $0 < |z - z_0| < \delta$.



in *w*-plane

in *z*-plane



Criterion (基準) for the Nonexistence (存在しない) of a Limit

If f approaches two complex numbers $L_1 \neq L_2$ for two different curves or paths through z_0 ,

then $\lim_{z\to z_0} f(z) = L$ does not exist.

Figure 2.53 Different ways to approach z_0 in a limit.

EXAMPLE (例題) 2.6.1

Show that $\lim_{z\to 0} \frac{z}{\overline{z}}$ does not exist.

Solution (解答):

First, we let z approach 0 along the real axis, i.e. we consider complex numbers of the form z=x+0i where the real number x is approaching 0

$$\lim_{z \to 0} \frac{z}{\bar{z}} = \lim_{x \to 0} \frac{x + 0i}{x - 0i} = \lim_{x \to 0} 1 = 1$$

Second, we let z approach 0 along the imaginary axis, then z = 0 + iy where the real number y is approaching 0

$$\lim_{z \to 0} \frac{z}{\bar{z}} = \lim_{y \to 0} \frac{0 + iy}{0 - iy} = \lim_{y \to 0} (-1) = -1$$

The two limits are not same, then conclude that $\lim_{z\to 0} \frac{z}{\overline{z}}$ does not exist.

Theorem 2.1 Real and Imaginary Parts (実部と虚部) of a Limit

Suppose that
$$f(z) = u(x, y) + iv(x, y)$$
 and $z_0 = x_0 + iy_0$, and

$$L = u_0 + iv_0. \text{ Then } \lim_{z \to z_0} f(z) = L \text{ if and only if}$$
$$\lim_{(x,y) \to (x_0,y_0)} u(x,y) = u_0 \text{ and } \lim_{(x,y) \to (x_0,y_0)} v(x,y) = v_0$$

Theorem 2.1 allows us to compute many complex limits by simply computing a pair of real limits.

EXAMPLE (例題) 2.6.3

Use Theorem 2.1 to compute $\lim_{z \to 1+i} (z^2 + i)$, where z = x + iy.

Solution (解答):

Since
$$f(z) = z^2 + i = x^2 - y^2 + (2xy + 1)i$$
,

Apply Theorem 2.1 with $u(x, y) = x^2 - y^2$, v(x, y) = 2xy + 1, and $z_0 = 1 + i \implies x_0 = 1, y_0 = 1$ $u_0 = \lim_{(x,y) \to (x_0,y_0)} u(x,y) = \lim_{(x,y) \to (1,1)} (x^2 - y^2) = \lim_{(x,y) \to (1,1)} (1^2 - 1^2) = 0$ $v_0 = \lim_{(x,y) \to (x_0,y_0)} v(x,y) = \lim_{(x,y) \to (1,1)} (2xy + 1) = \lim_{(x,y) \to (1,1)} (2 \cdot 1 \cdot 1 + 1) = 3$

so $L = u_0 + iv_0 = 0 + i(3) = 3i$. Therefore, $\lim_{z \to 1+i} (z^2 + i) = 3i$

Theorem 2.2 Properties (性質) of Complex Limits

Suppose that *f* and *g* are complex functions.

If
$$\lim_{z \to z_0} f(z) = L$$
 and $\lim_{z \to z_0} g(z) = M$, then

(i)
$$\lim_{z \to z_0} cf(z) = cL$$
, where c is a complex constant,

(ii)
$$\lim_{z \to z_0} (f(z) \pm g(z)) = L \pm M$$
,

(iii)
$$\lim_{z \to z_0} (f(z) \cdot g(z)) = L \cdot M$$
, and

(iv)
$$\lim_{z\to z_0} \frac{f(z)}{g(z)} = \frac{L}{M'}$$
 provided $M \neq 0$.

We establish two basic complex limits:

- The complex constant (定数) function f(z) = c, where c is a complex constant (定数) $\lim_{z \to z_0} c = c \qquad (2.6.15)$
- The complex identity (恒等) function f(z) = z

$$\lim_{z \to z_0} z = z_0 \tag{2.6.16}$$

EXAMPLE (例題) 2.6.4

Use Theorem 2.2 and the basic limits (2.6.15) and (2.6.16) to $(3+i)z^4-z^2+2z$

compute the limits $\lim_{z \to i} \frac{(3+i)z^4 - z^2 + 2z}{z+1}$

Solution (解答):

By Theorem 2.2(iii) and (2.6.16),

$$\lim_{z \to i} z^2 = \lim_{z \to i} z \cdot z = \left(\lim_{z \to i} z\right) \cdot \left(\lim_{z \to i} z\right) = i \cdot i = -1$$
Similarly,
$$\lim_{z \to i} z^4 = \left(\lim_{z \to i} z\right) \cdot \left(\lim_{z \to i} z\right) \cdot \left(\lim_{z \to i} z\right) \cdot \left(\lim_{z \to i} z\right) = i^4 = i^2 \cdot i^2 = 1$$

2.3 Limits (極限) and Continuity (連続性) Solution (解答) (cont.): Using these limits, Theorems 2.2(i), 2.2(ii), and (2.6.16), we obtain: $\lim_{z \to i} \left((3+i)z^4 - z^2 + 2z \right) = (3+i)\lim_{z \to i} z^4 - \lim_{z \to i} z^2 + 2\lim_{z \to i} z$ $= (3 + i) \cdot (1) - (-1) + 2 \cdot (i)$ = 4 + 3i $\lim_{z \to i} (z+1) = 1+i$

Therefore, by Theorem 2.2(iv), we have:

$$\lim_{z \to i} \frac{(3+i)z^4 - z^2 + 2z}{z+1} = \frac{\lim_{z \to i} \left((3+i)z^4 - z^2 + 2z \right)}{\lim_{z \to i} (z+1)} = \frac{4+3i}{1+i} = \frac{7}{2} - \frac{1}{2}i$$

2.3 Limits (極限) and Continuity (連続性) Continuity (連続性) of Complex Functions

Definition 2.9 Continuity (連続性) of a Complex Function

A complex function f is **continuous at a point** z_0 if

$$\lim_{z \to z_0} f(z) = f(z_0)$$

2.3 Limits (極限) and Continuity (連続性) Continuity (連続性) of Complex Functions

Criteria (基準) for Continuity (連続性) at a Point

A complex function f is **continuous at a point** z_0 if each of the

following three conditions (条件) hold (満たす):

```
(i) \lim_{z \to z_0} f(z) exists,
```

(ii) f is defined at z_0 , and

```
(\text{iii})\lim_{z \to z_0} f(z) = f(z_0)
```

Continuity (連続性) of Complex Functions

EXAMPLE (例題) 2.6.5 Checking Continuity at a Point Consider the function $f(z) = z^2 - iz + 2$ to determine if f is continuous at the point $z_0 = 1 - i$.

Solution (解答):

From Theorem 2.2 and the limits in (2.6.15) and (2.6.16) we obtain: $\lim_{z \to z_0} f(z) = \lim_{z \to 1-i} (z^2 - iz + 2) = (1 - i)^2 - i(1 - i) + 2 = 1 - 3i.$ Furthermore, for $z_0 = 1 - i$ we have: $f(z_0) = f(1 - i) = (1 - i)^2 - i(1 - i) + 2 = 1 - 3i.$

Since $\lim_{z \to z_0} f(z) = f(z_0)$, we conclude that f is continuous at the point $z_0 = 1 - i$.

2.3 Limits (極限) and Continuity (連続性) Continuity (連続性) of Complex Functions Theorem 2.3 Real and Imaginary Parts of a Continuous Function Suppose that f(z) = u(x, y) + iv(x, y) and $z_0 = x_0 + iy_0$. Then the complex function (複素関数) f is continuous at the point z_0 if and only if both real functions (実数値関数) u and v are continuous at the point (x_0, y_0) .

Continuity (連続性) of Complex Functions

EXAMPLE (例題) 2.6.7 Checking Continuity Using Theorem 2.3 Show that the function $f(z) = \overline{z}$ is continuous on **C**.

Solution (解答):

According to Theorem 2.3, $f(z) = \overline{z} = \overline{x + iy} = x - iy$ is continuous at $z_0 = x_0 + iy_0$ if both u(x, y) = x and v(x, y) = -y are continuous at (x_0, y_0) .

Because u and v are two-variable polynomial functions, then from Theorem 2.1 that

$$\lim_{(x,y)\to(x_0,y_0)} u(x,y) = x_0 \text{ and } \lim_{(x,y)\to(x_0,y_0)} v(x,y) = -y_0$$

This implies that u and v are continuous at (x_0, y_0) , and, therefore, that f is continuous at $z_0 = x_0 + iy_0$ by Theorem 2.3.

Since $z_0 = x_0 + iy_0$ was an arbitrary (任意の) point, we conclude that the function $f(z) = \overline{z}$ is continuous on **C**.

2.3 Limits (極限) and Continuity (連続性) Continuity (連続性) of Complex Functions Theorem 2.4 Properties (性質) of Continuous Functions If f and g are continuous at the point z_0 , then the following functions are continuous at the point z_0 : (i) cf, where c is a complex constant, (ii) $f \pm g$, (iii) $f \cdot g_{I}$ (iv) $\frac{f}{g'}$, provided $g(z_0) \neq 0$.

2.3 Limits (極限) and Continuity (連続性) Continuity (連続性) of Complex Functions

Theorem 2.5 Continuity of Polynomial Functions (多項式関数)

Polynomial functions (多項式関数) are continuous on the entire complex plane C.

Review for Lecture 2

- Complex Functions
- Complex Functions as Mapping
- Limit of Complex Function
- Continuity of Complex Function

Slides and Assignments

Please check http://web-ext.u-aizu.ac.jp/~xiangli/teaching/MA06/index.html

References

[1] A First Course in Complex Analysis with Application, Dennis G. Zill and Patrick D. Shanahan,
 Jones and Bartlett Publishers, Inc. 2003
 [2] Wikipedia