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2.1 Complex Functions 

(複素関数)
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Definition (定義) 2.1   Complex Function (複素関数)

A complex function (複素関数) is a function 𝑓 whose domain (定義域) 
and range (値域) are subsets of the set 𝐂 of complex numbers.

2.1 Complex Functions (複素関数)

real-valued functions (実数値関数)  
of a real variable (実変数)

complex-valued function of a 
complex variable (複素変数)

𝑤 = 𝑓(𝑧)𝑦 = 𝑓(𝑥)

We denote the domain and range of a function 𝑓 by Dom(𝑓) and Range(𝑓), respectively.

𝑧 ∈ 𝐂

𝑤 ∈ 𝐂

𝑥 ∈ 𝐑

𝑦 ∈ 𝐑
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2.1 Complex Functions (複素関数)

Notice: When the domain (定義域) of a complex function (複素関数) is not explicitly stated, we 
assume the domain (定義域) to be the set of all complex numbers 𝑧 for which 𝑓(𝑧) is defined.

EXAMPLE (例題) 2.1.1 Complex Function (複素関数)

(a) Evaluate 𝑓 𝑧 = 𝑧2 − 2 + 𝑖 𝑧 when (1) z = 𝑖 and (2) 𝑧 = 1 + 𝑖

(b) Evaluate 𝑔 𝑧 = 𝑧 + 2Re(𝑧) when (1) 𝑧 = 𝑖 and (2) 𝑧 = 2 − 3𝑖

𝑓 𝑖 = 𝑖2 − 2 + 𝑖 𝑖 = −1 − 2𝑖 + 1 = −2𝑖 .

𝑓 1 + 𝑖 = (1 + 𝑖)2− 2 + 𝑖 1 + 𝑖

𝑔 𝑖 = 𝑖 + 2Re 𝑖 = 𝑖 + 2 ∙ 0 = 𝑖

𝑔 2 − 3𝑖 = (2 − 3𝑖) + 2Re 2 − 3𝑖 = 2 − 3𝑖 + 2 ∙ 2 = 6 − 3𝑖

(a) 

(b) 

(1) 

(2) 

(1) 

(2) 

= (1 + 2𝑖 − 1) − (2 + 2𝑖 + 𝑖 − 1) = −1 − 𝑖 .

Solution (解答): 
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2.1 Complex Functions (複素関数)

Real and Imaginary Parts of a Complex Function

If 𝑤 = 𝑓(𝑧) is a complex function (複素関数), then the image (写像) of a 
complex number 𝑧 = 𝑥 + 𝑖𝑦 under 𝑓 is a complex number 𝑤 = 𝑢 + 𝑖𝑣.

For example, suppose we have the complex function 𝑤 = 𝑓(𝑧) = 𝑧2, 
then

It shows that, if 𝑤 = 𝑢 + 𝑖𝑣 = 𝑓 𝑧 = 𝑓(𝑥 + 𝑖𝑦) is a complex function, 
then both 𝑢 and 𝑣 are real functions of the two real variables 𝑥 and 𝑦, i.e.

The functions 𝑢(𝑥, 𝑦) and 𝑣(𝑥, 𝑦) in (2.1.2) are called the real and 
imaginary parts of 𝑓, respectively.

𝑤 = 𝑧2 = 𝑥 + 𝑖𝑦 2 = 𝑥2 − 𝑦2 + 2𝑥𝑦𝑖 (2.1.1)

𝑤 = 𝑓 𝑧 = 𝑢 𝑥, 𝑦 + 𝑖𝑣(𝑥, 𝑦) (2.1.2)

= 𝑢 + 𝑖𝑣 where 𝑢 𝑥, 𝑦 = 𝑥2 − 𝑦2 𝑣 𝑥, 𝑦 = 2𝑥𝑦



2023/12/11 MA06 Complex Analysis (複素関数論) 6

2.1 Complex Functions (複素関数)

EXAMPLE (例題) 2.1.2 

If 𝑧 = 𝑥 + 𝑖𝑦, find the real and imaginary parts (実部と虚部) of the 

functions   (a) 𝑓 𝑧 = 𝑧2 − 2 + 𝑖 𝑧 (b) 𝑔 𝑧 = 𝑧 + 2Re(𝑧)

Solution (解答): 

(a) 𝑓 𝑧 = 𝑧2 − 2 + 𝑖 𝑧 = 𝑥 + 𝑖𝑦 2 − 2 + 𝑖 𝑥 + 𝑖𝑦

= 𝑥2 − 2𝑥 + 𝑦 − 𝑦2 + 2𝑥𝑦 − 𝑥 − 2𝑦 𝑖

𝑢(𝑥, 𝑦) = 𝑥2 − 2𝑥 + 𝑦 − 𝑦2 𝑣 𝑥, 𝑦 = 2𝑥𝑦 − 𝑥 − 2𝑦

(b) 𝑔 𝑧 = 𝑧 + 2Re 𝑧 = 𝑥 + 𝑖𝑦 + 2Re 𝑥 + 𝑖𝑦 = 𝑥 + 𝑖𝑦 + 2𝑥 = 3𝑥 + 𝑖𝑦

= 𝑥2 + 2𝑥𝑦𝑖 − 𝑦2 − 2𝑥 + 2𝑦𝑖 + 𝑖𝑥 − 𝑦

Therefore

𝑢(𝑥, 𝑦) = 3𝑥 𝑣 𝑥, 𝑦 = 𝑦Therefore
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2.2 Complex Function as Mappings 

(写像、変換)
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2.2 Complex Function as Mappings (写像、変換)

Recall that in Calculus I, if 𝑦 = 𝑓(𝑥) is a real-valued function (実数値
関数) of a real variable 𝑥, then the graph (グラフ) of 𝑓 is defined to 
be the set of all points (𝑥, 𝑓(𝑥)) (i.e. (𝑥, 𝑦) ) in the two-dimensional 
Cartesian plane (i.e. 2次元空間) (デカルト座標系、直交座標系).

We can plot the graph (グラフ) of real-valued function !

𝑦
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However, if 𝑤 = 𝑓(𝑧) is a complex function, then both 𝑧 and 𝑤
lie in a complex plane (複素平面). 

We can not directly draw the graph of a complex function.

Can we plot a graph of complex function?

It follows that the set (集合) of all points (𝑧, 𝑓(𝑧)) (i.e. (𝑧, 𝑤) ) lies in 
four-dimensional space (4次元空間) (two dimensions from the 
input 𝑧 and two dimensions from the output 𝑤).

Therefore, 

Instead (代わりに), we use the idea of mapping (写像、変換).

2.2 Complex Function as Mappings (写像、変換)
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• Define two complex planes. 
• The point 𝑧 in the 𝑧-plane is associated with the unique point 

𝑤 = 𝑓(𝑧) in the 𝑤-plane. 
• Every complex function 𝑤 = 𝑓(𝑧) describes a correspondence

(i.e. mapping) between points in two complex planes. 

Complex Function as Mappings (写像、変換)

𝑤 = 𝑓(𝑧)

2.2 Complex Function as Mappings (写像、変換)

𝑧-plane 𝑤-plane
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If 𝑤 = 𝑓(𝑧) is a complex mapping and if 𝑆 is a set of points in the 𝑧-plane, we call the set of 
images of the points in 𝑆 under 𝑓 the image of 𝑆 under 𝑓, and we denote this set by the symbol 𝑆′.

𝑤 = 𝑓(𝑧)

𝑦

𝑥 𝑢

𝑣

The set 𝑆 in the 𝑧-plane The image 𝑆′ in the 𝑤-plane

Figure 2.1  The image of a set 𝑆 under a mapping 𝑤 = 𝑓(𝑧)

Complex Function as Mappings (写像、変換)

2.2 Complex Function as Mappings (写像、変換)

𝑧-plane 𝑤-plane
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EXAMPLE (例題) 2.2.1 Image of a Half-Plane under 𝑤 = 𝑖𝑧

Find the image of the half-plane Re(𝑧) ≥ 2 under the complex 

mapping 𝑤 = 𝑓 𝑧 = 𝑖𝑧 and represent the mapping graphically.

Solution (解答): 

The vertical (垂直の) boundary line (境界線) 
Re z = 𝑥 = 2 of 𝑆

For any point 𝑧 on this line we have 𝑧 = 2 + 𝑖𝑦
where −∞ < 𝑦 < ∞.

𝑤 = 𝑓 𝑧 = 𝑓(2 + 𝑖𝑦) = 𝑖 (2 + 𝑖𝑦) = −𝑦 + 2𝑖

𝑧-plane

2.2 Complex Function as Mappings (写像、変換)
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Because the set of points 𝑤 = −𝑦 + 2𝑖, −∞ < 𝑦 < ∞, is the line 𝑣 = 2
in the 𝑤-plane,

We conclude that the vertical line (垂直線) 𝑥 = 2 in the 𝑧-plane is 
mapped onto the horizontal line (水平線) 𝑣 = 2 in the 𝑤-plane by the 
mapping 𝑤 = 𝑓 𝑧 = 𝑖𝑧.

𝑧-plane 𝑤-plane

2.2 Complex Function as Mappings (写像、変換)
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The set 𝑆 satisfies inequalities (不等式): The set 𝑆′ satisfies inequalities (不等式):

𝑥 ≥ 2 and −∞< 𝑦 < ∞ 𝑣 ≥ 2 and −∞ < 𝑢 < ∞.

Re(𝑧) ≥ 2 Im(𝑤) ≥ 2

In summary, the half-plane Re(𝑧) ≥ 2 shown in blue color of left figure is mapped 
onto the half-plane Im(𝑤) ≥ 2 shown in gray color (灰色)  in right figure by the 
complex mapping 𝑤 = 𝑓(𝑧) = 𝑖𝑧.

𝑧-plane 𝑤-plane

2.2 Complex Function as Mappings (写像、変換)
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2.3 Limits (極限) and Continuity (連続性)



2023/12/11 MA06 Complex Analysis (複素関数論) 16

2.3  Limits (極限) and Continuity (連続性)

Limit of Real Function

Figure 2.50  Geometric (幾何学の) 
meaning of a real limit. 

The limit of 𝑓 as 𝑥 ∈ 𝐑 tends 𝑥0 exists and is 
equal to 𝐿 if for every 𝜀 > 0 there exists a 𝛿 >
0 such that |𝑓(𝑥) − 𝐿| < 𝜀 whenever 
0 < |𝑥 − 𝑥0| < 𝛿.

lim
𝑥→𝑥0

𝑓 𝑥 = 𝐿

Real plane
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Limit of Complex Function (複素関数の極限)

Definition (定義) 2.8
Limit of a Complex Function (複素関数の極限) 

Suppose that a complex function 𝑓 is
defined in a deleted neighborhood of 𝑧0
and suppose that 𝐿 is a complex number.
The limit of 𝑓 as 𝑧 ∈ 𝐂 tends to 𝑧0 exists and
is equal to 𝐿, written as lim

𝑧→𝑧0
𝑓 𝑧 = 𝐿, if for

every 𝜀 > 0 there exists a 𝛿 > 0 such that
|𝑓(𝑧) − 𝐿| < 𝜀 whenever 0 < |𝑧 − 𝑧0| < 𝛿.

𝑧-plane

𝑤-plane

𝑥

𝑦

𝑢

𝑣

in 𝑧-planein 𝑤-plane

2.3  Limits (極限) and Continuity (連続性)

Real axis

Real axis
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Criterion (基準) for the Nonexistence 
(存在しない) of a Limit

If 𝑓 approaches two complex numbers 

𝐿1 ≠ 𝐿2 for two different curves or paths 

through 𝑧0, 

then lim
𝑧→𝑧0

𝑓 𝑧 = 𝐿 does not exist.

Figure 2.53  Different ways to approach 𝑧0
in a limit.

2.3  Limits (極限) and Continuity (連続性)
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EXAMPLE (例題) 2.6.1 

Show that lim
𝑧→0

𝑧

ҧ𝑧
does not exist.

Solution (解答): 

First, we let 𝑧 approach 0 along the real axis, i.e. we consider complex numbers of the 
form 𝑧=𝑥+0𝑖 where the real number 𝑥 is approaching 0

lim
𝑧→0

𝑧

ҧ𝑧
= lim

𝑥→0

𝑥 + 0𝑖

𝑥 − 0𝑖
= lim

𝑥→0
1 = 1

Second, we let 𝑧 approach 0 along the imaginary axis, then 𝑧 = 0 + 𝑖𝑦 where the real 
number 𝑦 is approaching 0

lim
𝑧→0

𝑧

ҧ𝑧
= lim

𝑦→0

0 + 𝑖𝑦

0 − 𝑖𝑦
= lim

𝑦→0
(−1) = −1

The two limits are not same, then conclude that lim
𝑧→0

𝑧

ҧ𝑧
does not exist.

2.3  Limits (極限) and Continuity (連続性)
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Theorem 2.1  Real and Imaginary Parts (実部と虚部) of a Limit

Suppose that 𝑓 𝑧 = 𝑢 𝑥, 𝑦 + 𝑖𝑣(𝑥, 𝑦) and 𝑧0 = 𝑥0 + 𝑖𝑦0, and

𝐿 = 𝑢0 + 𝑖𝑣0. Then lim
𝑧→𝑧0

𝑓 𝑧 = 𝐿 if and only if 

lim
(𝑥,𝑦)→(𝑥0,𝑦0)

𝑢 𝑥, 𝑦 = 𝑢0 and lim
(𝑥,𝑦)→(𝑥0,𝑦0)

𝑣 𝑥, 𝑦 = 𝑣0

2.3  Limits (極限) and Continuity (連続性)

Theorem 2.1 allows us to compute many complex limits by simply computing 
a pair of real limits.
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EXAMPLE (例題) 2.6.3 

Use Theorem 2.1 to compute lim
𝑧→1+𝑖

(𝑧2 + 𝑖), where 𝑧 = 𝑥 + 𝑖𝑦.

Solution (解答): 

Since 𝑓(𝑧) = 𝑧2 + 𝑖 = 𝑥2 − 𝑦2 + (2𝑥𝑦 + 1)𝑖,

Apply Theorem 2.1 with 𝑢(𝑥, 𝑦) = 𝑥2 − 𝑦2, 𝑣(𝑥, 𝑦) = 2𝑥𝑦 + 1, and 
𝑧0 = 1 + 𝑖

𝑢0 = lim
(𝑥,𝑦)→(𝑥0,𝑦0)

𝑢 𝑥, 𝑦 = lim
(𝑥,𝑦)→(1,1)

𝑥2 − 𝑦2 = lim
(𝑥,𝑦)→(1,1)

12 − 12 = 0

𝑥0 = 1, 𝑦0 = 1

𝑣0 = lim
(𝑥,𝑦)→(𝑥0,𝑦0)

𝑣 𝑥, 𝑦 = lim
(𝑥,𝑦)→(1,1)

2𝑥𝑦 + 1 = lim
(𝑥,𝑦)→(1,1)

2 ∙ 1 ∙ 1 + 1 = 3

so 𝐿 = 𝑢0 + 𝑖𝑣0 = 0 + 𝑖(3) = 3𝑖. Therefore, lim
𝑧→1+𝑖

(𝑧2 + 𝑖) = 3𝑖

2.3  Limits (極限) and Continuity (連続性)
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Theorem 2.2  Properties (性質) of Complex Limits

Suppose that 𝑓 and 𝑔 are complex functions. 

If lim
𝑧→𝑧0

𝑓 𝑧 = 𝐿 and lim
𝑧→𝑧0

𝑔 𝑧 = 𝑀, then 

(i) lim
𝑧→𝑧0

𝑐𝑓 𝑧 = 𝑐𝐿, where 𝑐 is a complex constant, 

(ii) lim
𝑧→𝑧0

𝑓 𝑧 ± 𝑔 𝑧 = 𝐿 ±𝑀,

(iii) lim
𝑧→𝑧0

(𝑓 𝑧 ∙ 𝑔 𝑧 ) = 𝐿 ∙ 𝑀, and

(iv) lim
𝑧→𝑧0

𝑓 𝑧

𝑔(𝑧)
=

𝐿

𝑀
, provided 𝑀 ≠ 0. 

2.3  Limits (極限) and Continuity (連続性)
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• The complex constant (定数) function 𝑓(𝑧) = 𝑐, where 𝑐 is a 

complex constant (定数)  

• The complex identity (恒等) function 𝑓(𝑧) = 𝑧

lim
𝑧→𝑧0

𝑐 = 𝑐

lim
𝑧→𝑧0

𝑧 = 𝑧0

(2.6.15) 

(2.6.16) 

We establish two basic complex limits:

2.3  Limits (極限) and Continuity (連続性)



2023/12/11 MA06 Complex Analysis (複素関数論) 24

EXAMPLE (例題) 2.6.4 

Use Theorem 2.2 and the basic limits (2.6.15) and (2.6.16) to 

compute the limits  lim
𝑧→𝑖

3+𝑖 𝑧4−𝑧2+2𝑧

𝑧+1
.

Solution (解答): 

By Theorem 2.2(iii) and (2.6.16),

lim
𝑧→𝑖

𝑧2 = lim
𝑧→𝑖

𝑧 ∙ 𝑧 = lim
𝑧→𝑖

𝑧 ∙ lim
𝑧→𝑖

𝑧 = 𝑖 ∙ 𝑖 = −1

Similarly, lim
𝑧→𝑖

𝑧4 = lim
𝑧→𝑖

𝑧 ∙ lim
𝑧→𝑖

𝑧 ∙ lim
𝑧→𝑖

𝑧 ∙ lim
𝑧→𝑖

𝑧 = 𝑖4 = 𝑖2 ∙ 𝑖2 = 1

2.3  Limits (極限) and Continuity (連続性)
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Using these limits, Theorems 2.2(i), 2.2(ii), and (2.6.16), we obtain:

lim
𝑧→𝑖

3 + 𝑖 𝑧4 − 𝑧2 + 2𝑧 = 3 + 𝑖 lim
𝑧→𝑖

𝑧4 − lim
𝑧→𝑖

𝑧2 + 2 lim
𝑧→𝑖

𝑧

= 3 + 𝑖 ∙ (1) − (−1) + 2 ∙ (𝑖)

= 4 + 3𝑖
lim
𝑧→𝑖

(𝑧 + 1) = 1 + 𝑖

Therefore, by Theorem 2.2(iv), we have:

lim
𝑧→𝑖

3 + 𝑖 𝑧4 − 𝑧2 + 2𝑧

𝑧 + 1
=
lim
𝑧→𝑖

3 + 𝑖 𝑧4 − 𝑧2 + 2𝑧

lim
𝑧→𝑖

(𝑧 + 1)
=
4 + 3𝑖

1 + 𝑖
=
7

2
−
1

2
𝑖

Solution (解答) (cont.): 

2.3  Limits (極限) and Continuity (連続性)
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Definition 2.9   Continuity (連続性) of a Complex Function

A complex function 𝑓 is continuous at a point 𝑧0 if

2.3  Limits (極限) and Continuity (連続性)

Continuity (連続性) of Complex Functions

lim
𝑧→𝑧0

𝑓 𝑧 = 𝑓 𝑧0
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Criteria (基準) for Continuity (連続性) at a Point

A complex function 𝑓 is continuous at a point 𝑧0 if each of the 

following three conditions (条件) hold (満たす):

(i) lim
𝑧→𝑧0

𝑓 𝑧 exists,

(ii) 𝑓 is defined at 𝑧0, and

(iii) lim
𝑧→𝑧0

𝑓 𝑧 = 𝑓 𝑧0

2.3  Limits (極限) and Continuity (連続性)

Continuity (連続性) of Complex Functions



2023/12/11 MA06 Complex Analysis (複素関数論) 28

2.3  Limits (極限) and Continuity (連続性)

Continuity (連続性) of Complex Functions

EXAMPLE (例題) 2.6.5   Checking Continuity at a Point
Consider the function 𝑓(𝑧) = 𝑧2 − 𝑖𝑧 + 2 to determine if 𝑓 is 
continuous at the point 𝑧0 = 1 − 𝑖.

Solution (解答): 

From Theorem 2.2 and the limits in (2.6.15) and (2.6.16) we obtain:

lim
𝑧→𝑧0

𝑓 𝑧 = lim
𝑧→1 − 𝑖

𝑧2 − 𝑖𝑧 + 2 = (1 − 𝑖)2 − 𝑖 (1 − 𝑖) + 2 = 1 − 3𝑖.

Furthermore, for 𝑧0 = 1 − 𝑖 we have:

𝑓(𝑧0) = 𝑓(1 − 𝑖) = (1 − 𝑖)2− 𝑖 (1 − 𝑖) + 2 = 1 − 3𝑖.

Since lim
𝑧→𝑧0

𝑓 𝑧 = 𝑓(𝑧0), we conclude that 𝑓 is continuous at

the point 𝑧0 = 1 − 𝑖.
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2.3  Limits (極限) and Continuity (連続性)

Continuity (連続性) of Complex Functions

Theorem 2.3 Real and Imaginary Parts of a Continuous Function

Suppose that 𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) and 𝑧0 = 𝑥0 + 𝑖𝑦0. 

Then the complex function (複素関数) 𝑓 is continuous at the point 

𝑧0 if and only if both real functions (実数値関数) 𝑢 and 𝑣 are 

continuous at the point (𝑥0, 𝑦0).
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2.3  Limits (極限) and Continuity (連続性)

Continuity (連続性) of Complex Functions

EXAMPLE (例題) 2.6.7   Checking Continuity Using Theorem 2.3 
Show that the function 𝑓(𝑧) = ҧ𝑧 is continuous on 𝐂.

Solution (解答): 
According to Theorem 2.3, 𝑓(𝑧) = ҧ𝑧 = 𝑥 + 𝑖𝑦 = 𝑥 − 𝑖𝑦 is continuous at 𝑧0 = 𝑥0 +
𝑖𝑦0 if both 𝑢(𝑥, 𝑦) = 𝑥 and 𝑣(𝑥, 𝑦) = −𝑦 are continuous at (𝑥0, 𝑦0).

Because 𝑢 and 𝑣 are two-variable polynomial functions, then from Theorem 2.1
that 

This implies that 𝑢 and 𝑣 are continuous at (𝑥0, 𝑦0), and, therefore, that 𝑓 is 
continuous at 𝑧0 = 𝑥0 + 𝑖𝑦0 by Theorem 2.3.

Since 𝑧0 = 𝑥0 + 𝑖𝑦0 was an arbitrary (任意の) point, we conclude that the 
function 𝑓(𝑧) = ҧ𝑧 is continuous on 𝐂.

lim
(𝑥,𝑦)→(𝑥0,𝑦0)

𝑢 𝑥, 𝑦 = 𝑥0 and lim
(𝑥,𝑦)→(𝑥0,𝑦0)

𝑣 𝑥, 𝑦 = −𝑦0
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2.3  Limits (極限) and Continuity (連続性)

Continuity (連続性) of Complex Functions

Theorem 2.4 Properties (性質) of Continuous Functions

If 𝑓 and 𝑔 are continuous at the point 𝑧0, then the following 

functions are continuous at the point 𝑧0:

(i) 𝑐𝑓, where 𝑐 is a complex constant, 

(ii) 𝑓 ± 𝑔,

(iii) 𝑓 ∙ 𝑔, 

(iv) 
𝑓

𝑔
, provided 𝑔(𝑧0) ≠ 0. 
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2.3  Limits (極限) and Continuity (連続性)

Continuity (連続性) of Complex Functions

Theorem 2.5 Continuity of Polynomial Functions (多項式関数)

Polynomial functions (多項式関数) are continuous on the entire 

complex plane 𝐂.
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Review for Lecture 2

• Complex Functions

• Complex Functions as Mapping

• Limit of Complex Function

• Continuity of Complex Function

Please check http://web-ext.u-aizu.ac.jp/~xiangli/teaching/MA06/index.html
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