Q0000000000000

Lecture 4

S

4.1 Harmonic Functions (GAFIEIZ)

4.2 (Complex) Elementary Functions (8 %) #1ZE%Z Part 1.
4.2.1 (Complex) Exponential Functions (£ )5 %]
4.2.2 (Complex) Logarithmic Functions (8 &)1 1B %X

L

2023/12/18 MAO6 Complex Analysis (8 & EA%LER) 1




4.1 Harmonic Functions (GAF1E3%%)
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4.1 Harmonic Functions (GAFIEE£)
Laplace’s Equation (7 75 A FER)
The second-order partial differential equation (ZRE{RM 2 A ER)

0%¢p 0%¢
T 3.3.1
=+ 52 0 (3.3.1)

is called Laplace’s equation (T 72 XA A1) in two independent variables x and y.

( The sum of the two second partial derivatives in (3.3.1) is denoted by V¢ and is called the
Laplacian of ¢(x,y). Laplace’s equation is then abbreviated as V?¢ = 0.)

Definition 3.3 Harmonic Functions (GBF1BI$)

A real-valued function ¢ of two real variables x and y that has

=

continuous (&%) first and second-order partial derivatives (—PB&

A

& __PEfmH o) in a domain D and satisfies Laplace’s equation is said
to be harmonic in D.
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4.1 Harmonic Functions (GAFIEA%Y)
Harmonic Functions GAF1E3%%)

Theorem 3.7 Analyticity (8 #f1) and Harmonic Functions (GAF1E3%X)

Suppose f(z) = u(x,y) + iv(x,y) isanalyticin a domain D.

then u(x,vy) i1s harmonicin D

and  v(x,y) is harmonicin D.
Proof: The Page 160 of Textbook
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4.1 Harmonic Functions (GAFIEA%Y)
Harmonic Functions GAF1E3%%)
EXAMPLE (f41%8) 3.3.1 Harmonic Functions

Show that the real and imaginary parts of function f(z) = z?,
where z = x + iy, are harmonic in C.

Solution (82 Z):
The function f(z) = z? = x2 —y? + 2xyi is entire (i.e. BER ).

Then the function f(z) = z* = x? — y% + 2xyi is analytic at every point z in the
complex plane.

According to Theorem 3.7,
The functions u(x,y) = x? —y? and v(x,y) = 2xy are necessarily harmonic in
the complex plane, i.e. in C.
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4.1 Harmonic Functions (FAFIBI%Y)
Harmonic Conjugate Functions (3£ 1% F1BE %)

Now suppose u(x,y) is a given real function that is harmonic in D;

N4

find another real harmonic function v(x, y) so that u and v satisfy
the Cauchy-Riemann equations throughout the domain D;

g

then this function v(x, y) is called a harmonic conjugate function
(H1ZRFBEZE) of u(x, y). @

By combining the functions as u(x, y) + iv(x,y), we obtain a
function f(2) that is analytic in D.
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4.1 Harmonic Functions (GAFIEA%Y)

Harmonic Conjugate Functions (3 1& A FN1EAEL)

EXAMPLE (fl=8) 3.3.2 Harmonic Conjugate Function

(a) Verify that the function u(x,y) = x* — 3xy? — 5y is harmonic in
the entire complex plane.

(b) Find the harmonic conjugate function of u(x, y).

Solution (B2 Z):
(@) From the partial derivatives

— =—6xy—5 —> W=—6x

. . 0°u 0%u
we see that u satisfies Laplace’s equation: oz V32
Therefore, according to the Definition 3.3, u(x,y) is harmonic in C.
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4.1 Harmonic Functions (GAFIEA%Y)
Solution (2Z)(cont.):

(b) Since the harmonic conjugate function v must satisfy the Cauchy-Riemann

. dv du dv du

equations 3y " ox and ax 3y then we must have
0V 0 3232 and o (C6xy—5)=6xy+5 (3.3.3)
dy Ox x yooand 5y T dy XY a4 o

Partial integration (&%) of Z; = 32 = 3x2% — 3y? with respect to y gives

v(x,y) = 3x%y —y3> + h(x).
From this v(x, y), we compute the partial derivative with respect to x as
dv
P 6xy + h'(x)
Compare this Z—Z with the second equation in (3.3.3), we can obtain h'(x) = 5, and so

h(x) = 5x + ¢, where c is a real constant.

Therefore, the harmonic conjugate function of u(x,y) is v(x,y) = 3x*y — y® + 5x + c.
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4.2 (Complex) Elementary Functions (%) #15EI%¥L Part 1 :

4.2.1 (Complex) Exponential Functions ({8 &)15${ B
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4.2.1 (Complex) Exponential Functions (€ X)15 21 B

Suppose we know the fact that e®*# = e%ef, where a and g are complex numbers.

Definition 4.1 Complex Exponential Function ({8 &5 ¥R

The function e (where z = x + iy) defined by

eZ =e*tW = e¥eW = e*(cosy + isiny)

. . . By Euler’s Formula
l.e. e =e*cosy + ie*siny (4.1.1)

is called the complex exponential function.

Notice: The function defined by (4.1.1) agrees with the real
exponential function, i.e.

iIf zis real number, then z = x + 0i, and Definition 4.1 gives:
eXt0 = eX(cos 0+ isin0) = e*(1 +i0) = e*
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4.2.1 (Complex) Exponential Functions (€ X)15 21 B

Theorem 4.1 Analyticity (B2#fr1£) of e?

The exponential function eZ is entire and its derivative is given by:

d
_ez — eZ (4.1.3)
dz
Proof: The Page 177 of Textbook
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4.2.1 (Complex) Exponential Functions (8 %=)15 (B4

EXAMPLE (f51%8) 4.1.1 Derivatives of Exponential Functions
Find the derivative of the following functions:

(@) iz*(z% — e?) and (b) ez ~(1+Dz+3

Solution (B2Z):
(a) Using Equation (4.1.3) and the product rule (f8 ®;%81) (3.1.4) in Lecture 3:

d
Product Rule (& @ 3% 81): pp lf(2)g(2)] =f'(2)g(2) + f(2)g'(2) (3.1.4)
d
— [iz*(z% — e?)] = i423(z% — e?) + iz*(2z — €?)

= i6z° —iz%e? — i4z3e%
(b) Using Equation (4.1.3) and the chain rule GE#H£) (3.1.6) in Lecture 3:
Chain Rule (GEf42): ~fg@) =f'(9@)g' () (3.1.6)
% [ezz—(1+i)z+3] _ ezz—(1+i)z+3 . (ZZ —(1+ l)) — ezz—(1+i)z+3 (2z—1-1)
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4.2.1 (Complex) Exponential Functions (€ X)15 21 B

Theorem 4.2 Properties (t£E) of e?

If z;, and z, are complex numbers, then

i e’=

(”) ezlezz — eZ]_+ZZ
el

i) ——=en1%
e

(ivy, (e#1)"=e"1,n=0,=+1,12,..

v)  |e?| = eRe@ arg(e?) =Im(z) + 2nmt forn = 0,+1,+2,...
(viy e?=¢e”

i) e # 0, forallzeC
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4.2.1 (Complex) Exponential Functions (8 %=)15 (B4

Modulus (EE# D4 XJ1E) and Argument (fR &)
We have the complex number w = f(z) = e? in polar form re'?:
w =e*cosy + ie*siny = e*(cosy +isiny) = r (cosf + isinf)
then we see that the modulus r = e* and the argument 6 = y + 2nr,
forn = 0,41,+2,...

Modulus |ez| —1r =X = eRe(z) (4.1.4)
Argument arg(e?) =0 =y +2nm =Im(z) +2nm forn = 0,+1,+2,... (4.1.5)

. S = H o
Con_Jugate (%E%/\,fﬂ) Because cos(—y) =cosy sin(—y) = —siny . )
e? = e*cosy —ie¥*siny = e* cos(—y) + ie*sin(—y) = e*™V =% (“.16)

Nonzero (FE€ Q)

From (4.1.4), we know |e?| > 0 because e* > 0 for all x € R. Then it implies
e? + 0, forall z € C.
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4.2.1 (Complex) Exponential Functions (8 %=)15 (B4

Periodicity (B3 )

Z4+2T11

e = e“?

The complex exponential function eZ is periodic with a pure imaginary period
(m@F.L# 1:|_ Hﬂ) 27’[l.

Y z-plane
This Is because, by (4.1.1) and Theorem 4.2(ii), we have PR
e? 12Tl = 22Tl = oZ(cos 2w + isin2m) =e?-1=e? . ,. 27}

: z+4ani _ ,(z+2mi)+2mi _ ,z42mi _ ,Z . *
Notice that e =e =e =e ez e
By repeating this process we find that L. 2T
eZT2nml — oZ forn =0,+1,+2,... _axl

Figure 4.1 The fundamental region of e*
2023/12/18 MAO6 Complex Analysis (#2 3 B %1 5H) 15



4.2.1 (Complex) Exponential Functions (8 %=)15 (B4

Fundamental Region of the complex exponential function

« Because e?*?"m =eZforn=0,+1,42,... Yy z-plane
thus there are many points in the z-plane, for o At 4rr
example, z — 2mi, z + 4mi, z + 6mi, ...will correspond 3z
to the same single pointw = e? in the w-plane,
l.e. the complex exponential function w = f(z) = e* o >+ 27 21k
IS not one-to-one (—X¥—) mapping from z-plane to 7
w-plane.
N
« We divide the complex plane into horizontal strips. ® Z o I
» The infinite horizontal (/K3 %) strip defined by: ork
—0<x<00,—TNT<Yy<T o z—2TI
is called the fundamental region (B & %EH) of the =37t
complex exponential function e?. —ATm}

Notice f(z) = e?, f(z + 2mi) = e?*?™, f(z — 2mi) = . .
2227 and so on are the same. Figure 4.1 The fundamental region of e
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4.2 (Complex) Elementary Functions ({8 &) #)5E34 Part 1 :

4.2.2 (Complex) Logarithmic Functions (8 &)Xt (B3 L
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4.2.2 (Complex) Logarithmic Functions (18 Z)x3 21 B9 %1

YA
e*
However, if e* = —2,
then solution?
(0,1)
= x
0
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4.2.2 (Complex) Logarithmic Functions (8 &) X1 2 B %L
In real domain, the natural logarithm function In x is often defined as an

inverse function (#Bd%Y) of the real exponential function e*

From now on, we can use the alternative notation log, x, where x € R to represent
the real exponential function e*.

« The real exponential function is one-to-one (—*J—) on its domain R,

« But the complex exponential function eZ is NOT a one-to-one function on its
domain C, because there are infinitely (3£FR <) many arguments ({&&) of z.

Note: One-to-one (—*J¥—) function is a function that maps distinct elements of
its domain to distinct elements of its range, i.e. f(x;) # f(x,) whenever x; # x,.
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4.2.2 (Complex) Logarithmic Functions (8 X)X £ B %L

If e =z, thenw =log, |z| + i arg(2) (4.1.10)

Because of the Periodicity (B Ei14), there are infinitely ((£BR(Z) many arguments
(f®A) of z, thus (4.1.10) gives infinitely many solutions w to the equation e¥ = z.

The set of values given by (4.1.10) defines a multiple-valued function as:

Definition 4.2 Complex Logarithm Function (8 & X1 ${E3%£0)

The multiple-valued function In z (where z = x + iy) defined by
Inz =log, |z| + iarg(z) (4.1.11)

Is called the complex logarithm.

Notice: We use the lowercase (/\3X =) letter for symbol In z.
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.




4.2.2 (Complex) Logarithmic Functions (8 &) X1 2 B %L

EXAMPLE (f5I%&) 4.1.3 Solving Exponential Equations

Find all complex solutions to each of the following equations.
(@e" =i [be¥=1+i (Qe¥ =-2

Solution (B2Z):

For each equation e% = z, the set of solutions is given by w = Inz where In z is found using Definition 4.2.

(@) Fore¥ =z =i, we have |z| = |i| = 1 and arg(i) = arctan(grelgg) = % + 2nm.
ThUS, from (4111) we obtain: Because 611_1;210 arctan(a) =§
w =Ini = log, |i| + i arg(i)
T T (dn+ Dm B
=log61+z(§+2nn):0+z(5+2nn): > i n=0=x1,%2,...
Therefore, each of the valuesw = ---,—37”1', %i, 57”1', .. satisfies the equation e¥ =i.
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4.2.2 (Complex) Logarithmic Functions (8 &) X1 2 B %L

Solution (f2Z)(cont.):

Im(z) T

(b) Forz=1+i,wehave |l +i| =+v2and arg(1+i) = arctan(Re(Z)) =+ 2nm.
Thus, from (4.1.11) we obtain:
w=In(1+1i) =log,|1+i|+iarg(l+1i)
(T
= log, V2 + i (Z + Znn)
1 Bn+1)m
=Elog32+ 1 [ n=0+1,+2,...
Each value of wis a solutiontoe¥ =1 +1i.
(c) Forz = —2, we have | — 2| = 2 and arg(-2) = arctan(gzg:g) = 1 + 2n.
Thus, from (4.1.11) we obtain:
w =1In(—2) =log, | — 2| + iarg(—2)
= log, 2 + i(m + 2nm)
=log. 2 + (2n + )mi n=0=x1%2,...
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4.2.2 (Complex) Logarithmic Functions (18 Z)x3 21 B9 %1

Theorem 4.3 Algebraic Properties of In z

If z;, and z, are nonzero complex numbers and n is an integer, then

@) In(z;z,) =Inz; +1Inz,

Z
(i) In (—1) =Inz; —lnz,

Zy

i) Inz{! =nlnz,
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4.2.2 (Complex) Logarithmic Functions (18 Z)x3 21 B9 %1

Definition 4.3 Principal Value (£1E) of the Complex Logarithm

The complex function Ln z (where z = x + iy) defined by

Lnz =loge |z| + i Arg(z), —m < arg(z) =m  (4.1.14 and 4.1.15)

iIs called the principal value (=

= {E) of the complex logarithm.

Notice: We use the uppercase (KX ) letter for Ln z here!
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4.2.2 (Complex) Logarithmic Functions (8 &) X1 2 B %L

EXAMPLE (51%8) 4.1.4 Principal Value of the Complex Logarithm
Compute the principal value of the complex logarithm Ln z for

@)z=i (bBz=1+i ()z=-2

Solution (82Z):
(@) Fore¥ =z =i, we have |i| = 1 and Arg(i) = arctan(lm(z)) = g =27

Re(z)
Thus, from (4.1.14) we obtain:
w =Lni =log, |i| + i Arg(i)

log. 1 + =i a4
= —
Oge 21' 1C U, i, ;s
— 042

2
—n.
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4.2.2 (Complex) Logarithmic Functions (8 &) X1 2 B %L

Solution (f2Z)(cont.):
(b) Fore¥ =z =1+ i, we have |1+ i| =+v2 and Arg(1 + i) = arctan(
Thus, from (4.1.14) we obtain:
w=Ln(l+1i)=log,|1+1i|+iArg(l+1)

Im(1+1)

T
Re(1+i)) 4

T 1 T | :
=log,V2+—i==log, 2+ —i ~ 0.3466 + 0.7854i
4 2 4 .
Not necessary for the assignment report.
(c) Fore"” =z =-2,we have | — 2| =2 and Arg(—2) = arctan(gzgzg) = TI.

Thus, from (4.1.14) we obtain:
w=Ln(-2) =log, | — 2| + i Arg(—2)
=log, 2 + i =~ 0.6931 + 3.1416i

Not necessary for the assignment report.
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4.2.2 (Complex) Logarithmic Functions (8 &) X1 2 B %L

Ln z as an Inverse Function (3FEES%)) of eZ

Follows from (4.1.10) that
el"Z = z forallz # 0. (4.1.16)

If the complex exponential function f(z) = e is defined on the

fundamental region —co < x < 00, —T < y < T,

then f is one-to-one (—*¥—) and the inverse function (3E3%%) of

f is the principal value of the complex logarithm f~'(z) = Ln z.
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4.2.2 (Complex) Logarithmic Functions (18 Z)x3 21 B9 %1

Yy

z-plane
*Ele||RiaI@ Theorem 2.3 Real and Imaginary Parts of a Continuous Function
Suppose that f(z) = u(x,y) + iv(x,y) and z, = x, + iy,.
Then the complex function (8 &BI£Y) f is continuous at the point | '
z, if and only if both real functions (E#1ER8#1) u and v are
continuous at the point (x,, yo)-
Figure 4.6 defines
The principal value of the complex logarithm function Or?dOmainflirgZ;ray color
ILnz =log, |z| + i Arg(z), —m < arg(z) < m excluding blue ray
Real part u(x,y) = log, |z| = log/x? + y? is continuous at all points in the plane except (0, 0)

Imaginary part v(x,y) = Arg(z) is continuous on the domain |z| > 0, -7 < arg(z) <&

Therefore, Ln z is a continuous function on the domain [z| > 0, —7w < arg(z) <7 (4.1.18)

We give this new function a name by “principal branch of the complex logarithm function”
f1(z) =loge |z| + i Arg(z), —m <arg(z) <m (4.1.19) Here, f1(z) is Ln z except Arg(z) =
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4.2.2 (Complex) Logarithmic Functions (18 Z)x3 21 B9 %1

Theorem 4.4 Analyticity of the Principal Branch of In z

The principal branch f; of the complex logarithm defined by (4.1.19)

IS an analytic function and its derivative is given by:

1
fi(z) = ~ (4.1.20)

The theorem 4.4 implies that Ln z is differentiable in the domain |z| > 0,

—m < arg(z) < m, and its derivative is given by f/ (2).

Thatis, if |z| > 0, = < arg(z) < 7 then
d L ! (4.1.21)
—LNnZ = — 1.
dz Z
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4.2.2 (Complex) Logarithmic Functions (8 &) X1 2 B %L

EXAMPLE (51%8) 4.1.5 Derivatives of Logarithmic Functions
Find the derivatives of the function zLn z in an appropriate domain:

Solution (F2Z):

The function zLn z is differentiable at all points where both of the functions z and Ln z are
differentiable.

Because z is entire (ZIX%{) and Ln z is differentiable on the domain givenin (4.1.18), as |z| > 0,

— 1 < arg(z) < m, it follows that zLn z is differentiable on the domain defined by |z| > 0, - <
arg(z) <m

In this domain, the derivative is given by the product rule (] & ®;%8l) (3.1.4) of Lecture 3 and
(4.1.21):

d 1
—|[zLnz]=z-—+1:-Lnz=1+1Lnz
dz Z
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Review for Lecture 4
« Harmonic Functions
« (Complex) Exponential Functions
« Exponential Mapping
« (Complex) Logarithmic Functions
 The principal value of the Logarithmic Functions

« Analyticity of the Principal Branch of Inz

Exercise

Please Check http://web-ext.u-aizu.ac.jp/~xiangli/teaching/MAO6/index.html
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