

Lecture 4

4.1 Harmonic Functions (調和関数)

- 4.2 (Complex) Elementary Functions (複素)初等関数 Part 1:
 - 4.2.1 (Complex) Exponential Functions (複素)指数関数
 - 4.2.2 (Complex) Logarithmic Functions (複素)対数関数

Laplace's Equation (ラプラス方程式)

The second-order partial differential equation (二階偏微分方程式)

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0 \tag{3.3.1}$$

is called Laplace's equation (ラプラス方程式) in two independent variables x and y.

(The sum of the two second partial derivatives in (3.3.1) is denoted by $\nabla^2 \phi$ and is called the **Laplacian** of $\phi(x,y)$. **Laplace's equation** is then abbreviated as $\nabla^2 \phi = 0$.)

Definition 3.3 Harmonic Functions (調和関数)

A real-valued function ϕ of two real variables x and y that has continuous (連続) first and second-order partial derivatives (一階 と二階偏微分) in a domain D and satisfies Laplace's equation is said to be harmonic in D.

Harmonic Functions (調和関数)

Theorem 3.7 Analyticity (解析性) and Harmonic Functions (調和関数)

```
Suppose f(z) = u(x,y) + iv(x,y) is analytic in a domain D.
```

then u(x, y) is harmonic in D

and v(x,y) is harmonic in D.

Proof: The Page 160 of Textbook

Harmonic Functions (調和関数)

EXAMPLE (例題) 3.3.1 Harmonic Functions

Show that the real and imaginary parts of function $f(z) = z^2$, where z = x + iy, are harmonic in **C**.

Solution (解答):

The function $f(z) = z^2 = x^2 - y^2 + 2xyi$ is entire (i.e. 整函数).

Then the function $f(z) = z^2 = x^2 - y^2 + 2xyi$ is analytic at every point z in the complex plane.

According to Theorem 3.7,

The functions $u(x,y) = x^2 - y^2$ and v(x,y) = 2xy are necessarily harmonic in the complex plane, i.e. in **C**.

Harmonic Conjugate Functions (共役調和関数)

Now suppose u(x, y) is a given real function that is **harmonic** in D;

find another real harmonic function v(x, y) so that u and v satisfy the Cauchy-Riemann equations throughout the domain D;

then this function v(x, y) is called a harmonic conjugate function (共役調和関数) of u(x, y).

By combining the functions as u(x,y) + iv(x,y), we obtain a function f(z) that is **analytic** in D.

Harmonic Conjugate Functions (共役調和関数)

EXAMPLE (例題) 3.3.2 Harmonic Conjugate Function

- (a) Verify that the function $u(x,y) = x^3 3xy^2 5y$ is harmonic in the entire complex plane.
- (b) Find the harmonic conjugate function of u(x, y).

Solution (解答):

(a) From the partial derivatives

$$\frac{\partial u}{\partial x} = 3x^2 - 3y^2 \qquad \Longrightarrow \qquad \frac{\partial^2 u}{\partial x^2} = 6x$$

$$\frac{\partial u}{\partial y} = -6xy - 5 \qquad \Longrightarrow \qquad \frac{\partial^2 u}{\partial y^2} = -6x$$

we see that u satisfies Laplace's equation: $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 6x - 6x = 0$

Therefore, according to the Definition 3.3, u(x, y) is **harmonic** in **C**.

Solution (解答)(cont.):

(b) Since the harmonic conjugate function v must satisfy the Cauchy-Riemann

equations
$$\frac{\partial v}{\partial y} = \frac{\partial u}{\partial x}$$
 and $\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$ then we must have

$$\frac{\partial \mathbf{v}}{\partial y} = \frac{\partial \mathbf{u}}{\partial x} = 3x^2 - 3y^2 \quad \text{and} \quad \frac{\partial \mathbf{v}}{\partial x} = -\frac{\partial \mathbf{u}}{\partial y} = -(-6xy - 5) = 6xy + 5 \tag{3.3.3}$$

Partial integration (積分) of $\frac{\partial v}{\partial y} = \frac{\partial u}{\partial x} = 3x^2 - 3y^2$ with respect to y gives $v(x,y) = 3x^2y - y^3 + h(x)$.

From this v(x, y), we compute the partial derivative with respect to x as

$$\frac{\partial \mathbf{v}}{\partial x} = 6xy + h'(x)$$

Compare this $\frac{\partial v}{\partial x}$ with the second equation in (3.3.3), we can obtain h'(x) = 5, and so h(x) = 5x + c, where c is a real constant.

Therefore, the harmonic conjugate function of u(x, y) is $v(x, y) = 3x^2y - y^3 + 5x + c$.

4.2 (Complex) Elementary Functions (複素)初等関数 Part 1:

4.2.1 (Complex) Exponential Functions (複素)指数関数

Suppose we know the fact that $e^{\alpha+\beta}=e^{\alpha}e^{\beta}$, where α and β are complex numbers.

Definition 4.1 Complex Exponential Function (複素指数函数)

The function
$$e^z$$
 (where $z=x+iy$) defined by
$$e^z=e^{x+iy}=e^xe^{iy}=e^x(\cos y+i\sin y)$$
 i.e. $e^z=e^x\cos y+ie^x\sin y$ (4.1.1)

is called the complex exponential function.

Notice: The function defined by (4.1.1) agrees with the real exponential function, i.e.

if z is real number, then
$$z = x + 0i$$
, and Definition 4.1 gives:

$$e^{x+i0} = e^x(\cos 0 + i \sin 0) = e^x(1+i0) = e^x$$

2023/12/18

Theorem 4.1 Analyticity (解析性) of e^z

The exponential function e^z is entire and its derivative is given by:

$$\frac{d}{dz}e^z = e^z \tag{4.1.3}$$

Proof: The Page 177 of Textbook

EXAMPLE (例題) 4.1.1 Derivatives of Exponential Functions

Find the derivative of the following functions:

(a)
$$iz^4(z^2 - e^z)$$
 and (b) $e^{z^2 - (1+i)z + 3}$

Solution (解答):

(a) Using Equation (4.1.3) and the product rule (積の法則) (3.1.4) in Lecture 3:

Product Rule (積の法則):
$$\frac{d}{dz}[f(z)g(z)] = f'(z)g(z) + f(z)g'(z)$$

$$\frac{d}{dz}[iz^4(z^2 - e^z)] = i4z^3(z^2 - e^z) + iz^4(2z - e^z)$$

$$= i6z^5 - iz^4e^z - i4z^3e^z$$
(3.1.4)

(b) Using Equation (4.1.3) and the chain rule (連鎖律) (3.1.6) in Lecture 3:

Chain Rule (連鎖律):
$$\frac{d}{dz}f(g(z)) = f'(g(z))g'(z) \tag{3.1.6}$$

$$\frac{d}{dz} \left[e^{z^2 - (1+i)z + 3} \right] = e^{z^2 - (1+i)z + 3} \cdot \left(2z - (1+i) \right) = e^{z^2 - (1+i)z + 3} \cdot (2z - 1 - i)$$

Theorem 4.2 Properties (性質) of e^z

If z_1 and z_2 are complex numbers, then

(i)
$$e^0 = 1$$

(ii)
$$e^{z_1}e^{z_2} = e^{z_1+z_2}$$

(iii)
$$\frac{e^{z_1}}{e^{z_2}} = e^{z_1 - z_2}$$

(iv)
$$(e^{z_1})^n = e^{nz_1}, n = 0, \pm 1, \pm 2, ...$$

(v)
$$|e^z| = e^{\text{Re}(z)}$$
, $\arg(e^z) = \text{Im}(z) + 2n\pi$ for $n = 0, \pm 1, \pm 2, ...$

(vi)
$$\overline{e^z} = e^{\bar{z}}$$

(vii)
$$e^z \neq 0$$
, for all $z \in \mathbf{C}$

Modulus (複素数の絶対値) and Argument (偏角)

We have the complex number $w = f(z) = e^z$ in polar form $re^{i\theta}$:

$$w = e^x \cos y + i e^x \sin y = e^x (\cos y + i \sin y) = r (\cos \theta + i \sin \theta)$$

then we see that the modulus $r = e^x$ and the argument $\theta = y + 2n\pi$, for n = 0, +1, +2,...

Modulus
$$|e^z| = r = e^x = e^{\operatorname{Re}(z)}$$
 (4.1.4)

Argument
$$\arg(e^z) = \theta = y + 2n\pi = \text{Im}(z) + 2n\pi$$
 for $n = 0, \pm 1, \pm 2, ...$ (4.1.5)

Conjugate (複素共役)

Because
$$cos(-y) = cos y$$
 $sin(-y) = -sin y$

$$\overline{e^z} = e^x \cos y - ie^x \sin y = e^x \cos(-y) + ie^x \sin(-y) = e^{x-iy} = e^{\overline{z}}$$
 (4.1.6)

Nonzero (非ゼロ)

From (4.1.4), we know $|e^z| > 0$ because $e^x > 0$ for all $x \in \mathbb{R}$. Then it implies $e^z \neq 0$, for all $z \in \mathbb{C}$.

Periodicity (周期性)

$$e^{z+2\pi i}=e^z$$

The complex exponential function e^z is **periodic** with a **pure imaginary period** (純虚数周期) $2\pi i$.

This is because, by (4.1.1) and Theorem 4.2(ii), we have

$$e^{z+2\pi i} = e^z e^{2\pi i} = e^z (\cos 2\pi + i \sin 2\pi) = e^z \cdot 1 = e^z$$

Notice that $e^{z+4\pi i} = e^{(z+2\pi i)+2\pi i} = e^{z+2\pi i} = e^z$

By repeating this process we find that

$$e^{z+2n\pi i} = e^z$$
 for $n = 0, \pm 1, \pm 2,...$

Figure 4.1 The fundamental region of e^z

Fundamental Region of the complex exponential function

• Because $e^{z+2n\pi i}=e^z$ for $n=0,\pm 1,\pm 2,...$ thus there are many points in the z-plane, for example, $z-2\pi i,z+4\pi i,z+6\pi i,...$ will correspond to the same single point $w=e^z$ in the w-plane, i.e. the complex exponential function $w=f(z)=e^z$ is not one-to-one (-mapping from <math>z-plane to w-plane.

- We divide the complex plane into <u>horizontal strips</u>.
- The infinite horizontal (水平な) strip defined by:

$$-\infty < x < \infty, -\pi < y \le \pi$$

is called the fundamental region (基本領域) of the complex exponential function e^z .

Notice $f(z) = e^z$, $f(z + 2\pi i) = e^{z+2\pi i}$, $f(z - 2\pi i) = e^{z-2\pi i}$ and so on are the same.

Figure 4.1 The fundamental region of e^z

4.2 (Complex) Elementary Functions (複素)初等関数 Part 1:

4.2.2 (Complex) Logarithmic Functions (複素)対数関数

However, if $e^x = -2$, then solution?

In real domain, the natural logarithm function $\ln x$ is often defined as an inverse function (逆関数) of the real exponential function e^x .

From now on, we can use the alternative notation $\log_e x$, where $x \in \mathbb{R}$ to represent the real exponential function e^x .

- The real exponential function is one-to-one (一対一) on its domain R,
- But the complex exponential function e^z is NOT a one-to-one function on its domain C, because there are infinitely (無限に) many arguments (偏角) of z.

Note: One-to-one (-対-) function is a function that maps distinct elements of its domain to distinct elements of its range, i.e. $f(x_1) \neq f(x_2)$ whenever $x_1 \neq x_2$.

If
$$e^w = z$$
, then $w = \log_e |z| + i \arg(z)$ (4.1.10)

Because of the Periodicity (周期性), there are infinitely (無限に) many arguments (偏角) of z, thus **(4.1.10) gives infinitely many solutions** w to the equation $e^w = z$.

The set of values given by (4.1.10) defines a multiple-valued function as:

Definition 4.2 Complex Logarithm Function (複素対数関数)

The multiple-valued function $\ln z$ (where z = x + iy) defined by $\ln z = \log_e |z| + i \arg(z)$ (4.1.11)

is called the complex logarithm.

Notice: We use the lowercase (小文字) letter for symbol ln z.

EXAMPLE (例題) 4.1.3 Solving Exponential Equations

Find all complex solutions to each of the following equations.

(a)
$$e^{w} = i$$
 (b) $e^{w} = 1 + i$ (c) $e^{w} = -2$

Solution (解答):

For each equation $e^w = z$, the set of solutions is given by $w = \ln z$ where $\ln z$ is found using Definition 4.2.

(a) For $e^w = z = i$, we have |z| = |i| = 1 and $\arg(i) = \arctan(\frac{\operatorname{Im}(i)}{\operatorname{Re}(i)}) = \frac{\pi}{2} + 2n\pi$.

Thus, from (4.1.11) we obtain:

Because $\lim_{a\to\infty} \arctan(a) = \frac{\pi}{2}$

$$w = \ln i = \log_e |i| + i \arg(i)$$

$$= \log_e 1 + i\left(\frac{\pi}{2} + 2n\pi\right) = 0 + i\left(\frac{\pi}{2} + 2n\pi\right) = \frac{(4n+1)\pi}{2}i \quad n = 0, \pm 1, \pm 2, \dots$$

Therefore, each of the values $w=\cdots,-\frac{3\pi}{2}i,\,\frac{\pi}{2}i,\,\frac{5\pi}{2}i,\dots$ satisfies the equation $e^w=i$.

Solution (解答)(cont.):

(b) For z=1+i, we have $|1+i|=\sqrt{2}$ and $\arg(1+i)=\arctan(\frac{\operatorname{Im}(z)}{\operatorname{Re}(z)})=\frac{\pi}{4}+2n\pi$. Thus, from (4.1.11) we obtain:

$$w = \ln(1+i) = \log_e |1+i| + i \arg(1+i)$$

$$= \log_e \sqrt{2} + i \left(\frac{\pi}{4} + 2n\pi\right)$$

$$= \frac{1}{2}\log_e 2 + \frac{(8n+1)\pi}{4}i \qquad n = 0, \pm 1, \pm 2, \dots$$

Each value of w is a solution to $e^w = 1 + i$.

(c) For z = -2, we have |-2| = 2 and $arg(-2) = arctan(\frac{Im(-2)}{Re(-2)}) = \pi + 2n\pi$. Thus, from (4.1.11) we obtain:

$$w = \ln(-2) = \log_e |-2| + i \arg(-2)$$

$$= \log_e 2 + i(\pi + 2n\pi)$$

$$= \log_e 2 + (2n + 1)\pi i$$

$$n = 0, \pm 1, \pm 2, ...$$

Theorem 4.3 Algebraic Properties of $\ln z$

If z_1 and z_2 are nonzero complex numbers and n is an integer, then

(i)
$$\ln(z_1 z_2) = \ln z_1 + \ln z_2$$

(ii)
$$\ln\left(\frac{z_1}{z_2}\right) = \ln z_1 - \ln z_2$$

(iii)
$$\ln z_1^n = n \ln z_1$$

Definition 4.3 Principal Value (主値) of the Complex Logarithm

The complex function $\operatorname{Ln} z$ (where z = x + iy) defined by

$$\operatorname{Ln} z = \log_e |z| + i \operatorname{Arg}(z), -\pi < \operatorname{arg}(z) \le \pi$$
 (4.1.14 and 4.1.15)

is called the <u>principal value (主値)</u> of the complex logarithm.

Notice: We use the uppercase (大文字) letter for Ln z here!

EXAMPLE (例題) 4.1.4 Principal Value of the Complex Logarithm Compute the principal value of the complex logarithm $\operatorname{Ln} z$ for

(a)
$$z = i$$
 (b) $z = 1 + i$ (c) $z = -2$

Solution (解答):

(a) For $e^w = z = i$, we have |i| = 1 and $Arg(i) = arctan(\frac{Im(z)}{Re(z)}) = \frac{\pi}{2} + \frac{2n\pi}{2}$. Thus, from (4.1.14) we obtain:

$$w = \operatorname{Ln} i = \log_e |i| + i \operatorname{Arg}(i)$$

$$= \log_e 1 + \frac{\pi}{2}i$$

$$= 0 + \frac{\pi}{2}i$$

$$= \frac{\pi}{2}i$$

Solution (解答)(cont.):

(b) For $e^w = z = 1 + i$, we have $|1 + i| = \sqrt{2}$ and $Arg(1 + i) = arctan(\frac{Im(1+i)}{Re(1+i)}) = \frac{\pi}{4}$. Thus, from (4.1.14) we obtain:

$$w = \text{Ln}(1+i) = \log_e |1+i| + i \operatorname{Arg}(1+i)$$

$$= \log_e \sqrt{2} + \frac{\pi}{4}i = \frac{1}{2}\log_e 2 + \frac{\pi}{4}i \approx 0.3466 + 0.7854i$$
Not necessary for the assignment report.

(c) For $e^w = z = -2$, we have |-2| = 2 and $Arg(-2) = arctan(\frac{Im(-2)}{Re(-2)}) = \pi$. Thus, from (4.1.14) we obtain:

$$w = \text{Ln}(-2) = \log_e |-2| + i \operatorname{Arg}(-2)$$
$$= \log_e 2 + \pi i \approx 0.6931 + 3.1416i$$

Not necessary for the assignment report.

$\operatorname{Ln} z$ as an Inverse Function (逆関数) of e^z

Follows from (4.1.10) that

$$e^{\operatorname{Ln} z} = z$$
 for all $z \neq 0$.

(4.1.16)

If the complex exponential function $f(z) = e^z$ is defined on the fundamental region $-\infty < x < \infty, -\pi < y \le \pi$,

then f is one-to-one (一対一) and the inverse function (逆関数) of f is the principal value of the complex logarithm $f^{-1}(z) = \operatorname{Ln} z$.

Recall that

Theorem 2.3 Real and Imaginary Parts of a Continuous Function

Suppose that f(z) = u(x,y) + iv(x,y) and $z_0 = x_0 + iy_0$. Then the complex function (複素関数) f is continuous at the point z_0 if and only if both real functions (実数値関数) u and v are continuous at the point (x_0, y_0) .

The principal value of the complex logarithm function

$$\operatorname{Ln} z = \log_e |z| + i \operatorname{Arg}(z), -\pi < \operatorname{arg}(z) \le \pi$$

z-plane

Figure 4.6 $f_1(z)$ defines on domain in gray color excluding blue ray

Real part $u(x,y) = \log_e |z| = \log_e \sqrt{x^2 + y^2}$ is **continuous at all points** in the plane **except** (0,0)

Imaginary part v(x,y) = Arg(z) is continuous on the domain |z| > 0, $-\pi < \text{arg}(z) < \pi$

Therefore, Ln z is a continuous function on the domain |z| > 0, $-\pi < \arg(z) < \pi$ (4.1.18)

We give this new function a name by "principal branch of the complex logarithm function"

$$f_1(z) = \log_e |z| + i \operatorname{Arg}(z), -\pi < \operatorname{arg}(z) < \pi \qquad (4.1.19) \qquad \text{Here, } f_1(z) \text{ is } \operatorname{Ln} z \text{ except } \operatorname{Arg}(z) = \pi$$

Theorem 4.4 Analyticity of the Principal Branch of $\ln z$

The principal branch f_1 of the complex logarithm defined by (4.1.19)

is an analytic function and its derivative is given by:

$$f_1'(z) = \frac{1}{z} \tag{4.1.20}$$

The theorem 4.4 implies that $\operatorname{Ln} z$ is differentiable in the domain |z| > 0,

 $-\pi < \arg(z) < \pi$, and its derivative is given by $f_1'(z)$.

That is, if |z| > 0, $-\pi < \arg(z) < \pi$ then

$$\frac{d}{dz} \operatorname{Ln} z = \frac{1}{z}$$

(4.1.21)

EXAMPLE (例題) 4.1.5 Derivatives of Logarithmic Functions Find the derivatives of the function $z \operatorname{Ln} z$ in an appropriate domain:

Solution (解答):

The function $z \operatorname{Ln} z$ is differentiable at all points where both of the functions z and $\operatorname{Ln} z$ are differentiable.

Because z is entire (整函数) and $\operatorname{Ln} z$ is differentiable on the domain given in (4.1.18), as |z| > 0, $-\pi < \operatorname{arg}(z) < \pi$, it follows that $z\operatorname{Ln} z$ is differentiable on the domain defined by |z| > 0, $-\pi < \operatorname{arg}(z) < \pi$

In this domain, the derivative is given by the product rule (積の法則) (3.1.4) of Lecture 3 and (4.1.21):

$$\frac{d}{dz}[z\operatorname{Ln} z] = z \cdot \frac{1}{z} + 1 \cdot \operatorname{Ln} z = 1 + \operatorname{Ln} z$$

Review for Lecture 4

- Harmonic Functions
- (Complex) Exponential Functions
- Exponential Mapping
- (Complex) Logarithmic Functions
- The principal value of the Logarithmic Functions
- Analyticity of the Principal Branch of In z

Exercise

Please Check http://web-ext.u-aizu.ac.jp/~xiangli/teaching/MA06/index.html

References

- [1] A First Course in Complex Analysis with Application, Dennis G. Zill and Patrick D. Shanahan, Jones and Bartlett Publishers, Inc. 2003
- [2] Elementary function: https://en.wikipedia.org/wiki/Elementary_function
- [3] 初等関数とは: http://www.cc.miyazaki-u.ac.jp/yazaki/teaching/di/di-function.pdf