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4.1 Harmonic Functions (調和関数)
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4.1  Harmonic Functions (調和関数)

is called Laplace’s equation (ラプラス方程式) in two independent variables 𝑥 and 𝑦.

( The sum of the two second partial derivatives in (3.3.1) is denoted by 𝛻2𝜙 and is called the 
Laplacian of 𝜙(𝑥, 𝑦).  Laplace’s equation is then abbreviated as 𝛻2𝜙 = 0. )

Laplace’s Equation (ラプラス方程式) 

Definition 3.3   Harmonic Functions (調和関数)

A real-valued function 𝜙 of two real variables 𝑥 and 𝑦 that has 
continuous (連続) first and second-order partial derivatives (一階
と二階偏微分) in a domain 𝐷 and satisfies Laplace’s equation is said 
to be harmonic in 𝐷.

𝜕2𝜙

𝜕𝑥2
+
𝜕2𝜙

𝜕𝑦2
= 0

The second-order partial differential equation (二階偏微分方程式)

(3.3.1) 
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4.1  Harmonic Functions (調和関数)

Harmonic Functions (調和関数)

Theorem 3.7  Analyticity (解析性) and Harmonic Functions (調和関数)

Proof: The Page 160 of Textbook

𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) is analytic in a domain 𝐷.

𝑢(𝑥, 𝑦)

𝑣(𝑥, 𝑦) is harmonic in 𝐷.

is harmonic in 𝐷

Suppose

then

and
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4.1  Harmonic Functions (調和関数)

EXAMPLE (例題) 3.3.1   Harmonic Functions
Show that the real and imaginary parts of function 𝑓(𝑧) = 𝑧2, 
where 𝑧 = 𝑥 + 𝑖𝑦, are harmonic in 𝐂.

The function 𝑓(𝑧) = 𝑧2 = 𝑥2 − 𝑦2 + 2𝑥𝑦𝑖 is entire (i.e. 整函数). 

Then the function 𝑓(𝑧) = 𝑧2 = 𝑥2 − 𝑦2 + 2𝑥𝑦𝑖 is analytic at every point 𝑧 in the 
complex plane.

According to Theorem 3.7,
The functions 𝑢(𝑥, 𝑦) = 𝑥2 − 𝑦2 and 𝑣(𝑥, 𝑦) = 2𝑥𝑦 are necessarily harmonic in 
the complex plane, i.e. in 𝐂.

Solution (解答): 

Harmonic Functions (調和関数)
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4.1  Harmonic Functions (調和関数)

Harmonic Conjugate Functions (共役調和関数)

By combining the functions as 𝑢 𝑥, 𝑦 + 𝑖𝑣 𝑥, 𝑦 , we obtain a 
function 𝑓(𝑧) that is analytic in 𝐷.

Now suppose 𝑢(𝑥, 𝑦) is a given real function that is harmonic in 𝐷;

find another real harmonic function 𝑣(𝑥, 𝑦) so that 𝑢 and 𝑣 satisfy 
the Cauchy-Riemann equations throughout the domain 𝐷;

then this function 𝑣(𝑥, 𝑦) is called a harmonic conjugate function 
(共役調和関数) of 𝑢(𝑥, 𝑦).
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4.1  Harmonic Functions (調和関数)

EXAMPLE (例題) 3.3.2   Harmonic Conjugate Function
(a) Verify that the function 𝑢(𝑥, 𝑦) = 𝑥3 − 3𝑥𝑦2 − 5𝑦 is harmonic in 
the entire complex plane.
(b) Find the harmonic conjugate function of 𝑢(𝑥, 𝑦).

Solution (解答): 

(a) From the partial derivatives

we see that 𝑢 satisfies Laplace’s equation:

Harmonic Conjugate Functions (共役調和関数)

𝜕𝑢

𝜕𝑥
= 3𝑥2 − 3𝑦2

𝜕2𝑢

𝜕𝑥2
= 6𝑥

𝜕𝑢

𝜕𝑦
= −6𝑥𝑦 − 5

𝜕2𝑢

𝜕𝑦2
= −6𝑥

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
= 6𝑥 − 6𝑥 = 0

Therefore, according to the Definition 3.3, 𝑢(𝑥, 𝑦) is harmonic in 𝐂.
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4.1  Harmonic Functions (調和関数)

(b) Since the harmonic conjugate function 𝑣 must satisfy the Cauchy-Riemann 

equations

Partial integration (積分) of 
𝜕𝑣

𝜕𝑦
=

𝜕𝑢

𝜕𝑥
= 3𝑥2 − 3𝑦2 with respect to 𝑦 gives 

𝑣(𝑥, 𝑦) = 3𝑥2𝑦 − 𝑦3 + ℎ(𝑥).
From this 𝑣(𝑥, 𝑦), we compute the partial derivative with respect to 𝑥 as 

𝜕𝑣

𝜕𝑥
= 6𝑥𝑦 + ℎ′(𝑥)

Compare this 
𝜕𝑣

𝜕𝑥
with the second equation in (3.3.3), we can obtain ℎ′(𝑥) = 5, and so 

ℎ(𝑥) = 5𝑥 + 𝑐, where 𝑐 is a real constant. 

Solution (解答)(cont.): 

𝜕𝑣

𝜕𝑦
=
𝜕𝑢

𝜕𝑥
and

𝜕𝑣

𝜕𝑥
= −

𝜕𝑢

𝜕𝑦 then we must have

𝜕𝑣

𝜕𝑦
=
𝜕𝑢

𝜕𝑥
= 3𝑥2 − 3𝑦2

𝜕𝑣

𝜕𝑥
= −

𝜕𝑢

𝜕𝑦
= − −6𝑥𝑦 − 5 = 6𝑥𝑦 + 5and (3.3.3) 

Therefore, the harmonic conjugate function of 𝑢(𝑥, 𝑦) is 𝑣(𝑥, 𝑦) = 3𝑥2𝑦 − 𝑦3 + 5𝑥 + 𝑐.
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4.2 (Complex) Elementary Functions (複素)初等関数 Part 1 :

4.2.1 (Complex) Exponential Functions (複素)指数関数
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4.2.1 (Complex) Exponential Functions (複素)指数関数

Definition 4.1   Complex Exponential Function (複素指数函数)

The function 𝑒𝑧 (where 𝑧 = 𝑥 + 𝑖𝑦)  defined by

𝑒𝑧 = 𝑒𝑥+𝑖𝑦 = 𝑒𝑥𝑒𝑖𝑦 = 𝑒𝑥(cos 𝑦 + 𝑖sin 𝑦)

is called the complex exponential function.

𝑒𝑧 = 𝑒𝑥cos 𝑦 + 𝑖𝑒𝑥sin 𝑦i.e. (4.1.1)

Notice: The function defined by (4.1.1) agrees with the real 
exponential function, i.e. 

if 𝑧 is real number, then 𝑧 = 𝑥 + 0𝑖, and Definition 4.1 gives:
𝑒𝑥+𝑖0 = 𝑒𝑥 cos 0 + 𝑖 sin 0 = 𝑒𝑥 1 + 𝑖0 = 𝑒𝑥

Suppose we know the fact that 𝑒𝛼+𝛽 = 𝑒𝛼𝑒𝛽, where 𝛼 and 𝛽 are complex numbers.

By Euler’s Formula
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Theorem 4.1  Analyticity (解析性) of 𝑒𝑧

The exponential function 𝑒𝑧 is entire and its derivative is given by:

𝑑

𝑑𝑧
𝑒𝑧 = 𝑒𝑧 (4.1.3)

Proof: The Page 177 of Textbook

4.2.1 (Complex) Exponential Functions (複素)指数関数
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EXAMPLE (例題) 4.1.1   Derivatives of Exponential Functions 
Find the derivative of the following functions:

(a) 𝑖𝑧4 𝑧2 − 𝑒𝑧 and  (b) 𝑒𝑧
2− 1+𝑖 𝑧+3

Solution (解答): 

(a) Using Equation (4.1.3) and the product rule (積の法則) (3.1.4) in Lecture 3:

(b) Using Equation (4.1.3) and the chain rule (連鎖律) (3.1.6) in Lecture 3:

𝑑

𝑑𝑧
𝑖𝑧4 𝑧2 − 𝑒𝑧 = 𝑖4𝑧3 𝑧2 − 𝑒𝑧 + 𝑖𝑧4 2𝑧 − 𝑒𝑧

= 𝑖6𝑧5 − 𝑖𝑧4𝑒𝑧 − 𝑖4𝑧3𝑒𝑧

𝑑

𝑑𝑧
𝑒𝑧

2− 1+𝑖 𝑧+3 = 𝑒𝑧
2− 1+𝑖 𝑧+3 ∙ 2𝑧 − 1 + 𝑖 = 𝑒𝑧

2− 1+𝑖 𝑧+3 ∙ 2𝑧 − 1 − 𝑖

𝑑

𝑑𝑧
𝑓 𝑧 𝑔(𝑧) = 𝑓′ 𝑧 𝑔 𝑧 + 𝑓(𝑧)𝑔′(𝑧)Product Rule (積の法則): (3.1.4) 

Chain Rule (連鎖律):
𝑑

𝑑𝑧
𝑓(𝑔(𝑧)) = 𝑓′ 𝑔 𝑧 𝑔′(𝑧) (3.1.6) 

4.2.1 (Complex) Exponential Functions (複素)指数関数
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Theorem 4.2  Properties (性質) of 𝑒𝑧

If 𝑧1 and 𝑧2 are complex numbers, then

𝑒0 = 1

𝑒𝑧1𝑒𝑧2 = 𝑒𝑧1+𝑧2

𝑒𝑧1

𝑒𝑧2
= 𝑒𝑧1−𝑧2

𝑒𝑧1 𝑛 = 𝑒𝑛𝑧1 , 𝑛 = 0,±1,±2,…

(i)

(ii)

(iii)

(iv)

𝑒𝑧 = 𝑒 ҧ𝑧

𝑒𝑧 ≠ 0, for all 𝑧 ∈ 𝐂

𝑒𝑧 = 𝑒Re(𝑧),  arg (𝑒𝑧) = Im 𝑧 + 2𝑛𝜋(v)

(vi)

(vii)

4.2.1 (Complex) Exponential Functions (複素)指数関数

for 𝑛 = 0,±1,±2, . . .
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Modulus (複素数の絶対値) and Argument (偏角) 

𝑤 = 𝑒𝑥cos 𝑦 + 𝑖𝑒𝑥sin 𝑦 = 𝑒𝑥 cos 𝑦 + 𝑖sin 𝑦 = 𝑟 (cos 𝜃 + 𝑖 sin 𝜃)

We have the complex number 𝑤 = 𝑓 𝑧 = 𝑒𝑧 in polar form 𝑟𝑒𝑖𝜃:

then we see that the modulus 𝑟 = 𝑒𝑥 and the argument 𝜃 = 𝑦 + 2𝑛𝜋, 
for 𝑛 = 0,±1,±2, . . .

𝑒𝑧 = 𝑟 = 𝑒𝑥 = 𝑒Re(𝑧)

arg (𝑒𝑧) = 𝜃 = 𝑦 + 2𝑛𝜋 = Im 𝑧 + 2𝑛𝜋 for 𝑛 = 0,±1, ±2, . . .

Conjugate (複素共役)

Modulus

Argument

𝑒𝑧 = 𝑒𝑥 cos 𝑦 − 𝑖𝑒𝑥 sin 𝑦 = 𝑒𝑥 cos −𝑦 + 𝑖𝑒𝑥 sin −𝑦 = 𝑒𝑥−𝑖𝑦 = 𝑒 ҧ𝑧
sin −𝑦 = − sin 𝑦cos −𝑦 = cos 𝑦Because

(4.1.4)

(4.1.5)

(4.1.6)

From (4.1.4), we know 𝑒𝑧 > 0 because  𝑒𝑥 > 0 for all 𝑥 ∈ 𝐑. Then it implies 
𝑒𝑧 ≠ 0, for all 𝑧 ∈ 𝐂. 

Nonzero (非ゼロ)

4.2.1 (Complex) Exponential Functions (複素)指数関数
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Periodicity (周期性)

𝑒𝑧+2𝜋𝑖 = 𝑒𝑧

This is because, by (4.1.1) and Theorem 4.2(ii), we have 

𝑒𝑧+2𝜋𝑖 = 𝑒𝑧𝑒2𝜋𝑖 = 𝑒𝑧 cos 2𝜋 + 𝑖 sin 2𝜋 = 𝑒𝑧 ∙ 1 = 𝑒𝑧

The complex exponential function 𝑒𝑧 is periodic with a pure imaginary period 
(純虚数周期) 2𝜋𝑖.

𝑒𝑧+4𝜋𝑖 = 𝑒 𝑧+2𝜋𝑖 +2𝜋𝑖 = 𝑒𝑧+2𝜋𝑖 = 𝑒𝑧

By repeating this process we find that 

𝑒𝑧+2𝑛𝜋𝑖 = 𝑒𝑧 for 𝑛 = 0,±1,±2, . . .

Notice that 

Figure 4.1 The fundamental region of 𝑒𝑧

𝑧-plane

4.2.1 (Complex) Exponential Functions (複素)指数関数
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• The infinite horizontal (水平な) strip defined by:

thus there are many points in the 𝑧-plane, for
example, 𝑧 − 2𝜋𝑖, 𝑧 + 4𝜋𝑖, 𝑧 + 6𝜋𝑖, …will correspond
to the same single point 𝑤 = 𝑒𝑧 in the 𝑤-plane,

Figure 4.1 The fundamental region of 𝑒𝑧

𝑧-plane

Fundamental Region of the complex exponential function

𝑒𝑧+2𝑛𝜋𝑖 = 𝑒𝑧 for 𝑛 = 0,±1,±2, . . .

• We divide the complex plane into horizontal strips.

• Because

−∞ < 𝑥 < ∞,−𝜋 < 𝑦 ≤ 𝜋
is called the fundamental region (基本領域) of the 
complex exponential function 𝑒𝑧.

i.e. the complex exponential function 𝑤 = 𝑓 𝑧 = 𝑒𝑧

is not one-to-one (一対一) mapping from 𝑧-plane to 
𝑤-plane.

Notice 𝑓 𝑧 = 𝑒𝑧, 𝑓 𝑧 + 2𝜋𝑖 = 𝑒𝑧+2𝜋𝑖 , 𝑓 𝑧 − 2𝜋𝑖 =
𝑒𝑧−2𝜋𝑖 and so on are the same.

4.2.1 (Complex) Exponential Functions (複素)指数関数
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4.2 (Complex) Elementary Functions (複素)初等関数 Part 1 :

4.2.2 (Complex) Logarithmic Functions (複素)対数関数
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4.2.2 (Complex) Logarithmic Functions (複素)対数関数

However, if 𝑒𝑥 = −2,

then solution?
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From now on, we can use the alternative notation log𝑒 𝑥, where 𝑥 ∈ 𝐑 to represent 
the real exponential function 𝑒𝑥.

• The real exponential function is one-to-one (一対一) on its domain 𝐑,

• But the complex exponential function 𝑒𝑧 is NOT a one-to-one function on its 
domain 𝐂, because there are infinitely (無限に) many arguments (偏角) of 𝑧.

In real domain, the natural logarithm function ln 𝑥 is often defined as an 
inverse function (逆関数) of the real exponential function 𝑒𝑥.

Note: One-to-one (一対一) function is a function that maps distinct elements of 
its domain to distinct elements of its range, i.e. 𝑓(𝑥1) ≠ 𝑓(𝑥2) whenever 𝑥1 ≠ 𝑥2.

4.2.2 (Complex) Logarithmic Functions (複素)対数関数
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Definition 4.2   Complex Logarithm Function (複素対数関数)

The multiple-valued function ln 𝑧 (where 𝑧 = 𝑥 + 𝑖𝑦)  defined by

ln 𝑧 = log𝑒 |𝑧| + 𝑖 arg(𝑧)

is called the complex logarithm.

(4.1.11)

Notice: We use the lowercase (小文字) letter for symbol ln 𝑧.

If 𝑒𝑤 = 𝑧, then 𝑤 = log𝑒 |𝑧| + 𝑖 arg(𝑧)

Because of the Periodicity (周期性), there are infinitely (無限に) many arguments 
(偏角) of 𝑧, thus (4.1.10) gives infinitely many solutions 𝑤 to the equation 𝑒𝑤 = 𝑧.

(4.1.10)

The set of values given by (4.1.10) defines a multiple-valued function as:

4.2.2 (Complex) Logarithmic Functions (複素)対数関数



2023/12/18 MA06 Complex Analysis (複素関数論) 21

EXAMPLE (例題) 4.1.3   Solving Exponential Equations 
Find all complex solutions to each of the following equations.
(a)𝑒𝑤 = 𝑖 (b)𝑒𝑤 = 1 + 𝑖 (c)𝑒𝑤 = −2

Solution (解答): 

(a) For 𝑒𝑤 = 𝑧 = 𝑖, we have 𝑧 = |𝑖| = 1 and arg 𝑖 = arctan(
Im(𝑖)

Re(𝑖)
) =

𝜋

2
+ 2𝑛𝜋. 

𝑤 = ln 𝑖 = log𝑒 |𝑖| + 𝑖 arg(𝑖)

Because lim
𝑎→∞

arctan 𝑎 =
𝜋

2
Thus, from (4.1.11) we obtain:

= log𝑒 1 + 𝑖
𝜋

2
+ 2𝑛𝜋 = 0 + 𝑖

𝜋

2
+ 2𝑛𝜋 =

4𝑛 + 1 𝜋

2
𝑖 𝑛 = 0,±1,±2, . . .

Therefore, each of the values 𝑤 = ⋯ ,−
3𝜋

2
𝑖,

𝜋

2
𝑖,

5𝜋

2
𝑖, … satisfies the equation 𝑒𝑤 = 𝑖 .

For each equation 𝑒𝑤 = 𝑧, the set of solutions is given by 𝑤 = ln 𝑧 where ln 𝑧 is found using Definition 4.2.

4.2.2 (Complex) Logarithmic Functions (複素)対数関数
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(b) For 𝑧 = 1 + 𝑖, we have |1 + 𝑖| = 2 and arg 1 + 𝑖 = arctan(
Im(𝑧)

Re(𝑧)
) =

𝜋

4
+ 2𝑛𝜋. 

𝑤 = ln(1 + 𝑖) = log𝑒 |1 + 𝑖| + 𝑖 arg(1 + 𝑖)

Thus, from (4.1.11) we obtain:

= log𝑒 2 + 𝑖
𝜋

4
+ 2𝑛𝜋

𝑛 = 0,±1,±2, . . .=
1

2
log𝑒 2 +

8𝑛 + 1 𝜋

4
𝑖

(c) For 𝑧 = −2, we have | − 2| = 2 and arg −2 = arctan(
Im(−2)

Re(−2)
) = 𝜋 + 2𝑛𝜋. 

𝑤 = ln(−2) = log𝑒 | − 2| + 𝑖 arg(−2)

Thus, from (4.1.11) we obtain:

= log𝑒 2 + 𝑖 𝜋 + 2𝑛𝜋

𝑛 = 0,±1,±2, . . .= log𝑒 2 + 2𝑛 + 1 𝜋𝑖

Solution (解答)(cont.): 

Each value of 𝑤 is a solution to 𝑒𝑤 = 1 + 𝑖.

4.2.2 (Complex) Logarithmic Functions (複素)対数関数
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Theorem 4.3  Algebraic Properties of ln 𝑧

If 𝑧1 and 𝑧2 are nonzero complex numbers and 𝑛 is an integer, then

ln 𝑧1𝑧2 = ln 𝑧1 + ln 𝑧2

ln
𝑧1
𝑧2

= ln 𝑧1 − ln 𝑧2

(i)

(ii)

(iii) ln 𝑧1
𝑛 = 𝑛 ln 𝑧1

4.2.2 (Complex) Logarithmic Functions (複素)対数関数
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Definition 4.3   Principal Value (主値) of the Complex Logarithm

The complex function Ln 𝑧 (where 𝑧 = 𝑥 + 𝑖𝑦)  defined by

Ln 𝑧 = log𝑒 |𝑧| + 𝑖 Arg(𝑧), −𝜋 < arg(𝑧) ≤ 𝜋

is called the principal value (主値) of the complex logarithm.

(4.1.14 and 4.1.15)

Notice: We use the uppercase (大文字) letter for Ln 𝑧 here!

4.2.2 (Complex) Logarithmic Functions (複素)対数関数
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EXAMPLE (例題) 4.1.4   Principal Value of the Complex Logarithm 
Compute the principal value of the complex logarithm Ln 𝑧 for
(a) 𝑧 = 𝑖 (b) 𝑧 = 1 + 𝑖 (c) 𝑧 = −2

Solution (解答): 

(a) For 𝑒𝑤 = 𝑧 = 𝑖, we have |𝑖| = 1 and Arg 𝑖 = arctan(
Im(𝑧)

Re(𝑧)
) =

𝜋

2
+ 2𝑛𝜋

𝑤 = Ln 𝑖 = log𝑒 |𝑖| + 𝑖 Arg(𝑖)

Thus, from (4.1.14) we obtain:

= log𝑒 1 +
𝜋

2
𝑖 𝑛 = 0,±1,±2, . . .

= 0 +
𝜋

2
𝑖

=
𝜋

2
𝑖

4.2.2 (Complex) Logarithmic Functions (複素)対数関数
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(b) For 𝑒𝑤 = 𝑧 = 1 + 𝑖, we have |1 + 𝑖| = 2 and Arg 1 + 𝑖 = arctan(
Im(1+i)

Re(1+𝑖)
) =

𝜋

4
. 

𝑤 = Ln(1 + 𝑖) = log𝑒 |1 + 𝑖| + 𝑖 Arg(1 + 𝑖)

Thus, from (4.1.14) we obtain:

= log𝑒 2 +
𝜋

4
𝑖 =

1

2
log𝑒 2 +

𝜋

4
𝑖 ≈ 0.3466 + 0.7854𝑖

(c) For 𝑒𝑤 = 𝑧 = −2, we have | − 2| = 2 and Arg −2 = arctan(
Im(−2)

Re(−2)
) = 𝜋. 

𝑤 = Ln(−2) = log𝑒 | − 2| + 𝑖 Arg(−2)

Thus, from (4.1.14) we obtain:

= log𝑒 2 + 𝜋𝑖 ≈ 0.6931 + 3.1416𝑖

Solution (解答)(cont.): 

4.2.2 (Complex) Logarithmic Functions (複素)対数関数

Not necessary for the assignment report.

Not necessary for the assignment report.
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Ln 𝑧 as an Inverse Function (逆関数) of 𝑒𝑧

𝑒Ln 𝑧 = 𝑧 for all 𝑧 ≠ 0. 

If the complex exponential function 𝑓(𝑧) = 𝑒𝑧 is defined on the 

fundamental region −∞ < 𝑥 < ∞,−𝜋 < 𝑦 ≤ 𝜋, 

(4.1.16)

Follows from (4.1.10) that

then 𝑓 is one-to-one (一対一) and the inverse function (逆関数) of 

𝑓 is the principal value of the complex logarithm 𝑓−1(𝑧) = Ln 𝑧.

4.2.2 (Complex) Logarithmic Functions (複素)対数関数
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Ln 𝑧 = log𝑒 |𝑧| + 𝑖 Arg(𝑧), −𝜋 < arg(𝑧) ≤ 𝜋

𝑢 𝑥, 𝑦 = log𝑒 |𝑧| = log𝑒 𝑥2 + 𝑦2

𝑣 𝑥, 𝑦 = Arg(𝑧)

is continuous at all points in the plane except (0, 0)

is continuous on the domain 𝑧 > 0, −𝜋 < arg 𝑧 < 𝜋

Real part

Imaginary part

𝑧 > 0, −𝜋 < arg 𝑧 < 𝜋Therefore, Ln 𝑧 is a continuous function on the domain

𝑓1(𝑧) = log𝑒 |𝑧| + 𝑖 Arg(𝑧), −𝜋 < arg(𝑧) < 𝜋

Recall that 

The principal value of the complex logarithm function

We give this new function a name by “principal branch of the complex logarithm function”

Here, 𝑓1 𝑧 is Ln 𝑧 except Arg(𝑧) = 𝜋(4.1.19)

Figure 4.6 𝑓1(𝑧) defines 
on domain in gray color 
excluding blue ray 

𝑧-plane

(4.1.18)

4.2.2 (Complex) Logarithmic Functions (複素)対数関数
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Theorem 4.4  Analyticity of the Principal Branch of ln 𝑧

The principal branch 𝑓1 of the complex logarithm defined by (4.1.19) 

is an analytic function and its derivative is given by:

𝑓1
′ 𝑧 =

1

𝑧 (4.1.20)

The theorem 4.4 implies that Ln 𝑧 is differentiable in the domain 𝑧 > 0, 

− 𝜋 < arg 𝑧 < 𝜋, and its derivative is given by 𝑓1
′ 𝑧 . 

That is, if 𝑧 > 0, −𝜋 < arg 𝑧 < 𝜋 then

𝑑

𝑑𝑧
Ln 𝑧 =

1

𝑧
(4.1.21)

4.2.2 (Complex) Logarithmic Functions (複素)対数関数
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EXAMPLE (例題) 4.1.5   Derivatives of Logarithmic Functions 
Find the derivatives of the function 𝑧Ln 𝑧 in an appropriate domain:

Solution (解答): 

The function 𝑧Ln 𝑧 is differentiable at all points where both of the functions 𝑧 and Ln 𝑧 are 
differentiable.

Because 𝑧 is entire (整函数) and Ln 𝑧 is differentiable on the domain given in (4.1.18), as 𝑧 > 0, 
− 𝜋 < arg 𝑧 < 𝜋, it follows that 𝑧Ln 𝑧 is differentiable on the domain defined by 𝑧 > 0, −𝜋 <
arg 𝑧 < 𝜋

In this domain, the derivative is given by the product rule (積の法則) (3.1.4) of Lecture 3 and 
(4.1.21):

𝑑

𝑑𝑧
zLn 𝑧 = 𝑧 ∙

1

𝑧
+ 1 ∙ Ln 𝑧 = 1 + Ln 𝑧

4.2.2 (Complex) Logarithmic Functions (複素)対数関数
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• Harmonic Functions

• (Complex) Exponential Functions

• Exponential Mapping

• (Complex) Logarithmic Functions

• The principal value of the Logarithmic Functions

• Analyticity of the Principal Branch of ln 𝑧

Review for Lecture 4

Please Check http://web-ext.u-aizu.ac.jp/~xiangli/teaching/MA06/index.html

Exercise
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