

4.2 (Complex) Elementary Functions (複素)初等関数 Part 1: 4.2.1 (Complex) Exponential Functions (複素)指数関数 4.2.2 (Complex) Logarithmic Functions (複素)対数関数

Laplace's Equation (ラプラス方程式)

The **second-order partial differential equation (二階偏微分方程式)**

$$
\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0
$$
 (3.3.1)

is called Laplace's equation (ラプラス方程式) in two independent variables x and y.

(The sum of the two second partial derivatives in (3.3.1) is denoted by $\nabla^2 \phi$ and is called the **Laplacian** of $\phi(x, y)$. **Laplace's equation** is then abbreviated as $\nabla^2 \phi = 0$.)

Definition 3.3 Harmonic Functions (調和関数)

A real-valued function ϕ of two real variables x and y that has **continuous (連続) first and second-order partial derivatives (一階** と二階偏微分) in a domain *D* and satisfies Laplace's equation is said to be **harmonic** in D.

4.1 **Harmonic Functions** (**調和関数**) **Harmonic Functions (調和関数) Theorem 3.7 Analyticity (解析性) and Harmonic Functions (調和関数)** Proof: The Page 160 of Textbook **Suppose** $f(z) = u(x, y) + iv(x, y)$ is analytic in a domain *D*. $u(x, y)$ is harmonic in D $\nu(x, y)$ is harmonic in D. **then and**

Harmonic Functions (調和関数)

EXAMPLE (例題) 3.3.1 Harmonic Functions Show that the real and imaginary parts of function $f(z) = z^2$, where $z = x + iy$, are harmonic in C.

Solution (解答):

The function $f(z) = z^2 = x^2 - y^2 + 2xyi$ is **entire (i.e.** 整函数).

Then the function $f(z) = z^2 = x^2 - y^2 + 2xyi$ is **analytic at every point** z in the complex plane.

According to Theorem 3.7, The functions $u(x, y) = x^2 - y^2$ and $v(x, y) = 2xy$ are necessarily harmonic in the complex plane, i.e. in C.

Harmonic Conjugate Functions (共役調和関数)

EXAMPLE (例題) 3.3.2 Harmonic Conjugate Function (a) Verify that the function $u(x, y) = x^3 - 3xy^2 - 5y$ is harmonic in **the entire complex plane**. (b) Find the harmonic conjugate function of $u(x, y)$.

Solution (解答):

(**a**) From the partial derivatives

$$
\frac{\partial u}{\partial x} = 3x^2 - 3y^2 \qquad \implies \qquad \frac{\partial^2 u}{\partial x^2} = 6x
$$

$$
\frac{\partial u}{\partial y} = -6xy - 5 \qquad \implies \qquad \frac{\partial^2 u}{\partial y^2} = -6x
$$

we see that **satisfies Laplace's equation**:

$$
\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 6x - 6x = 0
$$

Therefore, according to the Definition 3.3, $u(x, y)$ is **harmonic** in C.

4.1 **Harmonic Functions** (**調和関数**) **Solution (解答)(cont.):**

(**b**) Since the **harmonic conjugate function** must **satisfy the Cauchy-Riemann**

equations Partial integration (積分) of ∂y = ∂u ∂x $= 3x² - 3y²$ with respect to y gives $v(x, y) = 3x^2y - y^3 + h(x)$. From this $v(x, y)$, we compute the **partial derivative with respect to** x as $\partial \pmb{\nu}$ ∂x $= 6xy + h'(x)$ Compare this $\frac{\partial v}{\partial x}$ with the second equation in (3.3.3), we can obtain $h'(x) = 5$, and so $h(x) = 5x + c$, where c is a real constant. $\partial \pmb{\nu}$ ∂y = $\frac{\partial u}{\partial x}$ and $\frac{\partial v}{\partial x}$ = − ∂u $\frac{\partial u}{\partial y}$ then we must have ∂v ∂y = ∂u ∂x $= 3x^2 - 3y^2$ and $\frac{\partial v}{\partial x}$ ∂x = − ∂u and $\frac{\partial y}{\partial x} = -\frac{\partial u}{\partial y} = -(-6xy - 5) = 6xy + 5$ (3.3.3)

2023/12/18 MA06 Complex Analysis (複素関数論) 8 Therefore, the **harmonic conjugate function** of $u(x, y)$ is $v(x, y) = 3x^2y - y^3 + 5x + c$.

4.2 (Complex) Elementary Functions (複素)初等関数 Part 1 : 4.2.1 (Complex) Exponential Functions (複素)指数関数

Suppose we know the fact that $e^{\alpha+\beta} = e^{\alpha}e^{\beta}$, where α and β are complex numbers.

Definition 4.1 Complex Exponential Function (複素指数函数)

The function e^z (where $z = x + iy$) defined by $e^{z} = e^{x+iy} = e^{x}e^{iy} = e^{x}(\cos y + i\sin y)$ is called the **complex exponential function**. i.e. $e^z = e^x \cos y + i e^x \sin y$ By Euler's Formula (4.1.1) By Euler's Formula

Notice: The function defined by (4.1.1) agrees with the real exponential function, i.e.

if z is real number, then $z = x + 0i$, and Definition 4.1 gives: $e^{x+ i0} = e^x(\cos 0 + i \sin 0) = e^x(1 + i0) = e^x$

Theorem 4.1 Analyticity (解析性) of

The exponential function e^z is entire and its derivative is given by:

$$
\frac{d}{dz}e^z = e^z
$$

$$
z \tag{4.1.3}
$$

Proof: The Page 177 of Textbook

EXAMPLE (例題) 4.1.1 Derivatives of Exponential Functions Find the derivative of the following functions: (a) $iz^4(z^2 - e^z)$ and (b) $e^{z^2 - (1+i)z + 3}$

Solution (解答):

(a) Using Equation (4.1.3) and the product rule (積の法則) (3.1.4) in Lecture 3:

Product Rule (積の法則):	$\frac{d}{dz}[f(z)g(z)] = f'(z)g(z) + f(z)g'(z)$ \n	(3.1.4)
$\frac{d}{dz}[iz^4(z^2 - e^z)] = i4z^3(z^2 - e^z) + iz^4(2z - e^z)$ \n	$= i6z^5 - iz^4e^z - i4z^3e^z$ \n	

(b) Using Equation (4.1.3) and the chain rule (連鎖律) (3.1.6) in Lecture 3:

$$
\frac{d}{dz} \left[e^{z^2 - (1+i)z + 3} \right] = e^{z^2 - (1+i)z + 3} \cdot \left(2z - (1+i) \right) = e^{z^2 - (1+i)z + 3} \cdot \left(2z - 1 - i \right)
$$
\n(3.1.6)

Theorem 4.2 Properties (性質) of

If z_1 and z_2 are complex numbers, then $e^{0} = 1$ $e^{Z_1}e^{Z_2}=e^{Z_1+Z_2}$ e^{z_1} e^{z_2} $= e^{Z_1 - Z_2}$ $(e^{z_1})^n = e^{nz_1}, n = 0, \pm 1, \pm 2, ...$ (i) (ii) (iii) (iv) (vi) $\overline{e^z} = e^{\overline{z}}$ $e^z \neq 0$, for all $z \in \mathbb{C}$ (v) $|e^z| = e^{\text{Re}(z)}$, $\arg(e^z) = \text{Im}(z) + 2n\pi$ for $n = 0, \pm 1, \pm 2, ...$ (vii)

Modulus (複素数の絶対値) and Argument (偏角)

We have the complex number $w = f(z) = e^z$ in polar form $re^{i\theta}$:

 $w = e^x \cos y + ie^x \sin y = e^x (\cos y + i \sin y) = r (\cos \theta + i \sin \theta)$

then we see that the modulus $r = e^x$ and the argument $\theta = y + 2n\pi$, for $n = 0, +1, +2, \ldots$

$$
Modulus \t|e^z| = r = e^x = e^{Re(z)} \t(4.1.4)
$$

Argument $\arg(e^z) = \theta = y + 2n\pi = \text{Im}(z) + 2n\pi$ for $n = 0, \pm 1, \pm 2,...$ (4.1.5)

Conjugate (複素共役) $\overline{e^z} = e^x \cos y - ie^x \sin y = e^x \cos(-y) + ie^x \sin(-y) = e^{x-iy} = e^{\overline{z}}$ (4.1.6) Because $cos(-y) = cos y$ $sin(-y) = -sin y$

Nonzero (非ゼロ)

From (4.1.4), we know $|e^z| > 0$ because $e^x > 0$ for all $x \in \mathbb{R}$. Then it implies $e^z \neq 0$, for all $z \in \mathbb{C}$.

Periodicity (周期性) $e^{z+2\pi i}=e^z$

The complex exponential function e^z is **periodic** with a pure imaginary period $($ 純虚数周期 $)$ $2\pi i$.

Fundamental Region of the complex exponential function

• Because $e^{z+2n\pi i} = e^z$ for $n = 0, \pm 1, \pm 2, ...$

thus there are many points in the z -plane, for example, $z - 2\pi i$, $z + 4\pi i$, $z + 6\pi i$, …will correspond to the same single point $w = e^z$ in the w-plane, i.e. the complex exponential function $w = f(z) = e^z$ is not one-to-one $(-\overline{x}$ ^t) mapping from *z*-plane to w -plane.

- **We divide the complex plane into horizontal strips.**
- 2023/12/18 MA06 Complex Analysis (複素関数論) 16 • The **infinite horizontal (水平な) strip** defined by: $-\infty < x < \infty, -\pi < y \leq \pi$ is called the **fundamental region (基本領域)** of the complex exponential function e^z . Notice $f(z) = e^z$, $f(z + 2\pi i) = e^{z + 2\pi i}$, $f(z - 2\pi i) =$ $e^{z-2\pi i}$ and so on are the same.

Figure 4.1 The fundamental region of e^z

4.2 (Complex) Elementary Functions (複素)初等関数 Part 1 : 4.2.2 (Complex) Logarithmic Functions (複素)対数関数

However, if $e^x = -2$,

then **solution**?

In real domain, the natural logarithm function $\ln x$ is often defined as an **inverse function (逆関数)** of **the real exponential function** .

From now on, we can use the alternative notation $\log_e x$, where $x \in \mathbb{R}$ to represent the real exponential function e^x .

• The **real exponential function** is **one-to-one (一対一) on its domain** ,

• But the complex exponential function e^z is NOT a one-to-one function on its **domain C**, because there are **infinitely (無限に) many arguments (偏角)** of z.

Note: **One-to-one (一対一) function** is a function that maps distinct elements of its domain to distinct elements of its range, i.e. $f(x_1) \neq f(x_2)$ whenever $x_1 \neq x_2$.

If $e^w = z$, then $w = \log_e |z| + i \arg(z)$ (4.1.10)

Because of the Periodicity (周期性), there are infinitely (無限に) many arguments (偏角) of z, thus (4.1.10) gives infinitely many solutions w to the equation $e^w = z$.

The set of values given by (4.1.10) defines a multiple-valued function as:

Definition 4.2 Complex Logarithm Function (複素対数関数)

The multiple-valued function $\ln z$ (where $z = x + iy$) defined by

$$
\ln z = \log_e |z| + i \arg(z) \tag{4.1.11}
$$

is called the **complex logarithm**.

Notice: We use the lowercase (小文字) letter for symbol ln z.

EXAMPLE (例題) 4.1.3 Solving Exponential Equations Find all complex solutions to each of the following equations. $(a)e^w = i$ $(b)e^w = 1 + i$ $(c)e^w = -2$

Solution (解答):

For each equation $e^w = z$, the set of solutions is given by $w = \ln z$ where $\ln z$ is found using Definition 4.2.

(a) For
$$
e^w = z = i
$$
, we have $|z| = |i| = 1$ and $arg(i) = arctan(\frac{Im(i)}{Re(i)}) = \frac{\pi}{2} + 2n\pi$.
\nThus, from (4.1.11) we obtain:
\n
$$
w = \ln i = \log_e |i| + i \arg(i)
$$
\n
$$
= \log_e 1 + i(\frac{\pi}{2} + 2n\pi) = 0 + i(\frac{\pi}{2} + 2n\pi) = \frac{(4n + 1)\pi}{2}i \quad n = 0, \pm 1, \pm 2, ...
$$
\nTherefore, each of the values $w = \dots, -\frac{3\pi}{2}i, \frac{\pi}{2}i, \frac{5\pi}{2}i, ...$ satisfies the equation $e^w = i$.

Solution (解答)(cont.): 4.2.2 (Complex) Logarithmic Functions (複素)対数関数

(b) For $z = 1 + i$, we have $|1 + i| = \sqrt{2}$ and $arg(1 + i) = arctan(\frac{Im(z)}{Re(z)})$ $Re(z)$ $) =$ π 4 $+ 2n\pi$. Thus, from (4.1.11) we obtain:

$$
w = \ln(1 + i) = \log_e |1 + i| + i \arg(1 + i)
$$

= $\log_e \sqrt{2} + i \left(\frac{\pi}{4} + 2n\pi\right)$
= $\frac{1}{2} \log_e 2 + \frac{(8n + 1)\pi}{4} i$ $n = 0, \pm 1, \pm 2, ...$

Each value of w is a solution to $e^w = 1 + i$.

(c) For $z = -2$, we have $|-2| = 2$ and $arg(-2) = arctan(\frac{Im(-2)}{Box(-2)})$ $Re(-2)$ $) = \pi + 2n\pi.$ $w = \ln(-2) = \log_e |-2| + i \arg(-2)$ Thus, from (4.1.11) we obtain: $= \log_e 2 + i(\pi + 2n\pi)$ $= \log_e 2 + (2n + 1)\pi i$ $n = 0, \pm 1, \pm 2,...$

Theorem 4.3 Algebraic Properties of ln z

If z_1 and z_2 are nonzero complex numbers and n is an integer, then $\ln (z_1 z_2) = \ln z_1 + \ln z_2$ ln Z_1 Z_{2} (ii) $\ln\left(\frac{-1}{z}\right) = \ln z_1 - \ln z_2$ (i) (iii) $\ln z_1^n = n \ln z_1$

Definition 4.3 Principal Value (主値) of the Complex Logarithm

The complex function Ln z (where $z = x + iy$) defined by

Ln $z = \log_e |z| + i \arg(z)$, $-\pi < arg(z) \le \pi$ (4.1.14 and 4.1.15)

is called **the principal value (主値) of the complex logarithm**.

Notice: We use the uppercase (大文字) letter for Ln z here!

EXAMPLE (例題) 4.1.4 Principal Value of the Complex Logarithm Compute the **principal value of the complex logarithm** Ln for (a) $z = i$ (b) $z = 1 + i$ (c) $z = -2$

Solution (解答):

(a) For $e^w = z = i$, we have $|i| = 1$ and $Arg(i) = \arctan(\frac{Im(z)}{Re(z)})$ $Re(z)$ $) =$ π 2 $\pm 2n\pi$

Thus, from (4.1.14) we obtain:

$$
w = \text{Ln } i = \log_e |i| + i \text{Arg}(i)
$$

= $\log_e 1 + \frac{\pi}{2}i$ $\qquad \implies$ $\frac{\pi}{2} = 0 + \frac{\pi}{2}i$
= $\frac{\pi}{2}i$

Solution (解答)(cont.):

(b) For $e^w = z = 1 + i$, we have $|1 + i| = \sqrt{2}$ and $Arg(1 + i) = \arctan(\frac{Im(1+i)}{Re(1+i)})$ $Re(1+i)$ $) =$ π 4 . Thus, from (4.1.14) we obtain:

 $w = \text{Ln}(1 + i) = \log_e|1 + i| + i \text{Arg}(1 + i)$ $= \log_e \sqrt{2} +$ $\overline{\pi}$ 4 $i=$ 1 2 $\log_e 2 +$ $\overline{\pi}$ 4 $i \approx 0.3466 + 0.7854i$ (c) For $e^w = z = -2$, we have $|-2| = 2$ and $Arg(-2) = \arctan(\frac{Im(-2)}{Box(-2)})$ $Re(-2)$ $) = \pi$. $w = \text{Ln}(-2) = \log_e |-2| + i \text{Arg}(-2)$ Thus, from (4.1.14) we obtain: Not necessary for the assignment report.

 $=$ log_e 2 + $\pi i \approx 0.6931 + 3.1416i$

Not necessary for the assignment report.

Ln **as an Inverse Function (逆関数) of**

Follows from (4.1.10) that

$$
e^{\ln z} = z \text{ for all } z \neq 0. \tag{4.1.16}
$$

If the complex exponential function $f(z) = e^z$ is defined on the fundamental region $-\infty < x < \infty, -\pi < y \leq \pi$,

then is **one-to-one (一対一)** and the **inverse function (逆関数)** of f is the **principal value of the complex logarithm** $f^{-1}(z) = \text{Ln } z$.

Recall that

Theorem 2.3 Real and Imaginary Parts of a Continuous Function

Suppose that $f(z) = u(x, y) + iv(x, y)$ and $z_0 = x_0 + iy_0$.

Then the complex function (複素関数) f is continuous at the point z_0 if and only if both real functions (実数値関数) u and v are

continuous at the point (x_0, y_0) .

2023/12/18 MA06 Complex Analysis (複素関数論) 28 Ln z = $\log_e |z| + i \arg(z)$, $-\pi < \arg(z) \le \pi$ $u(x,y) = \log_e |z| = \log_e \sqrt{x^2 + y^2}$ is continuous at all points in the plane except $(0,0)$ Imaginary part $v(x, y) = Arg(z)$ is continuous on the domain $|z| > 0$, $-\pi < arg(z) < \pi$ Real part Therefore, Ln z is a continuous function on the domain $|z| > 0$, $-\pi < \arg(z) < \pi$ $f_1(z) = \log_e|z| + i \arg(z)$, $-\pi < \arg(z) < \pi$ The principal value of the complex logarithm function We give this new function a name by "**principal branch of the complex logarithm function**" $(4.1.19)$ Here, $f_1(z)$ is Ln z except $Arg(z) = \pi$ Figure 4.6 $f_1(z)$ defines on domain in gray color excluding blue ray (4.1.18)

Theorem 4.4 Analyticity of the Principal Branch of
$$
\ln z
$$

The principal branch f_1 of the complex logarithm defined by (4.1.19) is **an analytic function** and **its derivative is given by**:

$$
f_1'(z) = \frac{1}{z} \tag{4.1.20}
$$

The theorem 4.4 implies that Ln z is differentiable in the domain $|z| > 0$,

 $-\pi < \arg(z) < \pi$, and its derivative is given by $f'_1(z)$.

That is, if $|z| > 0$, $-\pi < arg(z) < \pi$ then

$$
\frac{d}{dz}\ln z = \frac{1}{z}
$$

(4.1.21)

EXAMPLE (例題) 4.1.5 Derivatives of Logarithmic Functions Find the derivatives of the function $z \ln z$ in an appropriate domain:

Solution (解答):

The function z Ln z is differentiable at all points where both of the functions z and Ln z are differentiable.

Because *z* is entire (整函数) and Ln *z* is differentiable on the domain given in (4.1.18), as $|z| > 0$, $-\pi < \arg(z) < \pi$, it follows that zLn z is differentiable on the domain defined by $|z| > 0$, $-\pi <$ $arg(z) < \pi$

In this domain, the derivative is given by the product rule (積の法則) (3.1.4) of Lecture 3 and (4.1.21):

$$
\frac{d}{dz}[z \ln z] = z \cdot \frac{1}{z} + 1 \cdot \ln z = 1 + \ln z
$$

Review for Lecture 4

- Harmonic Functions
- (Complex) Exponential Functions
- Exponential Mapping
- (Complex) Logarithmic Functions
- The principal value of the Logarithmic Functions
- Analyticity of the Principal Branch of $\ln z$

Exercise

Please Check<http://web-ext.u-aizu.ac.jp/~xiangli/teaching/MA06/index.html>

References

2023/12/18 MA06 Complex Analysis (複素関数論) 31 [1] A First Course in Complex Analysis with Application, Dennis G. Zill and Patrick D. Shanahan, Jones and Bartlett Publishers, Inc. 2003 [2] Elementary function: https://en.wikipedia.org/wiki/Elementary_function [3] 初等関数とは:<http://www.cc.miyazaki-u.ac.jp/yazaki/teaching/di/di-function.pdf>