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Lecture  8

8.1 Cauchy’s Integral Formulas

*8.2 Some Consequences of Cauchy’s Integral Formulas
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In this lecture 8, we are going to examine several more 
consequences of the Cauchy’s Integral Theorem.

Unquestionably, the most significant of these is the following result:

After establishing this proposition we shall use it to further show that:

An analytic function 𝑓(𝑧) in a simply connected domain possesses derivatives of 
all orders.

The value of a analytic function 𝑓(𝑧) at any point 𝑧0 in a simply connected 
domain can be represented by a contour integral.
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8.1  Cauchy’s Integral Formulas
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8.1 Cauchy’s Integral Formulas

Therefore, we CANNOT conclude that the integral of 𝑓(𝑧)/(𝑧 − 𝑧0) around a simple closed 

contour 𝐶 that contains 𝑧0 is zero by the Cauchy’s Integral Theorem. We introduce that

Theorem 5.9  Cauchy’s Integral Formula (コーシーの積分公式) 

Suppose that 𝑓(𝑧) is analytic in a simply connected domain 𝐷 and 

𝐶 is any simple closed contour lying entirely within 𝐷. Then for 

any point 𝑧0 within 𝐶,
𝑓 𝑧0 =

1

2𝜋𝑖
ර
𝐶

𝑓(𝑧)

𝑧 − 𝑧0
𝑑𝑧

Therefore, we can see that the integral of 𝑓(𝑧)/(𝑧 − 𝑧0) around 𝐶 has the value 2𝜋𝑖 ∙ 𝑓(𝑧0).

(5.5.1)

The First Formula

If 𝑓(𝑧) is analytic in a simply connected domain 𝐷 and 𝑧0 is any point in 𝐷, the quotient 

𝑓(𝑧)/(𝑧 − 𝑧0) is not defined at 𝑧0 and hence is NOT analytic in 𝐷. 

𝐶ׯ
𝑓(𝑧)

𝑧−𝑧0
𝑑𝑧 = 2𝜋𝑖 𝑓 𝑧0
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8.1 Cauchy’s Integral Formulas

Because the symbol 𝑧 represents a point on the contour 𝐶, (5.5.1) 
indicates that 

We can rewrite the Theorem 5.9 as a more practical manner:

If 𝑓 is analytic at all points within and on a simple closed contour 

𝐶, and 𝑧0 is any point interior to 𝐶, then

𝑓 𝑧0 =
1

2𝜋𝑖
ර
𝐶

𝑓(𝑧)

𝑧 − 𝑧0
𝑑𝑧

The First Formula

the values of an analytic function 𝑓 at points 𝑧0 inside a simple 
closed contour 𝐶 are determined by the values of 𝑓 on the contour 𝐶.
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8.1 Cauchy’s Integral Formulas

EXAMPLE (例題) 5.5.1   Using Cauchy’s Integral Formula

Evaluate ׯ𝐶
𝑧2−4𝑧+4

𝑧+𝑖
𝑑𝑧, where the contour 𝐶 is the circle 𝑧 = 2.

Solution (解答): 

First, we identify 𝑓(𝑧) = 𝑧2 − 4𝑧 + 4 and 𝑧0 = −𝑖 as a point within the 
circle 𝐶.
Next, we observe that 𝑓(𝑧) is analytic at all points within and on the 
contour 𝐶.

Thus, by the Cauchy’s integral formula (5.5.1) we obtain

ර
𝐶

𝑧2 − 4𝑧 + 4

𝑧 + 𝑖
𝑑𝑧 = ර

𝐶

𝑧2 − 4𝑧 + 4

𝑧 − −𝑖
𝑑𝑧 = 2𝜋𝑖 ∙ 𝑓 −𝑖

The First Formula

= 2𝜋𝑖 −𝑖 2 − 4 −𝑖 + 4 = 2𝜋𝑖 −1 + 4𝑖 + 4 = 2𝜋𝑖 3 + 4𝑖 = −8𝜋 + 6𝜋𝑖

𝑓 𝑧0 =
1

2𝜋𝑖
ර
𝐶

𝑓(𝑧)

𝑧 − 𝑧0
𝑑𝑧

𝐶ׯ
𝑓(𝑧)

𝑧−𝑧0
𝑑𝑧 = 2𝜋𝑖 𝑓 𝑧0
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8.1 Cauchy’s Integral Formulas

EXAMPLE (例題) 5.5.2   Using Cauchy’s Integral Formula

Evaluate ׯ𝐶
𝑧

𝑧2+9
𝑑𝑧, where the contour 𝐶 is the circle 𝑧 − 2𝑖 = 4.

Solution (解答): 
By factoring the denominator as 𝑧2 + 9 = (𝑧 − 3𝑖)(𝑧 + 3𝑖) we see that 3𝑖 is 
the only point within the closed contour 𝐶 at which the integrand fails to be 
analytic. See Figure 5.44. Then by rewriting the integrand as

we can identify 𝑓(𝑧) = 𝑧/(𝑧 + 3𝑖). The function 𝑓 is analytic at all points 
within and on the contour 𝐶. Hence, from Cauchy’s integral formula (5.5.1) 
we have

𝑧

𝑧2 + 9
=

𝑧

(𝑧 − 3𝑖)(𝑧 + 3𝑖)
=

𝑧
𝑧 + 3𝑖
𝑧 − 3𝑖

ර
𝐶

𝑧

𝑧2 + 9
𝑑𝑧 = ර

𝐶

𝑧
𝑧 + 3𝑖
𝑧 − 3𝑖

𝑑𝑧 = 2𝜋𝑖 ∙ 𝑓 3𝑖 = 2𝜋𝑖
3𝑖

3𝑖 + 3𝑖
= 2𝜋𝑖

3𝑖

6𝑖
= 𝜋𝑖

Figure 5.44 Contour 
for Example 5.5.2

ሽ𝑓(𝑧)

The First Formula
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8.1 Cauchy’s Integral Formulas

Theorem 5.10  Cauchy’s Integral Formula for Derivatives

Suppose that 𝑓 is analytic in a simply connected domain 𝐷 and 𝐶 is

any simple closed contour lying entirely within 𝐷. Then for any 

point 𝑧0 within 𝐶,

𝑓(𝑛) 𝑧0 =
𝑛!

2𝜋𝑖
ර
𝐶

𝑓(𝑧)

𝑧 − 𝑧0
𝑛+1

𝑑𝑧 (5.5.6)

Like (5.5.1), formula (5.5.6) can be used to evaluate integrals. See the examples as following.

The Second Formula
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8.1 Cauchy’s Integral Formulas

EXAMPLE (例題) 5.5.3   Using Cauchy’s Integral Formula for Derivatives 

Evaluate ׯ𝐶
𝑧+1

𝑧4+2𝑖𝑧3
𝑑𝑧, where the contour 𝐶 is the circle 𝑧 = 1.

Solution (解答): 

Inspection of the integrand shows that it is not analytic at 𝑧 = 0 and 𝑧 = −2𝑖, 
but only 𝑧 = 0 lies within the closed contour. By writing the integrand as

𝑧+1

𝑧4+2𝑖𝑧3
=

𝑧+1

𝑧+2𝑖 𝑧3
=

𝑧+1

𝑧+2𝑖

𝑧3
=

𝑧+1

𝑧+2𝑖

(𝑧−0)3

we can identify, 𝑧0 = 0, 𝑛 = 2 (because 𝑛 + 1 = 3), and 𝑓(𝑧) = (𝑧 + 1)/ (𝑧 + 2𝑖). The 
quotient rule gives 𝑓′′(𝑧) = (2 − 4𝑖)/(𝑧 + 2𝑖)3 and so 𝑓′′(0) = (2𝑖 − 1)/4𝑖. Hence 
from (5.5.6) we find

ර
𝐶

𝑧 + 1
𝑧 + 2𝑖
𝑧3

𝑑𝑧 =
2𝜋𝑖

2!
𝑓′′ 0 = −

𝜋

4
+
𝜋

2
𝑖

The Second Formula
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*8.2  Some Consequences (関連事項) of 

Cauchy Integral Formulas

Notice: In all lecture notes, the contents marked with * are not in the scope of the final examination.
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*8.2 Some Consequences (関連事項) of Cauchy Integral Formulas

An immediate and important corollary to Theorem 5.10 is summarized next.

Theorem 5.11  Derivative of an Analytic Function Is Analytic

Suppose that 𝑓 is analytic in a simply connected domain 𝐷. Then 

𝑓 possesses derivatives of all orders at every point 𝑧 in 𝐷. The 

derivatives 𝑓′, 𝑓′′, 𝑓′′′. . . are analytic functions in 𝐷.
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we can also conclude that the real functions 𝑢 and 𝑣 have continuous 
partial derivatives of all orders at a point of analyticity.

If a function 𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) is analytic in a simply 
connected domain 𝐷, we have just seen its derivatives of all orders 
exist at any point 𝑧 in 𝐷 and so 𝑓′, 𝑓′′, 𝑓′′′. . . are continuous. From

𝑓′ 𝑧 =
𝜕𝑢

𝜕𝑥
+ 𝑖

𝜕𝑣

𝜕𝑥
=
𝜕𝑣

𝜕𝑦
− 𝑖

𝜕𝑢

𝜕𝑦

𝑓′′ 𝑧 =
𝜕2𝑢

𝜕𝑥2
+ 𝑖

𝜕2𝑣

𝜕𝑥2
=

𝜕2𝑣

𝜕𝑦𝜕𝑥
− 𝑖

𝜕2𝑢

𝜕𝑦𝜕𝑥

⋮

*8.2 Some Consequences (関連事項) of Cauchy Integral Formulas
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An inequality (不等式) derived from the Cauchy integral formula for derivatives.

Theorem 5.12  Cauchy’s Inequality (コーシーの評価式)

Suppose that 𝑓 is analytic in a simply connected domain 𝐷 and 𝐶
is a circle defined by |𝑧 − 𝑧0| = 𝑟 that lies entirely in 𝐷. If |𝑓(𝑧)| ≤ 𝑀
for all points 𝑧 on 𝐶, then

𝑓(𝑛) 𝑧0 ≤
𝑛!𝑀

𝑟𝑛
(5.5.7)

The number 𝑀 in Theorem 5.12 depends on the circle |𝑧 − 𝑧0| = 𝑟. But notice in 

(5.5.7) that if 𝑛 = 0, then 𝑀 ≥ 𝑓 𝑧0 for any circle 𝐶 centered at 𝑧0 as long as 𝐶

lies within 𝐷. In other words, an upper bound 𝑀 of |𝑓(𝑧)| on 𝐶 cannot be 

smaller than |𝑓(𝑧0)|.

*8.2 Some Consequences (関連事項) of Cauchy Integral Formulas
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Theorem 5.13  Liouville’s Theorem (リウヴィルの定理)

The only bounded entire functions are constants (定数).

Although it bears the name “Liouville’s Theorem”, it probably was first proved by Cauchy.

Proof:

Suppose 𝑓 is an entire function and is bounded, that is, |𝑓(𝑧)| ≤ 𝑀 for all 𝑧. Then for any point 𝑧0, 
(5.5.7) gives |𝑓′(𝑧0)| ≤ 𝑀/𝑟. By making 𝑟 arbitrarily large we can make |𝑓′(𝑧0)| as small as we wish. 
This means 𝑓′(𝑧0) = 0 for all points 𝑧0 in the complex plane. Hence, by Theorem 3.6(ii), 𝑓 must 
be a constant .                                                                                                              ∎

Theorem 3.6  Constant Functions

Suppose the function 𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) is analytic in a domain 𝐷.

(i) If |𝑓(𝑧)| is constant in 𝐷, then so is 𝑓(𝑧).
(ii) If 𝑓′(𝑧) = 0 in 𝐷, then 𝑓(𝑧) = 𝑐 in 𝐷, where 𝑐 is a constant.

*8.2 Some Consequences (関連事項) of Cauchy Integral Formulas
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Theorem 5.14  Fundamental Theorem of Algebra (代数学の基本定
理)

If 𝑝(𝑧) is a nonconstant (非定数) polynomial (多項式), then the 

equation 𝑝(𝑧) = 0 has at least one root (根).

Theorem 5.13 enables us to establish a result usually learned -- but never proved -- in elementary 
algebra.

Using Theorem 5.14, that if 𝑝(𝑧) is a nonconstant polynomial of 
degree 𝑛, then 𝑝(𝑧) = 0 has exactly 𝑛 roots (counting multiple roots).

*8.2 Some Consequences (関連事項) of Cauchy Integral Formulas
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The converse of the Cauchy-Goursat theorem:

Theorem 5.15  Morera’s Theorem (モレラの定理)

If 𝑓 is continuous in a simply connected domain 𝐷 and if

𝐶ׯ 𝑓 𝑧 𝑑𝑧 = 0 for every closed contour 𝐶 in 𝐷, then 𝑓 is analytic in 𝐷.

*8.2 Some Consequences (関連事項) of Cauchy Integral Formulas
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Theorem 5.16  Maximum Modulus Theorem (最大絶対値の原理あ
るいは最大値の原理)

Suppose that 𝑓 is analytic and nonconstant on a closed region 𝑅

bounded by a simple closed curve 𝐶. Then the modulus |𝑓(𝑧)|

attains its maximum on 𝐶.

*8.2 Some Consequences (関連事項) of Cauchy Integral Formulas
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EXAMPLE (例題) 5.5.5   Maximum Modulus Theorem 

Find the maximum modulus of 𝑓(𝑧) = 2𝑧 + 5𝑖 on the closed 
circular region defined by |𝑧| ≤ 2.

Solution (解答): 
From Equation (1.1.4) 𝑧 2 = ҧ𝑧𝑧 of Lecture 1 and by replacing the symbol 𝑧 by 2𝑧 + 5𝑖 we have

But from Equation (1.1.6) of Lecture 1, 𝑧 − ҧ𝑧 = 2𝑖 Im(𝑧), and so (5.5.8) is

|2𝑧 + 5𝑖|2 = (2𝑧 + 5𝑖) 2𝑧 + 5𝑖 = (2𝑧 + 5𝑖)(2 ҧ𝑧 + −5𝑖 ) = 4 ҧ𝑧𝑧 − 10𝑖(𝑧 − ҧ𝑧) + 25. (5.5.8)

|2𝑧 + 5𝑖|2 = 4 𝑧 2 + 20Im (𝑧) + 25. (5.5.9)

Because 𝑓 is a polynomial, it is analytic on the region defined by |𝑧| ≤ 2. By Theorem 5.16, 
max|𝑧|≤2 | 2𝑧 + 5𝑖| occurs on the boundary |𝑧| = 2. Therefore, on |𝑧| = 2, (5.5.9) yields

This expression attains its maximum when Im(𝑧) attains its maximum on |𝑧| = 2, namely, at the 

point 𝑧 = 2𝑖. Thus, max|𝑧|≤2 2𝑧 + 5𝑖 = 41 + 20 ∙ 2 = 81 = 9 .

2𝑧 + 5𝑖 = 4 ∙ 22 + 25 + 20Im(𝑧) = 41 + 20Im(𝑧)

*8.2 Some Consequences (関連事項) of Cauchy Integral Formulas
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• Cauchy’s Integral Formula

• Cauchy’s Integral Formula for Derivatives

• Derivative of an Analytic Function Is Analytic

• Cauchy’s Inequality

• Liouville’s Theorem

• Fundamental Theorem of Algebra

• Morera’s Theorem

• Maximum Modulus Theorem

Review for Lecture 8

Please Check http://web-ext.u-aizu.ac.jp/~xiangli/teaching/MA06/index.html

Exercise
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