

*9.1 Review of (Real) Sequences and Series

9.2 (Complex) Sequences and Series (複数)数列と級数

9.3 Series Tests

Cauchy's integral formula for derivatives (Theorem 5.10) indicates that if a function f is analytic at a point z_0 , then it possesses derivatives of all orders at that point.

As a consequence of this result we shall see that *f* can always be expanded in a power series centered at that point.

On the other hand, if f fails to be analytic at z_0 , we may still be able to expand it in a different kind of series known as a <u>Laurent series</u>.

(実)数列と級数

Notice: In all lecture notes, the contents marked with * are not in the scope of the final examination. 2024/1/18 MA06 Complex Analysis (複素関数論) 3

Let's review Calculus II (微積分 II) (for real number).

Sequences (実数)数列

A sequence: a list of numbers written in a definite order

$$\{a_1, a_2, a_3, a_4, \dots, a_n, \dots\}$$
The first term The second term

Notice that each term a_n will have a successor a_{n+1} .

Notice that for every positive integer there is a corresponding number and so a sequence can be defined as a function whose domain is the set of positive integers.

But we usually write a_n instead of the function notation f(n) for the value of the function at the number n.

Notation The sequence
$$\{a_1, a_2, a_3, a_4, \dots, a_n, \dots\}$$
 is also denoted by $\{a_n\}$ or $\{a_n\}_{n=1}^{\infty}$

Example Some sequences can be defined by giving a formula for the *n*th term.

1. Preceding notation2. Defining notation3. Writing out the terms of the sequences(a)
$$\left\{\frac{n}{n+1}\right\}_{n=1}^{\infty}$$
 $a_n = \frac{n}{n+1}$ $\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \dots, \frac{n}{n+1}, \dots\right\}$ (b) $\left\{\frac{(-1)^n(n+1)}{3^n}\right\}$ $a_n = \frac{(-1)^n(n+1)}{3^n}$ $\left\{-\frac{2}{3}, \frac{3}{9}, -\frac{4}{27}, \frac{5}{81}, \dots, \frac{(-1)^n(n+1)}{3^n}, \dots\right\}$ (c) $\left\{\sqrt{n-3}\right\}_{n=3}^{\infty}$ $a_n = \sqrt{n-3}, n \ge 3$ $\left\{0, 1, \sqrt{2}, \sqrt{3}, \dots, \sqrt{n-3}, \dots\right\}$ (d) $\left\{\cos\frac{n\pi}{6}\right\}_{n=0}^{\infty}$ $a_n = \cos\frac{n\pi}{6}, n \ge 0$ $\left\{1, \frac{\sqrt{3}}{2}, \frac{1}{2}, 0, \dots, \cos\frac{n\pi}{6}, \dots\right\}$

In general, the notation

$$\lim_{n \to \infty} a_n = L$$

means that the terms of the sequence $\{a_n\}$ approach *L* as *n* becomes large.

Definition: A sequence $\{a_n\}$ has the limit *L* and we write

$$\lim_{n \to \infty} a_n = L \quad \text{or} \quad a_n \to L \text{ as } n \to \infty$$

if we can make the terms a_n as close to L as we like by taking n sufficiently large.

If $\lim_{n\to\infty} a_n$ exists, we say the sequence **converges** (or is **convergent**).

Otherwise, we say the sequence **diverges** (or is **divergent**).

Convergent sequence example:

Convergent sequence example:

Series (実数)級数

The partial sums T_n of a Taylor series provide better and better approximations to a function a n increases.

Calculate the addition for the terms of an infinite sequence $\{a_n\}_{n=1'}^{\infty}$ we get

$$a_1 + a_2 + a_3 + \dots + a_n + \dots$$

which is called an **infinite series** (or just a **series**) and is denoted by

$$\sum_{n=1}^{\infty} a_n$$
 or $\sum a_n$

Consider the partial sums

 $s_{1} = a_{1}$ $s_{2} = a_{1} + a_{2}$ $s_{3} = a_{1} + a_{2} + a_{3}$ $s_{4} = a_{1} + a_{2} + a_{3} + a_{4}$

and in general

$$s_n = a_1 + a_2 + a_3 + \cdots + a_n = \sum_{i=1}^n a_i$$

Definition: Given a series $\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \cdots$, let s_n denotes its *n*th partial sum:

$$s_n = \sum_{i=1}^{\infty} a_i = a_1 + a_2 + a_3 + \dots + a_n$$

If the sequence $\{s_n\}$ is convergent and $\lim_{n\to\infty} s_n = s$ exists as a real number, then the series $\sum a_n$ is called convergent and we write

$$a_1 + a_2 + a_3 + \dots + a_n + \dots = s$$
 or $\sum_{n=1}^{\infty} a_n = s$

The number s is called the sum of the series. We can see $\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} \sum_{i=1}^{\infty} a_i$. Otherwise, the series is called **divergent**.

2024/1/18

9.2 (Complex) Sequences and Series

(複数)数列と級数

A sequence $\{z_n\}$, where n = 1, 2, 3, ..., is a function whose domain is the set of positive integers and whose range is a subset of the complex numbers C.

For example, the sequence $\{1 + i^n\}$ is

$$1+i$$
, 0 , $1-i$, 2 , $1+i$, ... (6.1.1)

Sequences (数列)

9.2 (Complex) Sequences and Series (数列と級数) Sequences (数列)

If $\lim_{n \to \infty} z_n = L$, where *L* is a complex number, we say the sequence $\{z_n\}$ is convergent (収束する).

Sequence that is not convergent is said to be divergent (発散する).

 $\{z_n\}$ converges to the number *L*, if for each positive real number ε , an *N* can be found such that $|z_n - L| < \varepsilon$

whenever n > N.

Since $|z_n - L|$ is distance, the terms z_n of a sequence

that converges to L can be made arbitrarily close to L.

Figure 6.1 If $\{z_n\}$ converges to *L*, all but a finite number of terms are in every ε -neighborhood of *L*.

Sequences (数列)

For example, the sequence $\{1 + i^n\}$

$$1 + i, \quad 0, \quad 1 - i, \quad 2, \quad 1 + i, \quad \dots$$

$$\uparrow \quad \uparrow \quad \uparrow \quad \uparrow \quad \uparrow \quad \uparrow$$

$$n = 1, \quad n = 2, \quad n = 3, \quad n = 4, \quad n = 5,$$

The sequence $\{1 + i^n\}$ is <u>divergent</u> because the general term $z_n = 1 + i^n$ does not approach a fixed complex number as $n \to \infty$.

EXAMPLE (例題) 6.1.1 A Convergent Sequence The sequence $\left\{\frac{i^{n+1}}{n}\right\}$ converges or not.

Solution (解答):

The sequence $\left\{\frac{i^{n+1}}{n}\right\}$ converges since $\lim_{n \to \infty} \frac{i^{n+1}}{n} = 0. \text{ As we see from}$ $-1, -\frac{i}{2}, \frac{1}{3}, \frac{i}{4}, -\frac{1}{5}, \cdots,$

and Figure 6.2, the terms of the sequence,

marked by colored dots in the figure, spiral

in toward the point z = 0 as n increases.

 $-\frac{1}{5}$ $-\frac{1}{3}$ x $-\frac{i}{2}$

Sequences (数列)

Figure 6.2 The terms of the sequence $\{\frac{i^{n+1}}{n}\}$ spiral in toward 0.

Theorem 6.1 Criterion (基準) for <u>Sequence Convergence</u>

Suppose that
$$z_n = x_n + iy_n$$
 $(n = 1, 2, ...)$ and $L = x + iy$. Then

$$\lim_{n \to \infty} z_n = L$$
if and only if
$$\lim_{n \to \infty} x_n = x \text{ and } \lim_{n \to \infty} y_n = y$$

This theorem for sequences is the analogue of Theorem 2.1 in Lecture 2.

Theorem 2.1 Real and Imaginary Parts (実部と虚部) of a Limit

Suppose that
$$f(z) = u(x, y) + iv(x, y)$$
 and $z_0 = x_0 + iy_0$, and

$$L = u_0 + iv_0$$
. Then $\lim_{z \to z_0} f(z) = L$ if and only if

$$\lim_{(x,y)\to(x_0,y_0)} u(x,y) = u_0 \text{ and } \lim_{(x,y)\to(x_0,y_0)} v(x,y) = v_0$$

Sequences (数列)

9.2 (Complex) Sequences and Series (数列と級数) Sequences (数列) Additional EXAMPLE (例題) 1 Using Theorem 6.1 The sequence $\left\{\frac{1}{n^3} + i\right\}$ converges or not. Solution (解答): The sequence $z_n = \frac{1}{n^3} + i$ (n = 1, 2, ...) converges to *i* since $\lim_{n \to \infty} z_n = \lim_{n \to \infty} \left(\frac{1}{n^3} + i \right) = \lim_{n \to \infty} \frac{1}{n^3} + i \lim_{n \to \infty} 1 = 0 + i \cdot 1 = i$ For each number $\varepsilon > 0$ 1

$$|z_n - i| = \frac{1}{n^3} < \varepsilon$$
 whenever $n > \frac{1}{\sqrt[3]{\varepsilon}}$

EXAMPLE (例題) 6.1.2 Using Theorem 6.1 The sequence $\left\{\frac{3+ni}{n+2ni}\right\}$ converges or not.

Solution (解答):

Fr

tł

From
$$z_n = \frac{3+ni}{n+2ni} = \frac{(3+ni)(n-2ni)}{(n+2ni)(n-2ni)} = \frac{(3+ni)(n-2ni)}{n^2+4n^2} = \frac{2n^2+3n}{5n^2} + i\frac{n^2-6n}{5n^2}$$

we see that when $n \rightarrow \infty$

$$\lim_{n \to \infty} \operatorname{Re}(z_n) = \lim_{n \to \infty} \frac{2n^2 + 3n}{5n^2} = \lim_{n \to \infty} \left(\frac{2}{5} + \frac{3}{5n}\right) = \frac{2}{5}$$
$$\lim_{n \to \infty} \operatorname{Im}(z_n) = \lim_{n \to \infty} \frac{n^2 - 6n}{5n^2} = \lim_{n \to \infty} \left(\frac{1}{5} - \frac{6}{5n}\right) = \frac{1}{5}$$
rom Theorem 6.1, the results are sufficient to conclude the given sequence converges to $L = x + iy = \frac{2}{5} + \frac{1}{5}i$.

Sequences (数列)

An infinite series or series of complex numbers

$$\sum_{n=1}^{\infty} z_n = z_1 + z_2 + z_3 + \cdots$$

is convergent if the **sequence of partial sums (**部分和) {*S_n*}, where

$$S_n = z_1 + z_2 + z_3 + \dots + z_n$$

converges.

If $S_n \rightarrow L$ as $n \rightarrow \infty$, we say that the series converges to *L* or that the sum of the series is *L*.

Additional EXAMPLE (例題) 2 Show that if $\sum_{n=1}^{\infty} z_n = L$ where L = x + iy, then $\sum_{n=1}^{\infty} \overline{z_n} = \overline{L}$.

Solution (解答):

We write
$$z_n = x_n + iy_n$$
 ($n = 1, 2, ...$).

First of all, we note that

$$\sum_{n=1}^{\infty} x_n = x \text{ and } \sum_{n=1}^{\infty} y_n = y$$

Then since $\sum_{n=1}^{\infty} (-y_n) = -y$, it follows that

$$\sum_{n=1}^{\infty} \bar{z}_n = \sum_{n=1}^{\infty} (x_n - iy_n) = \sum_{n=1}^{\infty} [x_n + i(-y_n)] = x - iy = \bar{L}$$

Geometric Series (幾何級数)

A geometric series is any series of the form

$$\sum_{n=1}^{\infty} az^{n-1} = a + az + az^2 + \cdots$$
 (6.1.2)

For (6.1.2), the *n*th term of the sequence of partial sums is

$$S_n = a + az + az^2 + \dots + az^{n-1}$$
(6.1.3)

Geometric Series (幾何級数)

When an infinite series is a geometric series, it is always possible to find a formula for S_n .

Why? We can multiply S_n in (6.1.3) by z_r

 $zS_n = az + az^2 + az^3 + \dots + az^n$

and subtract this result from S_n , then we have

 $S_n - zS_n = (a + az + az^2 + \dots + az^{n-1}) - (az + az^2 + az^3 + \dots + az^n)$

$$(1-z)S_n = a - az^n$$

$$\Rightarrow S_n = \frac{a(1-z^n)}{1-z}$$
(6.1.4)

Now $z^n \to 0$ as $n \to \infty$ whenever |z| < 1, and so $S_n \to \frac{a}{1-z}$.

In other words, for |z| < 1 the sum of a geometric series (6.1.2) is $\frac{a}{1-z}$ (i.e. convergent):

$$\sum_{n=1}^{\infty} a z^{n-1} = a + a z + a z^2 + \dots = \frac{a}{1-z}$$

A geometric series (6.1.2) **diverges** when $|z| \ge 1$.

2024/1/18

(6.1.5)

Special Geometric Series

If we set a = 1, the equality in (6.1.5) is $\frac{1}{1-z} = 1 + z + z^2 + z^3 + \cdots$ (6.1.6)

If we then replace the symbol z by -z in (6.1.6), we get a similar result

$$\frac{1}{1+z} = 1 - z + z^2 - z^3 + \cdots$$
(6.1.7)

Like (6.1.5), the equality in (6.1.7) is valid for |z| < 1 since |-z| = |z|. Now with a = 1, (6.1.4) gives us the sum of the first n terms of the series in (6.1.6):

$$\frac{1-z^n}{1-z} = 1+z+z^2+z^3+\dots+z^{n-1}$$

EXAMPLE (例題) 6.1.3 Convergent Geometric Series The series $\sum_{n=1}^{\infty} \frac{(1+2i)^n}{s^n}$ is convergent or divergent?

Solution (解答): The infinite series $\sum_{n=1}^{\infty} \frac{(1+2i)^n}{5^n} = \frac{1+2i}{5} + \frac{(1+2i)^2}{5^2} + \frac{(1+2i)^3}{5^3} + \cdots$ Solution (解答):

Series (級数)

29

is a geometric series. It has the form given in (6.1.2) with $a = \frac{1+2i}{r}$ and

$$z = \frac{1+2i}{5}. \text{ Since } |z| = \sqrt{\left(\frac{1}{5}\right)^2 + \left(\frac{2}{5}\right)^2} = \frac{\sqrt{5}}{5} < 1, \text{ the series is convergent and}$$

its sum is given by (6.1.5):
$$\sum_{n=1}^{\infty} \frac{(1+2i)^n}{5^n} = \frac{\frac{1+2i}{5}}{1-\frac{1+2i}{5}} = \frac{1+2i}{4-2i} = \frac{1}{2}i$$

MA06 Complex Analysis (複素関数論)

Theorem 6.2 A Necessary Condition for Convergence

If
$$\sum_{n=1}^{\infty} z_n$$
 converges, then $\lim_{n \to \infty} z_n = 0$.

Proof

Let *L* denote the sum of the series. Then $S_n \to L$ and $S_{n-1} \to L$ as $n \to \infty$.

By taking the limit of both sides of $S_n - S_{n-1} = z_n$ as $n \to \infty$, we have

$$\lim_{n \to \infty} (S_n - S_{n-1}) = \lim_{n \to \infty} z_n$$

$$L - L = \lim_{n \to \infty} z_n$$

$$0 = \lim_{n \to \infty} z_n$$

we obtain the desired conclusion.

2024/1/18

A Test for Divergence

Theorem 6.3 The *n*th Term Test for Divergence

If
$$\lim_{n\to\infty} z_n \neq 0$$
, then $\sum_{n=1}^{\infty} z_n$ diverges.

For example,

the series
$$\sum_{n=1}^{\infty} \frac{in+5}{n}$$
 diverges since $z_n = \frac{in+5}{n} \rightarrow i \neq 0$ as $n \rightarrow \infty$.

The geometric series (6.1.2) diverges if $|z| \ge 1$ because even in the case when

```
\lim_{n\to\infty} |z_n| \text{ exists, the limit is not zero.}
```

Definition 6.1 Absolute and Conditional Convergence (絶対収束 と条件収束)

An infinite series $\sum_{n=1}^{\infty} z_n$ is said to be **absolutely convergent** if $\sum_{n=1}^{\infty} |z_n|$ converges. An infinite series $\sum_{n=1}^{\infty} z_n$ is said to be **conditionally convergent** if it converges but $\sum_{n=1}^{\infty} |z_n|$ diverges.

p-series

In elementary calculus a <u>real-value</u> series of the form $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is called a *p*-series and converges for p > 1 and diverges for $p \le 1$.

EXAMPLE (例題) 6.1.4 Absolute Convergence The series $\sum_{n=1}^{\infty} \frac{i^n}{n^2}$ is <u>absolute convergent</u> or not.

Solution (解答):

The series $\sum_{n=1}^{\infty} \frac{i^n}{n^2}$ is absolutely convergent since the series $\sum_{n=1}^{\infty} \left| \frac{i^n}{n^2} \right|$

is the same as the real convergent p-series $\sum_{n=1}^{\infty} \frac{1}{n^2}$.

Here we identify p = 2 > 1.

As in <u>Real-value</u> calculus:

Absolute convergence implies convergence.

We can therefore conclude that the series in Example 6.1.4,

$$\sum_{n=1}^{\infty} \frac{i^n}{n^2} = i - \frac{1}{2^2} - \frac{i}{3^2} + \frac{1}{4^2} + \cdots$$

converges because it is absolutely convergent.

Tests for Convergence

Theorem 6.4 Ratio Test

Suppose $\sum_{n=1}^{\infty} z_n$ is a series of nonzero complex terms such that $\lim_{n \to \infty} \left| \frac{z_{n+1}}{z_n} \right| = L$ (6.1.9)

(i) If *L* < 1, then **the series converges absolutely**.

(ii) If L > 1 or $L = \infty$, then **the series diverges**.

(iii) If L = 1, the test is inconclusive (i.e. no idea about the result).

Tests for Convergence Theorem 6.5 Root Test Suppose $\sum_{n=1}^{\infty} z_n$ is a series of complex terms such that $\lim_{n \to \infty} \sqrt[n]{|z_n|} = L$ (6.1.10)(i) If L < 1, then the series converges absolutely. (ii) If L > 1 or $L = \infty$, then the series diverges. (iii) If L = 1, the test is inconclusive.

Review for Lecture 9

- (Complex) Sequences and Series
- Convergence and Divergence
- Geometric Series
- *p*-series
- Absolute and Conditional Convergence
- Series Tests

Exercise

Please Check http://web-ext.u-aizu.ac.jp/~xiangli/teaching/MA06/index.html

References

[1] A First Course in Complex Analysis with Application, Dennis G. Zill and Patrick D. Shanahan, Jones and Bartlett Publishers, Inc. 2003[2] Wikipedia

2024/1/18