

***9.1 Review of (Real) Sequences and Series**

9.2 (Complex) Sequences and Series (複数)数列と級数

9.3 Series Tests

Cauchy's integral formula for derivatives (Theorem 5.10) indicates that if a function f is analytic at a point z_0 , then it possesses **derivatives of all orders at that point**.

As a consequence of this result we shall see that f can always be expanded in **a power series** centered at that point.

On the other hand, if f fails to be analytic at z_0 , we may still be able to expand it in a different kind of series known as a **Laurent series**.

(実)数列と級数

2024/1/18 MA06 Complex Analysis (複素関数論) 3 **Notice: In all lecture notes, the contents marked with * are not in the scope of the final examination.**

Let's review Calculus II (微積分 II) (for real number).

Sequences (**実数)数列**

A **sequence:** a list of numbers written in a definite order

$$
\{a_1, a_2, a_3, a_4, ..., a_n, ... \}
$$

The first term
The second term
The second term

Notice that each term a_n will have a successor a_{n+1} .

Notice that **for every positive integer there is a corresponding number** and **so a sequence can be defined as a function whose domain is the set of positive integers**.

But we usually write a_n instead of the function notation $f(n)$ for the value of the function at the number *n*.

Notation The **sequence** $\{a_1, a_2, a_3, a_4, ..., a_n, ...\}$ is also denoted by $\{a_n\}$ or $\{a_n\}_{n=1}^{\infty}$ ∞

Example Some sequences can be defined by giving a formula for the nth term.

In general, the **notation**

$$
\lim_{n \to \infty} a_n = L
$$

means that the terms of the sequence $\{a_n\}$ approach L as n becomes large.

Definition: A **sequence** $\{a_n\}$ has the limit L and we write

$$
\lim_{n \to \infty} a_n = L \quad \text{or} \quad a_n \to L \text{ as } n \to \infty
$$

if we can make the terms a_n as close to L as we like by taking n sufficiently large.

If $\lim_{n \to \infty} a_n$ exists, we say the sequence **converges** (or is **convergent**). $n\rightarrow\infty$ Otherwise, we say the sequence **diverges** (or is **divergent**).

Convergent sequence example:

Convergent sequence example:

Series (**実数)級数**

The partial sums T_n of a Taylor series provide better and better approximations to a function a n increases.

Calculate the addition for the terms of an **infinite sequence** ${a_n} \bigg\{ {\sum_{n=1}^\infty}$ ∞ , we get

$$
a_1 + a_2 + a_3 + \dots + a_n + \dotsb
$$

which is called an **infinite series** (or just a **series**) and is denoted by

 $\sum_{n=1}^{\infty} a_n$ or $\sum a_n$

Consider the **partial sums**

 $s_1 = a_1$ $s_2 = a_1 + a_2$ $s_3 = a_1 + a_2 + a_3$ $s_4 = a_1 + a_2 + a_3 + a_4$

and in general

$$
s_n = a_1 + a_2 + a_3 + \cdots + a_n = \sum_{i=1}^n a_i
$$

Definition: Given a series $\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \cdots$, let s_n denotes its *n*th **partial sum**:

$$
s_n = \sum_{i=1}^{\infty} a_i = a_1 + a_2 + a_3 + \dots + a_n
$$

If the sequence $\{s_n\}$ is **convergent** and $\lim_{n\to\infty}$ $n\rightarrow\infty$ $s_n = s$ exists as a **real number**, then the series $\sum a_n$ is called **convergent** and we write

$$
a_1 + a_2 + a_3 + \dots + a_n + \dots = s
$$
 or $\sum_{n=1}^{\infty} a_n = s$

The number *s* is called the sum of the series. We can see $\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} a_n$ $n\rightarrow\infty$ $\sum_{i=1}^{\infty}a_i.$ Otherwise, the series is called **divergent**.

9.2 (Complex) Sequences and Series

(複数)数列と級数

A **sequence** $\{z_n\}$, where $n = 1, 2, 3, ...$ is a function whose domain is the set of **positive integers** and **whose range is a subset of the complex numbers** .

For example, the sequence $\{1 + i^n\}$ is

$$
1+i, \qquad 0, \qquad 1-i, \qquad 2, \qquad 1+i, \qquad \dots \qquad (6.1.1)
$$

9.2 (Complex) Sequences and Series (数列と級数) **Sequences (数列)**

If lim $n\rightarrow\infty$ $z_n = L$, where L is a complex number, we say the sequence is **convergent (収束する).**

Sequence that is **not convergent** is said to be **divergent (発散する)**.

 ${z_n}$ converges to the number L, if for each positive real

number ε , an N can be found such that $|z_n - L| < \varepsilon$

whenever $n > N$.

Since $|z_n - L|$ is distance, the terms z_n of a sequence that converges to L can be made arbitrarily close to L .

Figure 6.1 If $\{z_n\}$ converges to L, all but a finite number of terms are in every ε -neighborhood of L . 9.2 (Complex) Sequences and Series (数列と級数)

Sequences (数列)

For example, the sequence $\{1 + i^n\}$

1 + i, 0, 1 - i, 2, 1 + i, ...
\n
$$
\uparrow
$$
 \uparrow \uparrow \uparrow \uparrow ...
\n $n = 1$, $n = 2$, $n = 3$, $n = 4$, $n = 5$,

The sequence $\{1 + i^{n}\}$ is divergent because the general term $z_{n} = 1 + i^{n}$ does not approach a fixed complex number as $n \to \infty$.

9.2 (Complex) Sequences and Series (数列と級数) Sequences (数列)

EXAMPLE (例題) 6.1.1 A Convergent Sequence The sequence $\{\stackrel{i^{n+1}}{\text{---}}$ \boldsymbol{n} **converges or not.**

Solution (解答):

The sequence
$$
\left\{\frac{i^{n+1}}{n}\right\}
$$
 converges since
\n
$$
\lim_{n \to \infty} \frac{i^{n+1}}{n} = 0
$$
. As we see from
\n
$$
-1, -\frac{i}{2}, \frac{1}{3}, \frac{i}{4}, -\frac{1}{5}, \cdots,
$$

and Figure 6.2, the terms of the sequence,

marked by colored dots in the figure, **spiral**

in toward the point
$$
z = 0
$$
 as *n* increases.

Figure 6.2 The terms of the sequence $\{\frac{i^{n+1}}{n}\}$ \boldsymbol{n} } spiral in toward 0.

9.2 (Complex) Sequences and Series (数列と級数)

Theorem 6.1 Criterion (基準) for Sequence Convergence

Suppose that
$$
z_n = x_n + iy_n
$$
 ($n = 1, 2, ...$) and $L = x + iy$. Then
\n
$$
\lim_{n \to \infty} z_n = L
$$
\nif and only if
\n
$$
\lim_{n \to \infty} x_n = x
$$
 and
$$
\lim_{n \to \infty} y_n = y
$$

This theorem for sequences is the analogue of Theorem 2.1 in Lecture 2.

Theorem 2.1 Real and Imaginary Parts (実部と虚部) of a Limit

Suppose that
$$
f(z) = u(x, y) + iv(x, y)
$$
 and $z_0 = x_0 + iy_0$, and

$$
L = u_0 + iv_0
$$
. Then $\lim_{z \to z_0} f(z) = L$ if and only if

$$
\lim_{(x,y)\to(x_0,y_0)} u(x,y) = u_0 \text{ and } \lim_{(x,y)\to(x_0,y_0)} v(x,y) = v_0
$$

Sequences (数列)

Additional EXAMPLE (例題) 1 Using Theorem 6.1 The sequence $\left\{\frac{1}{n^3}+i\right\}$ converges or not. **Solution (解答): Sequences (数列)** The sequence $z_n = \frac{1}{n^3} + i$ $(n = 1, 2, ...)$ converges to *i* since lim $n\rightarrow\infty$ $z_n = \lim_{n \to \infty}$ $n\rightarrow\infty$ 1 \overline{n} $\left(\frac{1}{3}+i\right) = \lim_{n\to\infty}$ 1 \boldsymbol{n} $\frac{1}{3} + i \lim_{n \to \infty}$ $1 = 0 + i \cdot 1 = i$ 1 $\frac{1}{n^3} + i \quad (n = 1, 2, ...)$ For each number $\varepsilon > 0$ 9.2 (Complex) Sequences and Series (数列と級数)

$$
|z_n - i| = \frac{1}{n^3} < \varepsilon \quad \text{whenever } n > \frac{1}{\sqrt[3]{\varepsilon}}
$$

9.2 (Complex) Sequences and Series (数列と級数) **Sequences (数列)**

EXAMPLE (例題) 6.1.2 Using Theorem 6.1 The sequence $\left\{\frac{3+ni}{n+2ni}\right\}$ converges or not.

Solution (解答):

From
$$
z_n = \frac{3+ni}{n+2ni} = \frac{(3+ni)(n-2ni)}{(n+2ni)(n-2ni)} = \frac{(3+ni)(n-2ni)}{n^2+4n^2} = \frac{2n^2+3n}{5n^2} + i\frac{n^2-6n}{5n^2}
$$

we see that when $n \to \infty$

$$
\lim_{n \to \infty} \text{Re}(z_n) = \lim_{n \to \infty} \frac{2n^2 + 3n}{5n^2} = \lim_{n \to \infty} \left(\frac{2}{5} + \frac{3}{5n}\right) = \frac{2}{5}
$$
\n
$$
\lim_{n \to \infty} \text{Im}(z_n) = \lim_{n \to \infty} \frac{n^2 - 6n}{5n^2} = \lim_{n \to \infty} \left(\frac{1}{5} - \frac{6}{5n}\right) = \frac{1}{5}
$$
\nFrom Theorem 6.1, the results are sufficient to conclude that the given sequence converges to $L = x + iy = \frac{2}{5} + \frac{1}{5}i$.

9.2 (Complex) Sequences and Series (数列と級数)

An infinite series or series of complex numbers

$$
\sum_{n=1}^{\infty} z_n = z_1 + z_2 + z_3 + \dots
$$

is convergent if the **sequence of partial sums (部分和)** $\{S_n\}$, where

$$
S_n = z_1 + z_2 + z_3 + \dots + z_n
$$

converges.

If $S_n \to L$ as $n \to \infty$, we say that the series converges to L or that **the sum of the series is L.**

Series (級数)

Additional EXAMPLE (例題) 2 Show that if $\sum_{n=1}^{\infty} z_n = L$ where $L = x + iy$, then $\sum_{n=1}^{\infty} \bar{z}_n = \overline{L}$.

Solution (解答):

We write
$$
z_n = x_n + iy_n
$$
 (*n* = 1, 2, ...).

First of all, we note that

$$
\sum_{n=1}^{\infty} x_n = x \text{ and } \sum_{n=1}^{\infty} y_n = y
$$

Then since $\sum_{n=1}^{\infty}(-y_n) = -y$, it follows that

$$
\sum_{n=1}^{\infty} \bar{z}_n = \sum_{n=1}^{\infty} (x_n - iy_n) = \sum_{n=1}^{\infty} [x_n + i(-y_n)] = x - iy = \bar{L}
$$

9.2 (Complex) Sequences and Series (数列と級数)

Geometric Series (幾何級数)

A **geometric series** is any series of the form

$$
\sum_{n=1}^{\infty} a z^{n-1} = a + a z + a z^2 + \cdots
$$
 (6.1.2)

For (6.1.2), the *n*th term of the sequence of partial sums is

 $S_n = a + az + az^2 + \dots + az^{n-1}$ (6.1.3)

Series (級数)

Geometric Series (幾何級数)

When **an infinite series is a geometric series**, it is always possible to find a formula for S_n .

Why? We can multiply S_n in (6.1.3) by z,

 $zS_n = az + az^2 + az^3 + \dots + az^n$

and subtract this result from S_n , then we have

 $S_n - zS_n = (a + az + az^2 + \dots + az^{n-1}) - (az + az^2 + az^3 + \dots + az^n$

$$
(1-z)S_n = a - az^n
$$

\n
$$
\Rightarrow S_n = \frac{a(1-z^n)}{1-z}
$$
 (6.1.4)

Now $z^n \to 0$ as $n \to \infty$ whenever $|z| < 1$, and so $S_n \to \frac{a}{1-z}$ $1-z$.
.

In other words, for $|z| < 1$ the sum of a geometric series (6.1.2) is $\frac{a}{1}$ $1-z$ (i.e. **convergent**):

$$
\sum_{n=1}^{\infty} a z^{n-1} = a + a z + a z^2 + \dots = \frac{a}{1-z}
$$

A geometric series (6.1.2) **diverges** when $|z| \ge 1$.

(6.1.5)

9.2 (Complex) Sequences and Series (数列と級数)

Special Geometric Series

If we set $a = 1$, the equality in (6.1.5) is If we then replace the symbol z by $-z$ in (6.1.6), we get a similar result 1 $1 - z$ $= 1 + z + z^2 + z^3 + \cdots$ 1 $1 + z$ $= 1 - z + z^2 - z^3 + \cdots$ (6.1.6) (6.1.7)

Like (6.1.5), the equality in (6.1.7) is valid for $|z| < 1$ since $|-z| = |z|$. Now with $a = 1$, (6.1.4) gives us the sum of the first *n* terms of the series in (6.1.6):

$$
\frac{1-z^n}{1-z} = 1 + z + z^2 + z^3 + \dots + z^{n-1}
$$

9.2 (Complex) Sequences and Series (数列と級数) **Series (級数)**

EXAMPLE (例題) 6.1.3 Convergent Geometric Series The series $\Sigma_{n=1}^\infty$ ∞ $\frac{(1+2i)^n}{n}$ 5^n is convergent or divergent?

Solution (解答): The infinite series $\,\sum\,$ $n=1$ ∞ $1 + 2i)^n$ 5^n = $1 + 2i$ 5 $+$ $1 + 2i)^2$ 5 $\frac{1}{2}$ + $1 + 2i$ ³ 5 $\frac{1}{3}$ + … $a \longrightarrow a z \longrightarrow a z^2$

is a **geometric series**. It has the form given in (6.1.2) with $a = \frac{1+2i}{5}$ 5 and

$$
z = \frac{1+2i}{5}.\text{ Since } |z| = \sqrt{\left(\frac{1}{5}\right)^2 + \left(\frac{2}{5}\right)^2} = \frac{\sqrt{5}}{5} < 1, \text{ the series is convergent and} \\
\text{its sum is given by (6.1.5):} \\
\sum_{n=1}^{\infty} \frac{(1+2i)^n}{5^n} = \frac{\left(\frac{1+2i}{5}\right)^n}{1 - \left(\frac{1+2i}{5}\right)^n} = \frac{1+2i}{4-2i} = \frac{1}{2}i
$$

9.2 (Complex) Sequences and Series (数列と級数) **Series (級数)**

Theorem 6.2 A Necessary Condition for Convergence

If
$$
\sum_{n=1}^{\infty} z_n
$$
 converges, then $\lim_{n \to \infty} z_n = 0$.

Proof

Let *L* denote the sum of the series. Then $S_n \to L$ and $S_{n-1} \to L$ as $n \to \infty$.

By taking the limit of both sides of $S_n - S_{n-1} = z_n$ as $n \to \infty$, we have

$$
\lim_{n \to \infty} (S_n - S_{n-1}) = \lim_{n \to \infty} z_n
$$

$$
L - L = \lim_{n \to \infty} z_n
$$

$$
0 = \lim_{n \to \infty} z_n
$$

we obtain the desired conclusion.

A Test for Divergence

Theorem 6.3 The th Term Test for Divergence

If
$$
\lim_{n \to \infty} z_n \neq 0
$$
, then $\sum_{n=1}^{\infty} z_n$ diverges.

For example,

the series
$$
\sum_{n=1}^{\infty} \frac{in+5}{n}
$$
 diverges since $z_n = \frac{in+5}{n} \to i \neq 0$ as $n \to \infty$.

The geometric series (6.1.2) diverges if $|z| \ge 1$ because even in the case when

```
lim
n\rightarrow\infty|z_n| exists, the limit is not zero.
```
Definition 6.1 Absolute and Conditional Convergence (絶対収束 と条件収束)

An infinite series $\sum_{n=1}^{\infty} z_n$ is said to be absolutely convergent if $\sum_{n=1}^{\infty} |z_n|$ converges. An infinite series $\sum_{n=1}^{\infty} z_n$ is said to be conditionally convergent if it converges but $\sum_{n=1}^{\infty} |z_n|$ diverges.

-series

In elementary calculus a real-value series of the form $\sum_{n=1}^{\infty} \frac{1}{n^2}$ n^p is called a *p*-series and **converges for** $p > 1$ and **diverges for** $p \le 1$.

EXAMPLE (例題) 6.1.4 Absolute Convergence The series $\sum_{n=1}^{\infty} \frac{i^n}{n^2}$ n^2 **is absolute convergent or not.**

Solution (解答):

The series $\sum_{n=1}^{\infty} \frac{i^n}{n^2}$ $\frac{i^n}{n^2}$ is absolutely convergent since the series $\sum_{n=1}^\infty \left| \frac{i^n}{n^2} \right|$ n^2

is the same as the real convergent p -series $\sum_{n=1}^\infty \frac{1}{n^2}$ n^2 .

Here we identify $p = 2 > 1$.

As in Real-value calculus:

Absolute convergence implies convergence.

We can therefore conclude that the series in Example 6.1.4,

$$
\sum_{n=1}^{\infty} \frac{i^n}{n^2} = i - \frac{1}{2^2} - \frac{i}{3^2} + \frac{1}{4^2} + \cdots
$$

converges because it is **absolutely convergent**.

Tests for Convergence

Theorem 6.4 Ratio Test

Suppose $\sum_{n=1}^{\infty} z_n$ is a series of nonzero complex terms such that lim $n\rightarrow\infty$ $\overline{z_{n+1}}$ \overline{z}_n $(6.1.9)$

(i) If $L < 1$, then the series converges absolutely.

(ii) If $L > 1$ or $L = \infty$, then the series diverges.

(iii) If $L = 1$, the test is inconclusive (i.e. no idea about the result).

Tests for Convergence

Theorem 6.5 Root Test

Suppose $\sum_{n=1}^{\infty} z_n$ is a series of complex terms such that

$$
\lim_{n \to \infty} \sqrt[n]{|z_n|} = L \tag{6.1.10}
$$

(i) If $L < 1$, then the series converges absolutely.

```
(ii) If L > 1 or L = \infty, then the series diverges.
```
(iii) If $L = 1$, the test is inconclusive.

Review for Lecture 9

- (Complex) Sequences and Series
- Convergence and Divergence
- Geometric Series
- \cdot *p*-series
- Absolute and Conditional Convergence
- Series Tests

Exercise

Please Check<http://web-ext.u-aizu.ac.jp/~xiangli/teaching/MA06/index.html>

References

[1] A First Course in Complex Analysis with Application, Dennis G. Zill and Patrick D. Shanahan, Jones and Bartlett Publishers, Inc. 2003 [2] Wikipedia