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ABSTRACT
Congestion, accidents, greenhouse gas emission and others
seem to become unsolvable problems for all levels of man-
agement in modern large cities worldwide. The increasing
dynamics of motorization requires development of innova-
tive methodological tools and technical devices to cope with
problems emerging in the road networks. Primarily, control
system for urban traffic area has to be created to support de-
cision makers by processing a big volume of transportation
data. The input for such a system is a volume of travel de-
mand between origins and destinations — OD-matrix. The
present work is devoted to the problem of OD-matrix esti-
mation. The original technique of OD-matrix estimation is
offered by virtue of plate scanning sensors location. Math-
ematically developed technique is based on a dual formula-
tion of the traffic assignment problem (equal journey time
by alternative routes between any OD-pair). Traffic demand
between certain OD-pair is estimated due to journey time
obtained from plate scanning sensors. Moreover, the func-
tional relationship between traffic demand and journey time
is obtained explicitly for the network of parallel routes with
one OD-pair. Eventually, the developed method has been
tested on the experimental data of the Saint-Petersburg road
network.

Categories and Subject Descriptors
G.1.6 [Mathematics of Computing]: Numerical analy-
sis—optimization

General Terms
Theory
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OD-matrix estimation, traffic assignment problem, duality
theory
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1. INTRODUCTION
OD-matrix estimation and reconstruction are urgent and

complicated challenges, since road networks of modern cities
are extremely large and intricate. In general, OD-matrix es-
timation and reconstruction are different problems: the first
means to obtain approximate values, while the second means
to obtain precise values of an actual traffic demand [1]. One
of the first mathematical models for OD-matrix estimation
was formulated in a form of bi-level program [2]. Despite nu-
merous publications, this problem still attracts researchers
from all over the world [3–8]. A detailed comparative analy-
sis of the methods for trip matrix estimation was made in [4].
From a practical perspective, the most promising technique
for trip matrix estimation is combination of data obtained
both from plate scanning sensors and link-flow counts [5].

This paper is also devoted to the problem of OD-matrix
estimation. We believe that a plate scanning sensor is the
highly efficient engineering equipment. Indeed, due to link-
flow counts one could obtain solely amount of vehicles on
the link, while plate scanning allows estimating the average
travel time between origin and destination by identification
the vehicle in the origin and destination points. Since the
travel time between an origin-destination pair is a Lagrange
multiplier for a primal traffic assignment problem (TAP), it
is the variable in a dual formulation of TAP. Therefore, we
are able to formulate a new bi-level optimization program
for OD-matrix estimation based on data from link-flow plate
scanning sensors on congested networks.

The rest of this paper is organized as follows. In Sec-
tion 2 the network of parallel routes with one OD-pair is
investigated. The idea of OD-matrix estimation based on
information about travel times between OD-pairs is clari-
fied. Section 3 provides a dual formulation of the traffic as-
signment problem for a general topology network. Section 4
describes a bi-level optimization program for OD-matrix es-
timation on a congested network by virtue of plate scanning
sensors. Section 5 is devoted to the experimental implemen-
tation of the developed approach to the Saint-Petersburg
road network. Conclusions are given in Section 6.

2. THE NETWORK OF PARALLEL
ROUTES

Let us consider a transportation network presented by a
digraph with one OD-pair. Let us introduce the following
notation: F is the traffic demand between OD-pair; fi is
the traffic flow on the route i, i = 1, n, f = (f1, . . . , fn),
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∑n
i=1 fi = F ; ti(fi) = ai + bifi is the travel time on con-

gested arc i, i = 1, n. In the present work we model the
travel time on the congested arc as the linear function.

Figure 1: The road network of parallel routes with
one OD-pair

Let us formulate the traffic assignment problem on the net-
work of parallel routes as an optimization program [9, 10]:

z(f∗) = min
f
z(f) = min

f

n∑
i=1

∫ fi

0

ti(u)du, (1)

with constraints

n∑
i=1

fi = F, (2)

fi > 0 ∀i = 1, n. (3)

Wardrop’s first principle states that the journey times in
all routes actually used are equal and less than those that
would be experienced by a single vehicle on any unused route
[10, 11]. The traffic flows that satisfy this principle are
usually referred to as ”user equilibrium” (UE) flows, since
each user chooses the route that is the best. On the net-
work of parallel routes UE is reached by such assignment
f∗ = (f∗1 , . . . , f

∗
n) as:{

ti(f
∗
i ) = t∗ > 0 when f∗i > 0,

ti(f
∗
i ) > t∗ when f∗i = 0,

i = 1, n.

Thus, the mathematically formalized idea of UE (1)–(3) can
be used in reconstruction of traffic assignment on the net-
work between the origin-destination pair. However, if it is
the travel time t∗ between OD-pair that is known, we are
able to reconstruct traffic demand F on the linear network
of parallel routes.

Without loss of generality we assume that the routes are
numbered as follows:

a1 6 . . . 6 an.

Theorem 1. The traffic demand F for a linear network
of parallel routes can be obtained explicitly:

F = t∗
k∑

s=1

1

bs
−

k∑
s=1

as
bs
, (4)

where k satisfies

a1 6 . . . ak < t∗ 6 ak+1 . . . 6 an. (5)

Proof. The travel time t∗ through used routes is the
Langrangian multiplier that corresponds to the restriction
(2) of optimization program (1)–(3) [9, 12, 13]. According
to [9] the following relation holds:

t∗ =
F +

∑k
s=1

as
bs∑k

s=1
1
bs

,

and, hence, (4) follows directly when k satisfies (5).

Therefore, if we know travel time of the vehicle on any
of alternative routes between the OD-pair, the appropri-
ate traffic demand can be uniquely reconstructed. Due to
such results the developed approach seems to be promising.
The main idea of the method based on the first principle
of Wardrop: if we define the journey time of the vehicle on
any of actually used routes between certain OD-pair, then
we believe that the journey time on all other used routes is
the same.

3. DUAL FORMULATION OF TAP
Let us consider the network of general topology presented

by graph G = (N,A). We introduce the following notation:
W is the set of OD-pairs, w ∈ W , W ∈ N ; Kw is the set
of routes connecting OD-pair w; Fw is the traffic demand

for OD-pair w, F =
(
F 1, . . . , F |W |

)T
; fw

k is the traffic flow

on the route k ∈ Kw,
∑

k∈Kw f
w
k = Fw; fw = {fw

k }k∈Kw

and f = {fw}w∈W ; xa is the traffic flow on the arc a ∈ A,
x = (. . . , xa, . . .); ta(xa) is the link travel cost on the arc
a ∈ A; δwa,k is the indicator: 1 if the acr a is included in the
route k, 0 otherwise.

User equilibrium on the transportation networkG is reached
by such x∗ that

Z(x∗) = min
x

∑
a∈A

∫ xa

0

ta(u)du, (6)

subject to ∑
k∈Kw

fw
k = Fw, ∀w ∈W, (7)

fw
k > 0, ∀w ∈W, (8)

(9)

with definitional constraints

xa =
∑
w∈W

∑
k∈Kw

fw
k δ

w
a,k, ∀a ∈ A. (10)

User equilibrium principle allows us to introduce t∗w, that is
equilibrium journey time for any OD-pair w.

Proposition. t∗w is the Lagrange multiplier in the opti-
mization program (6)–(10) corresponding to the constraint
(8).

Proof. The Lagrangian of the problem (6)–(10) is

L =
∑
a∈A

∫ xa

0

ta(u)du+
∑
w

µw

(
Fw −

∑
k∈Kw

fw
k

)
+

+
∑
w

∑
k∈Kw

ηwk (−fw
k ) ,
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where µw and ηwk ≥ 0 are Lagrangian multipliers, and dif-
ferentiation of the Lagrange]ian yields:

∂L

∂fw
k

=
∑
a∈k

ta(xa)− µw − ηwk = 0.

Note, that according to complementary slackness ηwk f
w
k = 0.

Thus, for fw
k > 0 the following expression holds∑
a∈k

ta(xa) = µw, ∀k ∈ Kw, w ∈W (11)

Actually, the left part of (11) is the journey time on any used
route (fw

k > 0) between OD-pair r. Therefore, proposition
is proved.

Eventually, according to the proposition the following equal-
ity is true:

t∗w =
∑
a∈k

ta(xa) ∀k ∈ Kw, w ∈W.

We introduced multipliers T = (t1, . . . , t|W |)
T for the con-

straints (7), and define the dual traffic equilibrium problem:

max θ(T )

where θ(T ) is defined by

θ(T ) = min
f>0

{∑
a∈A

∫ xa

0

ta(s)ds+
∑
r

tr

(
F r −

∑
k∈Kr

fr
k

)}
,

subject to definitional constraints

xa =
∑
w∈W

∑
k∈Kw

fw
k δ

w
a,k, ∀a ∈ A.

4. OD-MATRIX ESTIMATION FROM
PLATE SCANNING SENSORS

Link-flow counts provide the amount of vehicles on the
links. Plate scanning sensors associated with the certain
links identify plates of vehicles from link-flow. Thus, when
any vehicle crosses a link with some sensor then sensor records
its plate number and fixation time. Eventually, database
consisting of {plate number, fixation time, number of sen-
sor} is accumulated [3]. With the help of such database, the
travel time between any origin-destination pair can be di-
rectly evaluated. Indeed, one just has to know fixation time
of the vehicle in origin and fixation time in destination to
define t∗r for any r.

Therefore, the following bi-level optimization program can
be formulated:

min
F

(
F − F

)T
U−1 (F − F )+ (T ∗ − T )T(T ∗ − T ), (12)

subject to

F ≥ 0, (13)

where T solves

max θ(T ), (14)

where θ(T ) is defined by

θ(T ) = min
f>0

{∑
a∈A

∫ xa

0

ta(s)ds+
∑
r

tr

(
F r −

∑
k∈Kr

fr
k

)}
,

(15)

subject to definitional constraints

xa =
∑
w∈W

∑
k∈Kw

fw
k δ

w
a,k, ∀a ∈ A. (16)

Here, (12) is the generalized least squares estimation and F
is the aprior volume of travel demand between all OD-pairs,
and U is the weighting matrix.

5. COMPUTATIONAL EXPERIMENT
Let us consider the road network of Saint-Petersburg (fig. 2).

We define seven origin-destination pairs with seven shortest
routes from seven periphery origins {1,2,3,4,5,6,7} to the
center destination {8}. According to STSI (State Traffic

Figure 2: Selected OD-pairs on the Saint-Petersburg
road network with the shortest routes

Safety Inspectorate), nowadays there are 253 plate scan-
ning sensors observing the road network of Saint-Petersburg
(fig. 3). Due to these sensors, we are able to identify travel

Figure 3: Sensors location on the Saint-Petersburg
road network

time between chosen OD-pairs (table 1). The developed
approach is based on the user equilibrium principle, which
suggests that the value of travel time on the shortest route is
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Table 1: Journey times obtained from plate scanning
sensors
Route between OD-pair Travel time t∗ (minutes)

1–8 89
2–8 80
3–8 83
4–8 78
5–8 45
6–8 57
7–8 36

the travel time on any actually used route. Moreover, we are
able to calculate an aprior flow F using the gravity model
[4].

Let us use these data as inputs for bi-level optimization
program (12)–(16). MATLAB was employed to carry out
the simulation. The results of simulation are provided in the
table 2. Moreover, these results are available in comparison
with aprior flows. Fig. 4 gives a visualization of such a

Table 2: Comparison of model flow with aprior flow
OD-pair Aprior flow Model flow

1–8 5523 5910
2–8 12232 11253
3–8 6827 6295
4–8 6938 7631
5–8 5534 5080
6–8 4254 4650
7–8 3395 3202

comparison. One can see that rough aprior estimation of

Figure 4: Comparison of model flow with aprior flow

trip flows, obtained by gravity model, was adjusted by virtue
of information about actual travel time between OD-pairs.
Therefore, developed in this paper approach seems to be
quite useful.

6. CONCLUSION
The paper was devoted to the problem of OD-matrix es-

timation. The original technique of OD-matrix estimation
based on a dual formulation of the traffic assignment prob-
lem was offered. Traffic demand between certain OD-pair
was estimated due to the journey time obtained from plate

scanning sensors. Moreover, the functional relationship be-
tween the traffic demand and the journey time was obtained
explicitly for the network of parallel routes with one OD-
pair. Eventually, the developed method has been tested on
the experimental data of the Saint-Petersburg road network.
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