
Visualization of Execution Paths for Concurrent Programs

Andrei Eleshevich
Peter the Great St. Petersburg Polytechnic

University
29 Polytechnicheskaya st.

195251 St. Petersburg Russia
ordronus@gmail.com

Marat Akhin
Peter the Great St. Petersburg Polytechnic

University
29 Polytechnicheskaya st.

195251 St. Petersburg Russia
akhin@kspt.icc.spbstu.ru

ABSTRACT
Understanding concurrent program behaviour is very hard
even for experienced developers, let alone students, because
of different possible thread interleavings, which are often
not so obvious prima facie. In this paper we present a vi-
sualization system intended to help students in this difficult
task. It collects all possible execution traces with the help
of Java PathFinder and visualizes them as UML sequence
diagrams, thus allowing one to discern possible execution
schedules for a given concurrent program. We believe this
kind of visualization could be of great use in teaching con-
current programming.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and In-
formation Science Education—computer science education;
D.2.5 [Software Engineering]: Testing and Debugging—
monitors, testing tools, tracing ; D.1.3 [Programming Tech-
niques]: Concurrent Programming—parallel programming

Keywords
Education, Visualization, Concurrency

1. INTRODUCTION
It is quite difficult to teach programming to students [4],

and it is even more so with concurrent programming. At
the same time, concurrency is one of the most required skills
for a developer nowadays, as more and more problems stop
fitting on a single core every year.

The main problem with teaching concurrent programming
is that in a single-threaded program execution order is eas-
ily defined and clear to the naked eye, whereas in a multi-
threaded program, because of context switches which can
happen arbitrarily, there are many possible thread inter-
leavings, some of which might lead to bugs such as race
conditions and deadlocks.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IWAIT ’15, Oct. 8–10, 2015, Aizu-Wakamatsu, Japan.
Copyright 2015 University of Aizu Press.

In many cases concurrency errors stay hidden most of the
time and surface only in several specific thread interleav-
ings (so called Heisenbugs). When teaching, this can lead to
students becoming overcautious and starting to abuse syn-
chronization, which in turn nullifies the advantages of con-
current programming.

We propose to enhance concurrent programming teaching
by providing a visualization tool which captures all possible
execution orders and shows them to the student, so that she
can explore them and reason about side effects of different
thread interleavings on the program results. The prototype
implementation is based on Java PathFinder (JPF) [5] and
uses it to collect interesting execution traces which are later
rendered as UML sequence diagrams; if JPF finds a possible
concurrency error, it is shown to the student together with
the schedule that caused it.

The rest of the paper is organized as follows. Section 2
talks about related work in the area of visualization of con-
current program. We present our approach, the architecture
of our prototype tool and show the diagram of a program
containing a race condition in sections 3 and 4. Possible
future work and conclusions are discussed in section 5.

2. RELATED WORK
There have been a lot of research in the area of con-

current program visualization for program understanding.
JThreadSpy [3] uses instrumentation to collect execution
traces and renders them as UML sequence diagrams, in
which it is very similar to our approach. The differences
are that it only instruments class methods and uses runtime
information (therefore cannot explore all reachable thread
interleavings). Our approach captures all information about
program execution and explores every possible execution
trace due to the power of JPF.

Atropos [1] also uses instrumentation for trace collection,
but it records all operations and data being manipulated by
them. It then creates a data dependence graph (DDG) for
visualization; the user can analyze DDG to find which data
dependencies caused an error in the program. Atropos does
not allow the user to analyze different possibilities, as it uses
runtime information to build the DDG, i.e. captures only
one concrete execution.

Thread Interleaving Explorer (TIE) [2] is a tool most simi-
lar to ours and actually was the main inspiration behind this
work. It is a debugger for erroneous execution JPF traces
that allows the user to select a threading schedule and study
its influence on the program execution. Unlike our approach,
it focuses on exploring one (erroneous) trace at a time and

Proceedings of the International Workshop on Applications in Information Technology

5

Figure 1: Prototype architecture

cannot visualize interactions between context switches (i.e.
show several executions at the same time in detail).

3. APPROACH
Our main idea is to exhaustively exercise all possible thread

interleavings using JPF1. By employing various model check-
ing techniques, JPF can efficiently backtrack to already vis-
ited program states (should they appear during exploration)
without the need to re-execute the program. We collect the
information about these unique program states and com-
bine them later to create different thread schedulings. These
schedulings are presented to the user, so that she can study
them to gain insights to how her concurrent program actu-
ally works.

We utilize well-known UML sequence diagrams (USD) to
visualize possible program executions and follow their stan-
dard notation. USD objects correspond to program objects,
USD lifelines — to different object activities. Static methods
and fields are represented via special dummy objects (one
per class).

Method calls are mapped to USD messages from the caller
to the callee objects; synchronized calls are represented with
solid arrows, open arrows are used otherwise. Object al-
locations and thread starts are shown as special method
calls (which maps nicely to their actual semantics).

Fields are viewed as properties with dummy get/set meth-
ods that are also visualized as special method calls (for which
we track the current field values). At the moment, our pro-
totype supports only fields of primitive types and does not
handle volatile/final fields w.r.t. concurrency quirks; this

1Here JPF is only a tool, our approach can be based on
any other system that provides information about possible
concurrent executions.

Listing 1: Racer program

public class Racer extends Thread {

int d = 42;

public void run() {
doSomething (1001);
d = 0;

}

public static void main(String [] args) {
Racer racer = new Racer();
racer.start();

doSomething (1000);
int c = 420 / racer.d;
System.out.println(c);

}

static void doSomething(int n) {
try {

Thread.sleep(n);
} catch (InterruptedException ix) {}

}
}

is one of the possible areas for future work.
To represent thread information, we extended USD by

adding color annotations to the activation boxes — every
thread is assigned a unique color that is used to mark meth-
ods run by the corresponding thread. If a thread execution
is paused, it is shown by a darker shade of the thread’s color.

Another USD extension is to support execution branches.
If a method execution creates several interesting schedul-
ings, its activation box is labeled with a number of branch
options JPF found during program exploration. From this
label the user can open another possible scheduling in a sep-
arate window.

4. PROTOTYPE ARCHITECTURE
Our prototype implementation consists of two modules:

trace collection module and visualization module 1. Let us
discuss them in more detail.

4.1 Trace Collection
We collect possible execution traces from JPF using a cus-

tom JPF listener and capture such information as method
invocations, field accesses and object allocations. We also
record different execution branches and their unique iden-
tifiers (UID) and context switches possible in the program.
An execution branch in our approach roughly corresponds
to JPF choice during its model checking phase; if several
executions lead to the same JPF state, we consider them to
be the same branch (though there would be several different
thread interleavings leading to it).

4.2 Visualization
After collecting all execution traces, visualization is done

using a stand-alone GUI program. It carefully aggregates
possible execution branches (by unpacking branch combina-
tions possible in the program to execution paths) and builds
UML sequence diagrams from them. The first diagrams rep-
resent correct (w.r.t. JPF) executions, the last one shows
an execution with possible errors. The user can open addi-
tional diagrams by selecting a branching point and picking
one of the possible branching options there.

Proceedings of the International Workshop on Applications in Information Technology

6

(a) (b) (c) (d)

Figure 2: Execution paths for Racer program

4.3 Example
Let us consider a classic Racer example — a program with

race condition shown in listing 1.
The results of thread interleaving exploration for Racer

program using our prototype tool are shown in figure 2.
You can see that several execution paths were explored (fig-
ures 2a–2c) before finding an error (figure 2d).

The bug is a race condition between read access to racer.d

in main method and write access to it in run method. As
they are not synchronized, d = 0 could happen before di-
vision which would cause a division-by-zero error. As seen
from figure 2, JPF exploration is depth-first as it tries to
complete the execution before backtracking to a branch-
ing point. If a branching point creates non-distinct exe-
cutions (up to the next branching point), we consider it to
be non-interesting and does not show it in the interface.

5. CONCLUSIONS AND FUTURE WORK
We proposed an approach to the visualization of concur-

rent executions based on JPF for thread interleaving explo-
ration. It creates UML sequence diagrams which allows the
students to easily reason about different concurrent execu-
tions and witness the possible bugs first-hand.

Of course, our prototype leaves much to be desired. For
example, visualization lacks object or method filters which
would help with reducing the sequence diagram’ size. The
sequence diagram itself could be improved by adding explicit
notation for advanced synchronization primitives, e.g. syn-

chronized blocks, wait/notify calls or volatile accesses.

Another idea would be to employ slicing to compact the
diagram leaving only variables and interactions interesting
to the user.

6. REFERENCES
[1] J. Lönnberg, M. Ben-Ari, and L. Malmi. Java replay for

dependence-based debugging. In Proceedings of the
Workshop on Parallel and Distributed Systems:
Testing, Analysis, and Debugging, PADTAD ’11, pages
15–25, New York, NY, USA, 2011. ACM.

[2] G. Maheswara, J. S. Bradbury, and C. Collins. TIE: An
interactive visualization of thread interleavings. In
Proceedings of the 5th International Symposium on
Software Visualization, SOFTVIS ’10, pages 215–216,
New York, NY, USA, 2010. ACM.

[3] G. Malnati, C. M. Cuva, and C. Barberis. JThreadSpy:
Teaching multithreading programming by analyzing
execution traces. In Proceedings of the 2007 ACM
Workshop on Parallel and Distributed Systems: Testing
and Debugging, PADTAD ’07, pages 3–13, New York,
NY, USA, 2007. ACM.

[4] E. Pyshkin. Teaching programming: What we miss in
academia. In Software Engineering Conference in
Russia (CEE-SECR), 2011 7th Central and Eastern
European, pages 1–6. IEEE, 2011.

[5] W. Visser, K. Havelund, G. Brat, S. Park, and
F. Lerda. Model checking programs. Automated
Software Engg., 10(2):203–232, Apr. 2003.

Proceedings of the International Workshop on Applications in Information Technology

7

