Neuromorphic Computing

1. Introduction

Ben Abdallah Abderazek, Khanh N. Dang
E-mail: {benab, khanh}@u-aizu.ac.jp

This lecture is based on the book "Neuromorphic Computing Principles and Organization," Publisher: Springer; 2022 edition, ISBN-10: 3030925242, ISBN-13 : 978-3030925246, l;ly
Abderazek Ben Abdallah, Khanh N. Dang

Lecture Contents

1. Neuromorphic Computing

2. Hardware Models of Spiking Neurons

3. Synaptic Dynamics

4. Synaptic Plasticity Mechanisms and Learning
5. Synthesizing Real-Time Neuromorphic Systems

6. Conclusions

1. Neuromorphic Computing:
Neural Network Generations

X P
1 t

N X
2 t TN

X 1] t
& : Spike train

Threshold Activation function Spike train
1%t generation — perceptron 2"d generation — deep learning 3rd generation — SNN

Fig. 1.2: Neural network generations

1. Neuromorphic Computing:
Conventional ANN vs Spiking Neural Network (Neuromorphic)

Artificial Neural Network (ANN) is a brain inspired computing

paradigm modeled after the computational principles of the brain’s
neural network.

Approaches:

= Conventional ANN: Impressive results in visual and auditory
cognitive applications. However, they are:
* Slow when deployed in software, requiring a lot of time for
training
* Consume a lot of power when accelerated in hardware,
requiring large servers for training as their sizes increase.
= Spiking Neural Network (Neuromorphic):
* More analogous to the brain, communicating via spikes in
a sparse event driven manner.
 Exploits spike sparsity to achieve low-power.

4

1. Neuromorphic Computing:
Conventional ANN vs Spiking Neural Network (Neuromorphic)

ANN
(Static) 4 Procedural :
” { Boll |
- i values ((earrranssoast :
2 . i MAC» | = <,
—> . ' > -
© |
~ : s : Activation function }—»E]
flatten : s i Activation
|
______________ i ? |
B 1 |
SNN
.. : “~. (Sparse Input) | Event driven
\\\\Splke encoding s\: : i i : Binayy spike e : F S
& 1001 yoy, Values | " '
SN g ONED i
S NE 3
\\1 1011001, Spike
(a) Rate code (b) Rank order code (c) Timing code
Count ¢\ . Rank Time
gl L3 [9
L 5 g 2 17

- Ly W

Conventional ANN vs Spiking Neural Network

* Sparse input in SNN means sparse memory use.
* Spike communication means minimal power per event signal
 Event based processing in SNN also contribute to low power.

5

1. Neuromorphic Computing:
Exploiting Sparsity in Neural Network

(a) (b) (c)

Dense neural network Sparse neural network Sparse SNN

2R 200 28
e \)'(\‘--‘" \\ VAR A o e SE~Y \
7 //‘}\:'\\:\ /AN E /,/ \\ 7)‘(\\\ \

/ \ e\
o« o 0
" 2\
{/ A

* .. ® 6 § Sparse

N7

1547 neural
N activity

Sparsity in Neural Network

About 0.5% to 2% of neurons in the neocortex are active at
any time

Only about 1% to 5% of connections exist between two
connected layers in the neocortex and 30% of those
connections change every few days 6

1. Neuromorphic Computing:
What is Neuromorphic Computing?

* Neuromorphic Computing is the use of hardware (VLSI)
to simulate the biological architecture of the human
nervous system (brain, complex network of nerves, etc.),

* Neuromorphic Engineering is a new emerging field that
involves biology, physics, mathematics, and computer
science and engineering to design hardware models of
neural and sensory systems.

* Neuromorphic systems opens new frontiers for neuro-
robotics, artificial intelligence, and high-performance
applications.

1. Neuromorphic Computing:
Neural Algorithms Computing in Hardware

Hardware
Domain-specific General-purpose
Programmable Fixed Latency Throughput
logic logic oriented oriented
FPGA ASIC CPU GPU
« General; « Specific: executes STDP * Most general; common programming
requires HDL « HP & efficiency g -
: Lowest power efficiency and
« Moderate * Expensive, 40MB local performance
pe_rfc_)rmance & _rpemNory Example. 1204 Memory separate from chip
efficiency rueNort

Example: Google deep learning study

1. Neuromorphic Computing:
Neural Algorithms Computing in Hardware

ANN: Artificial Neural Network
SNN: Spiking Neural Network

Domain-specific

L

Programmable Latency Throughput
logic oriented oriented
CPU GPU

FPGA

I . J .

Most general; common programming

« General; |
requires AngHages

Lowest power efficiency and
performance

N RNAANR P
e Memory separate from chip

 Example: Google deep learning study

1. Neuromorphic Computing:
Examples of Neuromorphic Chips/Systems

s 9 9. 9. ©

Neurogrid IBM TrueNorth Intel Loihi

Examples of Neuromorphic Chips/Systems (not yet commercial)

10

Lecture Contents

1. Neuromorphic Computing Approaches

2. Hardware Models of Spiking Neurons

3. Synaptic Dynamics

4. Synaptic Plasticity Mechanisms and Learning
5. Synthesizing Real-Time Neuromorphic Systems

6. Conclusions

2. Hardware Models of Spiking Neurons:
Neuron Excitability

axon of other
neuron
\

-’

synapse dendrite nucleus axon P
terminals

Neurons information processing steps:

- Synapses: Connection between neurons
Dendrites: Receive inputs

Cell body: sums currents from dentures
- Axon: sends to action potential

How are action potentials generated given the fiiyrent flowing into the soma (cell body)
from dendrites and synapses? .

2. Hardware Models of Spiking Neurons:
Biophysical description

IZ-:)pc:;ning in al(p;tclh of mem:\lray(;) " - lon channeILHP(t)
R TR A R TR T
poEI i) e I et ey
|‘l(t)
_ '
= = =z = = 0,

| Biophysics of the membrane as an electrical circuit

[(t): Current of membrane

V(t): Membrane potential (Difference in electrical
potential between inside and outside of the cell.)

C: Capacitance of the membrane
gL: Conductance of the membrane
EL: Equilibrium potential of Leak '3

2. Hardware Models of Spiking Neurons:
Biophysical description

Zooming in a patch of memory: lon channel
Ik(t) IH(t) |AHP(t
Lipid l(t) INa(t) (t)

'€%e§ﬁ:mmm e
REVEEEIATEY VIV AR RA O A0

Capacitance of

the membrane Na: sodium ion K: potassium ion
| =EdV/dt +gL(V'EL) + Ina + ks I + lave
\
Leak conductance Kirchhoff’s current rule Leak equilibrium

of the membrane potential
[(t): Current of membrane

V(t): Membrane potential (Difference in electrical
potential between inside and outside of the cell.)

C: Capacitance of the membrane
gL: Conductance of the membrane
EL: Equilibrium potential of Leak 4

2. Hardware Models of Spiking Neurons:
Leaky Integrate-and-Fire

Zooming in a patch of memory: lon channel
IH(t) |AHP(t)
Lipid I INa(t)

bilayer l
enesestnn st amanaesthasesR el hanes el g
LRIy B mm g@m mmm@ww

| = CdV/dt + gL(V'EL) + Ina + ksl I + lane

@ lgnore action on

Replace by a threshold for spike
emission follows by a reset to a
fixed value/potential.

ion channels for
NOW.

2. Hardware Models of Spiking Neurons:
Leaky Integrate-and-Fire

Zooming in a patch of memory: lon channel
Ik(t) IH(t) |AHP(t
Lipid I(t) INa(t) (t)

bilayer l
errenseaes e AR sstMamaan esfPnneseefrivhan)
REETARaREU] NSRRI IV AEEIEN N LA SRR TN 0

Na: sodium ion

O =0

| = CdV/dt + gL(V'EL) H Ina + ksl I + lane

CmdV/dt = -g.(V-EL) + |

If V(t) = Vi then V(t44) = E.

Integrate-and-fire Model

Spike emission

threshold

linear

=9 = Firetreset threshold

More details on “Spiking Neuron Modelf’}
/ Cambridge press, 2002

Spiking Neuron Model

Spike Response Model

spike emission

Spike reception: EPSP
ele—17)

Spike emission: AP T T T T T

Spike reception: EPSP

rat
S reset of the membrane . :
77(ll ri) potential (action potential) EPSP: EXC.Itatory)
postsynaptic potentials

u (1) = nli 1))+ sz:%- g(f—ff)

ui(t):19:> Firing: Z; =1

18

Spike Resonse Model (SRM), Gerstner (1996)

2. Hardware Models of Spiking Neurons:
Spike Coding Schemes

Stimulus
Neuron 1 l Atl Atz At3 At'}
|| L
Neuron 3 _ I : t ”
aioai | Fig. 2.3: Inter-spike-interval
V 7 At = t-.
Fig. 2.2: Time to first spike
Stimulus

Stimulus Neuron 1 l ? 4
Nearon 1 l I l 2 Neuron 2 i AL 771
“""“f i I I 1 l - Neuron 3 l 2

ron N | I ! 3 2
uuuuuuuuu t

Neuron 4 |

At t 4
Fig. 2.4: Phase codi
? " Fig. 2.5: Rank order

19

2. Hardware Models of Spiking Neurons:

Neurons Communication Scheme

Fig. 2.15: AER (Address Event Representation) protocol

SENDER
=
y ; ~'2 — O
m
Py
—_— i
INPUTS

DATA BUS
(3::21:2:1 13221 —»

«— time

'\

430003d

3

RECEIVER
3 |
OUTPUTS

20

Lecture Contents

1. Neuromorphic Computing Approaches

2. Hardware Models of Spiking Neurons

3. Synaptic Dynamics

4. Synaptic Plasticity Mechanisms and Learning
5. Synthesizing Real-Time Neuromorphic Systems

6. Conclusions

3. Synaptic Dynamics:
Complex Structure of a Neural Network

presynaptic post-synaptic

\} axon nauron
g o
cell body]
»

B S

synapses

N/ =\

-~

dendritic tree ZS(%“: generation

Fig. Complex Structure of a Neural Network [M.Bertrand,2015].

» A typical neural network has four main regions: The cell body, the dendrites, The
axon, and the presynaptic terminals.

» Each region has a distinct role in the generation of signals and the communication
between neurons.

» Neurons can communicate through electrical synapses or chemical synapses alone

or via both types of interactions. 2

3. Synaptic Dynamics:
What is Synaptic Dynamics?
e Connections between neurons are not static, but change in

amplitude and timing.

* Synaptic dynamics is the time-dependent changes in synaptic
currents that change the strength of coupling between neurons.

e Both presynaptic and postsynaptic contribute to the changes of
synaptic currents.

* Synaptic dynamics realizes adaptive learning.

\I\ \J\KV Pre-synaptic

| n
/,,,./ O \Niufon e ___,__/;é’ Synapse
/// r,\— Action poten;‘a;‘—~ o
4 > A\ M \
A '\\‘ S\ :b \'
7- O \ —= _ :::__‘_ //\
Post-synaptic — '_/c’\'
\’\‘ Neuron '\\}3

Fig. 2.1: Two neurons communicating via a synapse. 23

Lecture Contents

1. Neuromorphic Computing Approaches

2. Hardware Models of Spiking Neurons

3. Synaptic Dynamics

4. Synaptic Plasticity Mechanisms and Learning
5. Synthesizing Real-Time Neuromorphic Systems

6. Conclusions

4. Synaptic Plasticity Mechanisms & Learning:
Learning Methods

* Spiking neural network (SNN) processes and communicates
sparse binary signals (spikes) in a highly parallel and event-
driven manner.

* The learning phase (minimizes a particular cost (loss)), is a
complex process of acquiring the parameters to output the
correct inference results.

* The cost function optimization is performed with a gradient-
descent-based optimization or other classical optimization
methods (i.e., genetic algorithm).

* There are various training/learning algorithms for SNNs:
> Unsupervised Spike-timing-dependent plasticity (STDP)
> ANN to SNN conversion 55

4. Synaptic Plasticity Mechanisms & Learning:
Learning Methods

4 Software)
Train ANN
using back
propagation
__ J " cConversion @) /Neuromorphic N

* ANN to SNN

» Load trained weights
+ Software SNN model -

* |Implement hardware

y Td’ai“‘"gNN o SNN model
\ argware Mo eJ)

8 Software h \ /
Train SNN J

using STDP

- J

Neuromorphic Learning Framework

26

4. Synaptic Plasticity Mechanisms & Learning:
Spike-timing-dependent plasticity (STDP)

e Adjusts the strength of connections (synapses) between
neurons in the brain.
v’ Adjusts the connection strengths based on the relative
timing of a particular neuron's output and input action
potentials.

Aw* = A*e(F). ifAr>0
Aw— =—A-e'T) ifAr <0

Where Aw is the change in synaptic weight. If a presynaptic spike arrives the
postsynaptic neuron within a time window 7, before the postsynaptic spike, the
synaptic weight increases Aw™, but if it arrives within a time window 7_, after the
postsynaptic spike, the synaptic weight decreases Aw™. At is the time difference be-
tween the presynaptic and postsynaptic spike which is expressed as At =1 ,55 — 1 e,
while A* and A~ are potentiation and depression amplitude parameters respectively.

27

4. Synaptic Plasticity Mechanisms & Learning:
Spike-timing-dependent plasticity (STDP)

Post-spikes —»

To/From
Control_unit

3z 3%
8 Before spike events |
|...| | | | | | I 8 After spike events

. IIIIIIII | * | LB_Control
Spk : Spike vector IIlIIIlIlIIILILI' IIIIIIII

WP : Write Pointer
v RP : Read Pointer

[One hot to address| [One hot to addressl 3 /

¥

Jeppe 0} |[oJuen

Adder

,;';S" S
2048
7 ’ﬂ; +1 /-1 IEE"
Synapse_Memeory
2048

£

Fig. 1.5: STDP Architecture.

 The STDP unit Follows the spike or pulse model assumption for cortical neurons where
information lies in spike timings, and not in spike shapes.
e 16 presynaptic traces are required to initiate the learning process. The PWU mechanism

enables fast parallel on-chip learning. .

Lecture Contents

1. Neuromorphic Computing Approaches

2. Hardware Models of Spiking Neurons

3. Synaptic Dynamics

4. Synaptic Plasticity Mechanisms and Learning
5. Synthesizing Real-Time Neuromorphic Systems

6. Conclusions

5. Synthesizing Real-Time Neuromorphic Systems:
A framework for a Real Neurocomputing Design

Define Partition Al Understand Develop Al Embed into Solve
) HW/SW]
Problem Tasks Constraints Model Device problem

Design Framework

Define Problem—> Partition Al Tasks = Understand Constraints = Develop Al HW/SW Model -> Embed into Device -> Solve problet

30

5. Synthesizing Real-Time Neu

romorphic Systems:

000 001 002
______ (0-87) | |(88-175)| [176-263)|
R L1 “ [o10 011 012
- (88 active neurons 264-351)| [352-439)| [440-527)
/j'\ i per core)
N . 020 | [o21] [022
N\ Oy e (528-615)| |616-703] [704-783)
II’ N ™ &
ANRY Lo L2 =<1 | 100 101 102
/ (25 active neurons (0-24) (25-49) | | (50-74)
per core)
110 111 112
(75-99)| [100-124) [125-149)|
Vs n- 120 | [21] [22
\. (150-174)| [175-199)| [200-224)|
D, i
200 201 202
 —— .
L3
SNN (784x225x10) (5 active neurons 210 211 212
per core) (0-4) (59
220 221 222
Active cores Centroids Inactive cores

Application mapping example on a 3 X 3 X 3 Neuromorphic Chip

31

5. Synthesizing Real-Time Neuromorphic Systems:
Connecting Neuromorphic Chips

X

t
Pixel Y Y
o - (%)

Arbor

\

X
Source chip Target chip

32

5. Synthesizing Real-Time Neuromorphic Systems:
Inside the Pixel

Inside the Pixel

33

5. Synthesizing Real-Time Neuromorphic Systems:
Using Crossbars

Using Crossbars

34

5. Synthesizing Real-Time Neuromorphic Systems:
Using Crossbars

Sl

Using Crossbars

35

5. Synthesizing Real-Time Neuromorphic Systems:
Using Crossbars

5. Synthesizing Real-Time Neuromorphic Systems:
Spiking Neuro-Processing Core

= .:Activ_e synapse Synapse Crossbar
an.:I E‘gll'\ve synapse dy di do tlass
d.: Dendrite / ag
From NI _ n eHH e =
256 Input Spike = a1 Output Spik ToNI
7 »lolmH B B B 256, "R P 286,
= a; [* 7 7
eleH e - =
Core :
From NI I
3, controller \ H o B OB e
7] N_Adadr. Out_~
Synapse address 8 / 1 To NI
7 3’ >
Input Spike 253, ﬁ LIF Neurons
o 256 =
- /’
v Synapse Memory < ?L -
v (T
2| T register , P
. Z g »{ + Threshold /256
1]
o — % leak Refractory
§ Z] =]
")) pd Q
wn
2 = . 3 3 STDP_Modulef
2 - e
: s 1,
Synaps 4 k_,_) —
I/ll/ll/]l/l V]V]Vll/ weights ¥ ¥
. 2048 ' 1 '
[Synapse weights le e L) *
Synapse address 8, |
i

Architecture of Spiking Neuro-Processing Core.

5. Synthesizing Real-Time Neuromorphic Systems:
LIF Neuron Module

Synapse
value —

Control —

Leak (-)

Threshold (constant) #»
—

\J4 ReadAcc V
\

14

2N

J14
Acc V
register
14bits
4 reset

(constant)

Refractory
count

L
3 Integrator (+)
—/ >
14, T I enable
7
-
-»>
set

71L> Spike_out

Architecture of LIF Neuron

5. Synthesizing Real-Time Neuromorphic Systems:
LIF Neuron Module

ok LALLM L -l

Input control ¥ 001) 010 1011
Valid pre-spike; [\
Pre-spike array: Y Ky X
Have spike event: / \
No spike event!
One hot spike 00) 01) 02 O3) O4) Os) -+ O2540285)
Update spike array: Y Up Uy)\ Uz Uz YUy Y u5X XUqu“256X
Synapse address,) Ao A1 f(Ag A3 Aa) As) - YAosaPss
Synapse value out; (So) 1) S2) S3) Sa) -
Valid synapse out! / \
Last spike event. /_L

lllustration of neuron update operation at the crossbar

An input presynaptic spike array is stored and checked for spike events. If present, the Have spike event signal
becomes high. Afterwards, the one hot operation to get the synapse address begins, updating the one hot spike
array for every spike event: from 00 to 0255.

The stored presynaptic spike array is also updated after each spike event is processed: from U0 to U255.

The synapse address is then used to fetch the synapse values from the synapse memory, and sent to the
postsynaptic neurons.

When the last spike event in the array has been processed, the crossbar sends a signal to the control unit §Egna|ing
that all spike events have been processed

5. Synthesizing Real-Time Neuromorphic Systems:
NASH Architecture

‘o Speior L ocraing '
H Hars code !
- rgeldugs Cuna !
H -__LLLLLLLLL "» 1
' -

' - .J__LLL s Oaipat :
| LI \
' 1
' \
(Tiasbag cobe i - » '
i ST - i
! = |le— !
¢ ’ =P O q
| o |
| —,’G i
: = i
1 1
' Iesage '
1 Speed |
! Ten |
L} L}
lceccmcmccccaeee--

e e

'
'
'
'
|
L '
L '
L |
L |
' |
(B Active e Nynegee_(veanber ' '
& Jomtisr sysaper { i
nt Aven] \
L |
U '
o-::nﬂh \ A reber '
b ' '
' b o > s) dute g o e H
1 '
LY -+
1 i —— ".Ikl;n : e - dotnvst |
" '
: Kawnr \ \\ H
- '
: i ! hqu - e pe— Tyl :
Symapoe stk 8 !
’ S ,’ Contral o evcotnr 1y | \‘- LINK L :
5 250 = [- Fort -~ \
: tupes Spike ,1 x LIF N [\ = |
: Bl [I % > :
' Sysape Messary HE L] (] R '
’ B 1%y P oot sabe |
) 3 B 1 vy ==
' Hr eihe i e L& i
' . ™ £35s [ST T '
2 Vo '
- 3 Mxbraciory (B = '
-4 ' Ociput Fort '
’ z 1 Address : \
! - [g N IDRIWIEIEING | |
' ey
- ¥ STRF_ Wirck : ! P 000_DJ0_o0on 00000 |
T oeow -~ '
o TP El T heeeesessssseeeeeeeeedil | 1] 1 ASAALLALLS ALY M8 YV 0 oo T TerTera--
- - ra ™ oo mo oo ot 100 !
' 7 (] Type (BBt g 87 conlipwranon 1 quibe
% 3 K '
: ":l‘:‘" (] FaraltF (Meine S0 fur Sk anrany’ spvke romivg |
. ey : ' XV Z (Mdtske rooree sadk oddoer 011 000 000 0o 1n '
’ - |1 Timedamg (i Jiee o) xwatad pala) - q
[Y e Aot s/ \
: Sy vapir adibivss &, l | OB, | '
B e e o S e 0= e e 0 S e P o o S e e S P i i e e a8
'
1

Organization of the NASH Neuromorphic Chip 40

5. Synthesizing Real-Time Neuromorphic Systems:

Spiking Neuron Packet Format

Address

Fault_flag 3 0
Output_port_fault]

- -
- - Wl

o WP
-
-

(a)

[Type |Faultflag| X.Y.Z. |Timestamp| Spikearray |

- - ———

\ﬁ_l

—-——

Type (1bits): 0" configuration; “1” spike
Fault flag(3bits): flag for fault-tolerant spike routing
XYZ (9bits): source node address
Timestamp (6bits): Time of action potential (spike)

Spike array (64bits): |dentifier for neuron that spiked

(b)

Primary Routing Table

Backup Routing Table

Output Port Address Output Port
Address | \pjujwis|ENIL| IDIUIWISIEIN|L|
000_000_000 0000100 000_000_000 0000100
001_000_000 0000100 001_000_000 0000100
011_000_000 0100000 I 011_000_000 | 0000010
% 7 Up
7
North
01

Spiking neuron packet format

41

5. Synthesizing Real-Time Neuromorphic Systems:
Network Interface (1/2): Encoder

9
Addr.x,y"_ ’ I\ddr.x’y'z 9, /
Timestamp 8. |, NI |Timestamp 61,
Core 3,| |Controller Type 2
controller ” |
6 Payload ;
Output spike__| :
array : 64
Spike_arry,
; ; 8 - 8
Configuration 7—| Configuration| 183

Flit_out
) blk 3-bits \9 buts _ 6-bits S 64-bits

/ \

|Type |Fau|t ﬂagl X.Y.Z, |Tmestamp| Spike array |<——

Network Interface: Encoder.

Operations of the encoder can be summarized in the following steps:

* Receive output spikes from local SNPC and packet into flits.
e After packeting, send flit to local router
42

5. Synthesizing Real-Time Neuromorphic Systems:
Network Interface (1/2): Decoder

Core < 3 /£

s NI
controller
Controller

3 Address
7T

A4

256 |nput Spik
91 ({spk_arry,,...,spk_arry,}—-+» np:rras')

256
Spike_array,
Flit _
*—> memory Spike_arry,
83} Configuration |

Flit_in

J-bit__3-bits,_9-bits_ 6-bits _ _ 64-bits
<—>< > > > < >
[Type[Fault flag] X.Y.Z, [Timestamp| Spike array |

Network Interface: Decoder.

N

Operations of the decoder can be summarized in the following steps:
* Receive spike packets from local router and unpack.
* Forward the spikes to the local SNPC as presynaptic spike train.

Lecture Contents

1. Neuromorphic Computing Approaches

2. Hardware Models of Spiking Neurons

3. Synaptic Dynamics

4. Synaptic Plasticity Mechanisms and Learning
5. Synthesizing Real-Time Neuromorphic Systems

6. Conclusions

Conclusions

Neuromorphic Computing is the use of hardware (VLSI) to
simulate the biological architecture of the human nervous system
(brain, complex network of nerves, etc.),

Spiking Neural Network:

> More analogous to the brain, communicating via spikes in a sparse event-driven
manner.

> Exploits spike sparsity to achieve low power.

Synaptic dynamics is the time-dependent changes in synaptic
currents that change the strength of coupling between neurons.

There are various training/learning algorithms for SNNs:
> Unsupervised Spike-timing-dependent plasticity (STDP)
> ANN to SNN conversion

Synthesizing a Neuromorphic System:

> Define Problem—> Partition Al Tasks = Understand Constraints = Develop
Al HW/SW Model = Embed into Device = Solve the Problem

45

