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1. Neuromorphic Computing:
Neural Network Generations
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Fig. 1.2: Neural network generations



1. Neuromorphic Computing:
Conventional ANN vs Spiking Neural Network (Neuromorphic)

Artificial Neural Network (ANN) is a brain inspired computing

paradigm modeled after the computational principles of the brain’s
neural network.

Approaches:

= Conventional ANN: Impressive results in visual and auditory
cognitive applications. However, they are:
* Slow when deployed in software, requiring a lot of time for
training
* Consume a lot of power when accelerated in hardware,
requiring large servers for training as their sizes increase.
= Spiking Neural Network (Neuromorphic):
*  More analogous to the brain, communicating via spikes in
a sparse event driven manner.
 Exploits spike sparsity to achieve low-power.
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1. Neuromorphic Computing:
Conventional ANN vs Spiking Neural Network (Neuromorphic)
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Conventional ANN vs Spiking Neural Network

* Sparse input in SNN means sparse memory use.
* Spike communication means minimal power per event signal
 Event based processing in SNN also contribute to low power.
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1. Neuromorphic Computing:
Exploiting Sparsity in Neural Network
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Sparsity in Neural Network

About 0.5% to 2% of neurons in the neocortex are active at
any time

Only about 1% to 5% of connections exist between two
connected layers in the neocortex and 30% of those
connections change every few days 6



1. Neuromorphic Computing:
What is Neuromorphic Computing?

* Neuromorphic Computing is the use of hardware (VLSI)
to simulate the biological architecture of the human
nervous system (brain, complex network of nerves, etc.),

* Neuromorphic Engineering is a new emerging field that
involves biology, physics, mathematics, and computer
science and engineering to design hardware models of
neural and sensory systems.

* Neuromorphic systems opens new frontiers for neuro-
robotics, artificial intelligence, and high-performance
applications.



1. Neuromorphic Computing:
Neural Algorithms Computing in Hardware
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1. Neuromorphic Computing:
Neural Algorithms Computing in Hardware

ANN: Artificial Neural Network
SNN: Spiking Neural Network
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1. Neuromorphic Computing:
Examples of Neuromorphic Chips/Systems

s 9 9. 9. ©

Neurogrid IBM TrueNorth Intel Loihi

Examples of Neuromorphic Chips/Systems (not yet commercial)
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2. Hardware Models of Spiking Neurons:
Neuron Excitability
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Neurons information processing steps:

- Synapses: Connection between neurons
Dendrites: Receive inputs

Cell body: sums currents from dentures
- Axon: sends to action potential

How are action potentials generated given the fiiyrent flowing into the soma (cell body)
from dendrites and synapses? .



2. Hardware Models of Spiking Neurons:
Biophysical description
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| Biophysics of the membrane as an electrical circuit

[(t): Current of membrane

V(t): Membrane potential (Difference in electrical
potential between inside and outside of the cell.)

C: Capacitance of the membrane
gL: Conductance of the membrane
EL: Equilibrium potential of Leak '3




2. Hardware Models of Spiking Neurons:
Biophysical description
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of the membrane potential
[(t): Current of membrane

V(t): Membrane potential (Difference in electrical
potential between inside and outside of the cell.)

C: Capacitance of the membrane
gL: Conductance of the membrane
EL: Equilibrium potential of Leak 4




2. Hardware Models of Spiking Neurons:
Leaky Integrate-and-Fire

Zooming in a patch of memory: lon channel
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2. Hardware Models of Spiking Neurons:
Leaky Integrate-and-Fire
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Integrate-and-fire Model

Spike emission
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More details on “Spiking Neuron Modelf’}
/ Cambridge press, 2002




Spiking Neuron Model

Spike Response Model

spike emission
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Spike Resonse Model (SRM), Gerstner (1996)



2. Hardware Models of Spiking Neurons:
Spike Coding Schemes
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2. Hardware Models of Spiking Neurons:

Neurons Communication Scheme

Fig. 2.15: AER (Address Event Representation) protocol
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3. Synaptic Dynamics:
Complex Structure of a Neural Network
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Fig. Complex Structure of a Neural Network [M.Bertrand,2015].

» A typical neural network has four main regions: The cell body, the dendrites, The
axon, and the presynaptic terminals.

» Each region has a distinct role in the generation of signals and the communication
between neurons.

» Neurons can communicate through electrical synapses or chemical synapses alone

or via both types of interactions. 2



3. Synaptic Dynamics:
What is Synaptic Dynamics?
e Connections between neurons are not static, but change in

amplitude and timing.

* Synaptic dynamics is the time-dependent changes in synaptic
currents that change the strength of coupling between neurons.

e Both presynaptic and postsynaptic contribute to the changes of
synaptic currents.

* Synaptic dynamics realizes adaptive learning.
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Fig. 2.1: Two neurons communicating via a synapse. 23
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4. Synaptic Plasticity Mechanisms & Learning:
Learning Methods

* Spiking neural network (SNN) processes and communicates
sparse binary signals (spikes) in a highly parallel and event-
driven manner.

* The learning phase (minimizes a particular cost (loss)), is a
complex process of acquiring the parameters to output the
correct inference results.

* The cost function optimization is performed with a gradient-
descent-based optimization or other classical optimization
methods (i.e., genetic algorithm).

* There are various training/learning algorithms for SNNs:
> Unsupervised Spike-timing-dependent plasticity (STDP)
> ANN to SNN conversion 55



4. Synaptic Plasticity Mechanisms & Learning:
Learning Methods
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4. Synaptic Plasticity Mechanisms & Learning:
Spike-timing-dependent plasticity (STDP)

e Adjusts the strength of connections (synapses) between
neurons in the brain.
v’ Adjusts the connection strengths based on the relative
timing of a particular neuron's output and input action
potentials.

Aw* = A*e(F). ifAr>0
Aw— =—A-e'T) ifAr <0

Where Aw is the change in synaptic weight. If a presynaptic spike arrives the
postsynaptic neuron within a time window 7, before the postsynaptic spike, the
synaptic weight increases Aw™, but if it arrives within a time window 7_, after the
postsynaptic spike, the synaptic weight decreases Aw™. At is the time difference be-
tween the presynaptic and postsynaptic spike which is expressed as At =1 ,55 — 1 e,
while A* and A~ are potentiation and depression amplitude parameters respectively.
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4. Synaptic Plasticity Mechanisms & Learning:
Spike-timing-dependent plasticity (STDP)
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Fig. 1.5: STDP Architecture.

 The STDP unit Follows the spike or pulse model assumption for cortical neurons where
information lies in spike timings, and not in spike shapes.
e 16 presynaptic traces are required to initiate the learning process. The PWU mechanism

enables fast parallel on-chip learning. .
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5. Synthesizing Real-Time Neuromorphic Systems:
A framework for a Real Neurocomputing Design

Define Partition Al Understand Develop Al Embed into Solve
) HW/SW ]
Problem Tasks Constraints Model Device problem

Design Framework

Define Problem—> Partition Al Tasks = Understand Constraints = Develop Al HW/SW Model -> Embed into Device -> Solve problet
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5. Synthesizing Real-Time Neu

romorphic Systems:
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5. Synthesizing Real-Time Neuromorphic Systems:
Connecting Neuromorphic Chips
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5. Synthesizing Real-Time Neuromorphic Systems:
Inside the Pixel

Inside the Pixel
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5. Synthesizing Real-Time Neuromorphic Systems:
Using Crossbars

Using Crossbars
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5. Synthesizing Real-Time Neuromorphic Systems:
Using Crossbars

Sl

Using Crossbars
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5. Synthesizing Real-Time Neuromorphic Systems:
Using Crossbars



5. Synthesizing Real-Time Neuromorphic Systems:
Spiking Neuro-Processing Core
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5. Synthesizing Real-Time Neuromorphic Systems:
LIF Neuron Module
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5. Synthesizing Real-Time Neuromorphic Systems:
LIF Neuron Module
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lllustration of neuron update operation at the crossbar

An input presynaptic spike array is stored and checked for spike events. If present, the Have spike event signal
becomes high. Afterwards, the one hot operation to get the synapse address begins, updating the one hot spike
array for every spike event: from 00 to 0255.

The stored presynaptic spike array is also updated after each spike event is processed: from U0 to U255.

The synapse address is then used to fetch the synapse values from the synapse memory, and sent to the
postsynaptic neurons.

When the last spike event in the array has been processed, the crossbar sends a signal to the control unit §Egna|ing
that all spike events have been processed



5. Synthesizing Real-Time Neuromorphic Systems:
NASH Architecture
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5. Synthesizing Real-Time Neuromorphic Systems:

Spiking Neuron Packet Format

Address

Fault_flag 3 0
Output_port_fault ]

- -
- - Wl

o WP
-
-

(a)

[Type |Faultflag| X.Y.Z. |Timestamp| Spikearray |

- - ———

\ﬁ_l

—-——

Type (1bits): 0" configuration; “1” spike
Fault flag(3bits): flag for fault-tolerant spike routing
XYZ (9bits): source node address
Timestamp (6bits): Time of action potential (spike)

Spike array (64bits): |dentifier for neuron that spiked

(b)

Primary Routing Table

Backup Routing Table

Output Port Address Output Port
Address | \pjujwis|ENIL| IDIUIWISIEIN|L|
000_000_000 0000100 000_000_000 0000100
001_000_000 0000100 001_000_000 0000100
011_000_000 0100000 I 011_000_000 | 0000010
% 7 Up
7
North
01

Spiking neuron packet format
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5. Synthesizing Real-Time Neuromorphic Systems:
Network Interface (1/2): Encoder

9
Addr.x,y"_ ’ I\ddr.x’y'z 9, /
Timestamp 8. |, NI |Timestamp 61,
Core 3,| |Controller Type 2
controller ” |
6 Payload ;
Output spike__| :
array : 64
Spike_arry,
; ; 8 - 8
Configuration 7—| Configuration| 183

Flit_out
) blk 3-bits \9 buts _ 6-bits S 64-bits

/ \

|Type |Fau|t ﬂagl X.Y.Z, |Tmestamp| Spike array |<——

Network Interface: Encoder.

Operations of the encoder can be summarized in the following steps:

* Receive output spikes from local SNPC and packet into flits.
e After packeting, send flit to local router
42



5. Synthesizing Real-Time Neuromorphic Systems:
Network Interface (1/2): Decoder
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Network Interface: Decoder.

N

Operations of the decoder can be summarized in the following steps:
* Receive spike packets from local router and unpack.
* Forward the spikes to the local SNPC as presynaptic spike train.



Lecture Contents

1. Neuromorphic Computing Approaches

2. Hardware Models of Spiking Neurons

3. Synaptic Dynamics

4. Synaptic Plasticity Mechanisms and Learning
5. Synthesizing Real-Time Neuromorphic Systems

6. Conclusions



Conclusions

Neuromorphic Computing is the use of hardware (VLSI) to
simulate the biological architecture of the human nervous system
(brain, complex network of nerves, etc.),

Spiking Neural Network:

> More analogous to the brain, communicating via spikes in a sparse event-driven
manner.

> Exploits spike sparsity to achieve low power.

Synaptic dynamics is the time-dependent changes in synaptic
currents that change the strength of coupling between neurons.

There are various training/learning algorithms for SNNs:
> Unsupervised Spike-timing-dependent plasticity (STDP)
> ANN to SNN conversion

Synthesizing a Neuromorphic System:

> Define Problem—> Partition Al Tasks = Understand Constraints = Develop
Al HW/SW Model = Embed into Device = Solve the Problem
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