Neuromorphic Computing

1. Introduction

Ben Abdallah Abderazek, Khanh N. Dang E-mail: {benab, khanh}@u-aizu.ac.jp

Lecture Contents

- 1. Neuromorphic Computing
- 2. Hardware Models of Spiking Neurons
- 3. Synaptic Dynamics
- 4. Synaptic Plasticity Mechanisms and Learning
- 5. Synthesizing Real-Time Neuromorphic Systems
- 6. Conclusions

1. Neuromorphic Computing: Neural Network Generations

Fig. 1.2: Neural network generations

1. Neuromorphic Computing:

Conventional ANN vs Spiking Neural Network (Neuromorphic)

Artificial Neural Network (ANN) is a brain inspired computing paradigm modeled after the computational principles of the brain's neural network.

Approaches:

- Conventional ANN: Impressive results in visual and auditory cognitive applications. However, they are:
 - Slow when deployed in software, requiring a lot of time for training
 - Consume a lot of power when accelerated in hardware, requiring large servers for training as their sizes increase.
- Spiking Neural Network (Neuromorphic):
 - *More analogous to the brain,* communicating via spikes in a sparse event driven manner.
 - Exploits spike sparsity to achieve low-power.

1. Neuromorphic Computing:

Conventional ANN vs Spiking Neural Network (Neuromorphic)

Conventional ANN vs Spiking Neural Network

- Sparse input in SNN means sparse memory use.
- Spike communication means minimal power per event signal
- Event based processing in SNN also contribute to low power.

1. Neuromorphic Computing: Exploiting Sparsity in Neural Network

Sparsity in Neural Network

- About 0.5% to 2% of neurons in the neocortex are active at any time
- Only about 1% to 5% of connections exist between two connected layers in the neocortex and 30% of those connections change every few days

1. Neuromorphic Computing: What is Neuromorphic Computing?

- Neuromorphic Computing is the use of hardware (VLSI) to simulate the biological architecture of the human nervous system (brain, complex network of nerves, etc.),
- Neuromorphic Engineering is a new emerging field that involves biology, physics, mathematics, and computer science and engineering to design hardware models of neural and sensory systems.
- Neuromorphic systems opens new frontiers for neurorobotics, artificial intelligence, and high-performance applications.

1. Neuromorphic Computing: Neural Algorithms Computing in Hardware

1. Neuromorphic Computing: Examples of Neuromorphic Chips/Systems

Neurogrid

IBM TrueNorth

Intel Loihi

Examples of Neuromorphic Chips/Systems (not yet commercial)

Lecture Contents

- 1. Neuromorphic Computing Approaches
- 2. Hardware Models of Spiking Neurons
- 3. Synaptic Dynamics
- 4. Synaptic Plasticity Mechanisms and Learning
- 5. Synthesizing Real-Time Neuromorphic Systems
- 6. Conclusions

2. Hardware Models of Spiking Neurons: Neuron Excitability

Neurons information processing steps:

- Synapses: Connection between neurons

soma

- Dendrites: Receive inputs
- **Cell body**: sums currents from dentures
- Axon: sends to action potential

How are action potentials generated given the (b) rent flowing into the soma (cell body) from dendrites and synapses?

2. Hardware Models of Spiking Neurons: Biophysical description

I(t): <u>Current</u> of membrane *V(t)*: Membrane <u>potential</u> (Difference in electrical potential between inside and outside of the cell.)

- **C**: <u>Capacitance</u> of the membrane
- gL: Conductance of the membrane
- EL: Equilibrium potential of Leak ¹³

2. Hardware Models of Spiking Neurons: Biophysical description

2. Hardware Models of Spiking Neurons:

Leaky Integrate-and-Fire

2. Hardware Models of Spiking Neurons:

Leaky Integrate-and-Fire

 $CmdV/dt = -g_{L}(V-E_{L}) + I$

If
$$V(t) = V_{th}$$
 then $V(t+\Delta) = E_{L}$

Spiking Neuron Model

2. Hardware Models of Spiking Neurons: Spike Coding Schemes

Fig. 2.2: Time to first spike

Fig. 2.3: Inter-spike-interval

2. Hardware Models of Spiking Neurons: Neurons Communication Scheme

Fig. 2.15: AER (Address Event Representation) protocol

Lecture Contents

- 1. Neuromorphic Computing Approaches
- 2. Hardware Models of Spiking Neurons
- 3. Synaptic Dynamics
- 4. Synaptic Plasticity Mechanisms and Learning
- 5. Synthesizing Real-Time Neuromorphic Systems
- 6. Conclusions

3. Synaptic Dynamics: Complex Structure of a Neural Network

Fig. Complex Structure of a Neural Network [M.Bertrand, 2015].

- A typical neural network has four main regions: The cell body, the dendrites, The axon, and the presynaptic terminals.
- Each region has a distinct role in the generation of signals and the communication between neurons.
- Neurons can communicate through electrical synapses or chemical synapses alone or via both types of interactions. 22

3. Synaptic Dynamics: What is Synaptic Dynamics?

- Connections between neurons are not static, but change in amplitude and timing.
- Synaptic dynamics is the time-dependent changes in synaptic currents that change the strength of coupling between neurons.
- Both presynaptic and postsynaptic contribute to the changes of synaptic currents.
- Synaptic dynamics realizes adaptive learning.

Fig. 2.1: Two neurons communicating via a synapse.

Lecture Contents

- 1. Neuromorphic Computing Approaches
- 2. Hardware Models of Spiking Neurons
- 3. Synaptic Dynamics
- 4. Synaptic Plasticity Mechanisms and Learning
- 5. Synthesizing Real-Time Neuromorphic Systems
- 6. Conclusions

4. Synaptic Plasticity Mechanisms & Learning: Learning Methods

- Spiking neural network (SNN) processes and communicates sparse binary signals (spikes) in a highly parallel and eventdriven manner.
- The learning phase (minimizes a particular cost (loss)), is a complex process of acquiring the parameters to output the correct inference results.
- The cost function optimization is performed with a <u>gradient-descent-based</u> optimization or other classical optimization methods (i.e., genetic algorithm).
- There are various training/learning algorithms for SNNs:
 - Unsupervised Spike-timing-dependent plasticity (STDP)
 - ANN to SNN conversion

4. Synaptic Plasticity Mechanisms & Learning: Learning Methods

4. Synaptic Plasticity Mechanisms & Learning: Spike-timing-dependent plasticity (STDP)

- Adjusts the strength of connections (synapses) between neurons in the brain.
 - ✓ Adjusts the connection strengths based on the relative timing of a particular neuron's output and input action potentials.

$$\Delta w = \begin{cases} \Delta w^+ = A^+ e^{\left(\frac{-\Delta t}{\tau_+}\right)}, & \text{if } \Delta t > 0\\ \Delta w^- = -A^- e^{\left(\frac{\Delta t}{\tau_-}\right)}, & \text{if } \Delta t \le 0 \end{cases}$$

Where Δw is the change in synaptic weight. If a presynaptic spike arrives the postsynaptic neuron within a time window τ_+ before the postsynaptic spike, the synaptic weight increases Δw^+ , but if it arrives within a time window τ_- , after the postsynaptic spike, the synaptic weight decreases Δw^- . Δt is the time difference between the presynaptic and postsynaptic spike which is expressed as $\Delta t = t_{post} - t_{pre}$, while A^+ and A^- are potentiation and depression amplitude parameters respectively.

4. Synaptic Plasticity Mechanisms & Learning: Spike-timing-dependent plasticity (STDP)

Fig. 1.5: STDP Architecture.

- The STDP unit Follows the *spike* or *pulse* model assumption for cortical neurons where information lies in spike timings, and not in spike shapes.
- 16 presynaptic traces are required to initiate the learning process. The PWU mechanism enables fast parallel on-chip learning.

Lecture Contents

- 1. Neuromorphic Computing Approaches
- 2. Hardware Models of Spiking Neurons
- 3. Synaptic Dynamics
- 4. Synaptic Plasticity Mechanisms and Learning
- 5. Synthesizing Real-Time Neuromorphic Systems
- 6. Conclusions

5. Synthesizing Real-Time Neuromorphic Systems: A framework for a Real Neurocomputing Design

Define Problem → Partition AI Tasks → Understand Constraints → Develop AI HW/SW Model -> Embed into Device -> Solve problem

5. Synthesizing Real-Time Neuromorphic Systems: Application mapping

Application mapping example on a $3 \times 3 \times 3$ Neuromorphic Chip ³¹

5. Synthesizing Real-Time Neuromorphic Systems: Connecting Neuromorphic Chips

5. Synthesizing Real-Time Neuromorphic Systems: Inside the Pixel

5. Synthesizing Real-Time Neuromorphic Systems: Using Crossbars

Using Crossbars

5. Synthesizing Real-Time Neuromorphic Systems: Using Crossbars

Using Crossbars

5. Synthesizing Real-Time Neuromorphic Systems: Using Crossbars

5. Synthesizing Real-Time Neuromorphic Systems: Spiking Neuro-Processing Core

Architecture of Spiking Neuro-Processing Core.

5. Synthesizing Real-Time Neuromorphic Systems: LIF Neuron Module

Architecture of LIF Neuron

5. Synthesizing Real-Time Neuron Module

clk [
Input control	(001)		010			(011
Valid pre-spike						
Pre-spike array	(k ₁)					
Have spike event						
No spike event						
One hot spike)	0 ₀ 0 ₁	$O_2 O_3$	0 ₄ 0 ₅	χ	0254 0255
Update spike array)	<u>u</u> ₀ (u ₁	$(\mathbf{u}_2)(\mathbf{u}_3)$	u ₄ (u ₅	χ	∑u ₂₅₄ ∑u ₂₅₅ ∑
Synapse address)	A ₀ (A ₁	$(A_2)(A_3)$	A4 (A5	χ	XA254 A255
Synapse value out		(S_0	(S1 (S2)	S3 S4	χ	S253 S254 S255
Valid synapse out						
Last spike event						

Illustration of neuron update operation at the crossbar

- 1. An input presynaptic spike array is stored and checked for spike events. If present, the *Have spike* event signal becomes high. Afterwards, the one hot operation to get the synapse address begins, updating the one hot spike array for every spike event: from *O0 to O255*.
- 2. The stored presynaptic spike array is also updated after each spike event is processed: from U0 to U255.
- 3. The synapse address is then used to fetch the synapse values from the synapse memory, and sent to the postsynaptic neurons.
- 4. When the last spike event in the array has been processed, the crossbar sends a signal to the control unit signaling that all spike events have been processed

5. Synthesizing Real-Time Neuromorphic Systems: NASH Architecture

Organization of the NASH Neuromorphic Chip

5. Synthesizing Real-Time Neuromorphic Systems: Spiking Neuron Packet Format

Spiking neuron packet format

5. Synthesizing Real-Time Neuromorphic Systems: Network Interface (1/2): Encoder

Network Interface: Encoder.

Operations of the encoder can be summarized in the following steps:

- Receive output spikes from local SNPC and packet into flits.
- After packeting, send flit to local router

5. Synthesizing Real-Time Neuromorphic Systems: Network Interface (1/2): Decoder

Operations of the decoder can be summarized in the following steps:

- Receive spike packets from local router and unpack.
- Forward the spikes to the local SNPC as presynaptic spike train.

Lecture Contents

- 1. Neuromorphic Computing Approaches
- 2. Hardware Models of Spiking Neurons
- 3. Synaptic Dynamics
- 4. Synaptic Plasticity Mechanisms and Learning
- 5. Synthesizing Real-Time Neuromorphic Systems
- 6. Conclusions

Conclusions

- Neuromorphic Computing is the use of hardware (VLSI) to simulate the biological architecture of the human nervous system (brain, complex network of nerves, etc.),
- Spiking Neural Network:
 - More analogous to the brain, communicating via spikes in a sparse event-driven manner.
 - > Exploits spike sparsity to achieve low power.
- Synaptic dynamics is the time-dependent changes in synaptic currents that change the strength of coupling between neurons.
- There are various training/learning algorithms for SNNs:
 - Unsupervised Spike-timing-dependent plasticity (STDP)
 - ANN to SNN conversion
- Synthesizing a Neuromorphic System:
 - ▷ Define Problem → Partition AI Tasks → Understand Constraints → Develop AI HW/SW Model → Embed into Device → Solve the Problem