
Neuromorphic Computing

Ben Abdallah Abderazek, Khanh N. Dang
E-mail: {benab, khanh}@u-aizu.ac.jp

This lecture is based on the book ''Neuromorphic Computing Principles and Organization,'' Publisher: Springer; 2022 edition, ISBN-10 : 3030925242, ISBN-13 : 978-3030925246, by
Abderazek Ben Abdallah, Khanh N. Dang

1

3. Learning in Neuromorphic Systems
(Part I & II)

Lecture Contents – Part I
1. Learning Methods

2. Conversion from ANN to SNN
➢ Converted SNNs

➢ Challenges of ANN Conversion

3. Supervised Learning
➢ Tempotron

➢ ReSuMe.

➢ SpikeProp Algorithm

➢ Approximate Derivative Method (ADM)

4. Unsupervised Learning
➢ Pair-Based STDP Learning Rule

➢ Triplet STDP Learning Rule

➢ Reward-Modulated STDP Learning

➢ Other Variants of STDP Learning Rule

5. Summary 2

1. Learning Methods
• The learning process aims to minimize a defined objective function

(loss function) to find the combination of the parameters that
outputs the correct inference results

• The most common way to optimize the loss function is by using
gradient-descent-based optimization techniques, although other
classical optimization methods can be used such as genetic
algorithms

• In gradient-descent-based optimization the goal is to find out the
gradients of the cost/loss function for each learning parameter

• For SNN, there are various training/learning algorithms, such as
supervised backpropagation through time, unsupervised STDP
learning, and ANN to SNN conversion.

3

• The goal is to leverage the state-of-the-art ANN training
algorithms in order to reach a competitive performance using the
SNN

• There are many challenges in converting ANN to SNN concerning
different aspects of the neural network such as the parameters,
activation functions, and layers.

2. Conversion from ANN to SNN:

Fig. 3.1: Conversion from ANNs to SNNs.

4

• To cope with these challenges, different changes and ideas
have been made to meet the requirements of SNN:

➢Use of the abs() function and rectified linear unit (ReLU) to avoid
negative output when for CNN conversion

➢The Biases in each layer are set to zero

➢Max-pooling is substituted with linear sub-sampling which is easily
converted to a spike domain

➢ weight normalization method d to achieve a near-lossless accuracy
caused by the replacement of ReLUs by IF neurons

2. Conversion from ANN to SNN

5

Converted SNNs

• Spiking Deep Belief Networks (DBNs) in which the frame-driven
system neurons are mapped into an event-driven representation

• Another approach to convert CNN to SNN architecture that is
suitable for mapping to spike-based neuromorphic hardware is
by tackling negative activations and biases and non-linearity
due to max pooling

• Training with noise on output neurons to have a robust model
against spiking variability

• A modified soft LIF function allowing more neurons types to be
utilized

2. Conversion from ANN to SNN:

6

Converted SNNs

• The adaptive spiking neural network has a dynamically adjusted
threshold and needs fewer spikes to encode information

• The proposed spike-based learning rule for rate-coded deep SNNs
is hardware-friendly due to the requirement of less computation
and memory

• The application on temporal coding schemes to converted SNNs
reduce significantly the spike redundancy and memory cost

2. Conversion from ANN to SNN:

7

Converted SNNs
• A successful implementation of the conversion on Inception-V3

with 42 layers (7 convolution layers) demonstrates a 74.60%
accuracy on the ImageNet dataset

• A Spiking CNN with four convolution levels, achieved a 90.85%
accuracy on the CIFAR-10 dataset

• Two deep spiking neuron networks based on VGG-16 and
Residual network architecture

• The Residual Membrane Potential (RMP) spiking neuron, which
targets the spike rate vanishing issue in SNNs caused by the hard
reset spiking neuron model

2. Conversion from ANN to SNN:

8

Challenges of ANN Conversion

• The weights and biases and some activation functions’ output
can have positive or negative values

• However the firing rate in SNN should be positive, therefor the
designer needs to tackle negative values during conversion

• A possible solution is to treat positive values as excitatory
synaptic input while producing inhibitory synaptic inputs for
negative signals

• For this two spiking neurons are needed to represent each
input value which leads to a much more complicated
architecture

2. Conversion from ANN to SNN:

9

Challenges of ANN Conversion
• The Rectified linear-unit (ReLU) activation function is an efficient way to tackle

this problem because it always maps negative activation to zero.

ReLU: Rectified Linear Unit

• Avoiding negative inputs help also in faster convergence compared with
equivalent networks with tanh units

• All biases are set to zero to avoid negatives and reduce the inconvenience.

• The max-pooling operation reduces the number of parameters in network,
however it comes with information loss and extra complexity

2. Conversion from ANN to SNN:

10

Fig. 3.2: Max-pooling and average-pooling operation (a) Max-pooling. (b) Average-pooling

(b)

• Max-pooling is widely used in ANN and especially CNN. Does a max operation on the
inputs. With that, it extracts only the significant features from the provided data

• Average pooling, on the other hand, presents a solution to represent arriving spikes in a
better way for SNN by taking the average of the incoming input and eliminating winner-
takes-all

(a)

2. Conversion from ANN to SNN:
Challenges of ANN Conversion

11

Challenges of ANN Conversion
• Max-pooling does not reflect the actual maximum firing rate,

therefore the average-pooling operation is a better option that
enables a linear function to be implemented in SNNs

• Also the temporal “time-to-first-spike” encoding is used to select
the first neuron that responds as this neuron is considered to be
the most robust response to the stimulus

• However the temporal coding scheme is not ideal for the ANN-
SNN conversion process.

• The gating function for spiking max-pooling allows only the spikes
from the neuron with the highest firing rate by estimating the
presynaptic firing rates

2. Conversion from ANN to SNN:

12

Challenges of ANN Conversion

• Approximation errors might occur, in time-stepped simulations of
SNNs, due to the constraints that the firing rate is mapped to the
range of [0, rmax]

• This implies that receiving a perfect representation of activation
from ANNs to SNNs is non-trivial

• A relevant high threshold can hardly be exceeded, leading to an
underestimation of the actual firing rate. On the contrary, over-
activation spike trains or high input weights would give rise to
high firing rates

• Rescaling the weights using a model-based or data-based
normalization approach can deal with this issue.

2. Conversion from ANN to SNN:

13

• The use of the weight normalization method to achieve high accuracy and reduced
latency.

• Model-based normalization, requires only the information of the network weights

• Data-based normalization approach scales the weights according to the actual activation
of the network in response to data.

Fig. 3.3: Weight normalization technique.

Challenges of ANN Conversion

2. Conversion from ANN to SNN:

14

Challenges of ANN Conversion

• Taking into account the actual operation of the SNN during the
conversion process decreases the temporal delay of the neuron
and ensures an appropriate firing threshold

• In order to detect and discard outlier activations, preserving the
encoded information of biases jointly scaled with input weights
and a max-norm mechanism can be used

• Also with a strong normalization further combined with batch-
normalization the whole process achieves a more significant
speedup

2. Conversion from ANN to SNN:

15

Challenges of ANN Conversion

• The previously seen solutions focused on the balance of firing
rates, spiking threshold, and input weights

• Efficient algorithms that improve computation efficiency should
also be adopted

• Lower-compute spiking neurons with fewer spikes can be realized
using sparse coding and L2-norm as a cost function. Therefore the
overall firing rates are reduced.

• Using dropout or trained Stacked Auto-Encoder with a zero-
masking filter will accelerate the classification task because fewer
input spikes will be needed for quick output

2. Conversion from ANN to SNN:

16

Fig. 3.4: Dropout Method during learning.

2. Conversion from ANN to SNN:

• Dropout method is a very known method in training ANN. It
consists of dropping random neurons during the training.

• This method helps the model to be more robust and have good
accuracy even if some data is missing.

Challenges of ANN Conversion

17

Fig. 3.5: Stacked Auto-Encoder are one of the self-supervised learning methods

• Its purpose is to compress the data by creating an encoder that
reduces the dimensionality of the input data and a decoder
that tries to reproduce the input data

• A zero mask can be applied to a random patch of the input data
while training leading to faster training and a robust model

Challenges of ANN Conversion

2. Conversion from ANN to SNN:

18

Fig. 3.6: Softmax function

Challenges of ANN Conversion

2. Conversion from ANN to SNN:

• The softmax function in the output layer is used to normalize the
input values into a valid probability distribution that sums to one.

• Without the Softmax layer, pure negative inputs arriving at the
final layers will not produce any spike

19

Fig. 3.7: stochastic winner-take-all

• One version of a spiking softmax layer is a stochastic winner-take-all (WTA)
mechanism with an external Poisson generator

• the winning neuron is selected according to its membrane potential, and the
WTA-circuit allows it to fire at that time step

• classification can directly be inferred based on the computed rate parameters
at the softmax layer given the membrane potentials

Challenges of ANN Conversion

2. Conversion from ANN to SNN:

20

• The feed-forward spiking neural network contains connections of spiking
neurons between layers with multiple delayed synaptic terminals

• Each pre-synaptic terminal corresponds to a sub-connection associated with
different decay and synaptic efficacy

• When the sum combination of the internal state variable crosses the
threshold θ, a spike is produced by the output neuron

3. Supervised Learning

Fig. 3.8: Network architecture and connectivity of a spiking neural network.

(a) Feedforward spiking neural network
(b) Connection consisting of multiple

delayed synaptic terminals

21

• The spike-response function ε(t), is used to describe a
standard post-synaptic potential (PSP)

𝜀 𝑡 =
𝑡

𝜏
𝑒1

− 𝑡

𝜏

• Where τ is the membrane decay time constant of a neuron

• the post-synaptic input 𝑥𝑗 of neuron 𝑗 receiving input from
neuron 𝑖 can then be described as the weighted sum of all
the pre-synaptic input:

𝑥𝑗 𝑡 =
𝑖

𝑘
𝑤𝑖𝑗
𝑘𝜀𝑖𝑗

𝑘 (𝑡 − 𝑡𝑖 − 𝑑𝑖𝑗
𝑘)

• Where 𝑖 belongs to all the presynaptic neurons of neuron 𝑗,
and 𝑡𝑖 is the arrival time of the spike from 𝑖

3. Supervised Learning

22

• A model of supervised learning for classification tasks, which
uses a LIF neuron driven by synaptic afferents

• Where 𝑤𝑖 is the weight of neuron 𝑖 and one of the postsynaptic neurons

• A postsynaptic potential is induced by an input spike at time 𝑡𝑖

• 𝜏 and 𝜏𝑠 denote the decay time constants of membrane
integration and synaptic currents and are used to describe the
form of the postsynaptic potentials

• The maximum value of PSP is normalized to 1 with a factor V0

3. Supervised Learning:
Tempotron

23

• The Tempotron learning rule, each synaptic efficacy 𝑤𝑖 follows
the gradient descent updating mechanism

• 𝑡𝑚𝑎𝑥 is the time when the maximal value of the postsynaptic potential is
reached without the neuron firing

• The synaptic weight of should decrease if an erroneous output
spike occurs in order to decrease it’s contribution

• On the other hand, the synaptic weight should increase if the
neuron doesn’t fire when it should have produced a spike

3. Supervised Learning:
Tempotron

24

• A learning rule that is Tempotron-like

• The synaptic efficacy between two pre- and postsynaptic
neurons does not only depend on the correlated pair

3. Supervised Learning:
ReSuMe

25

• SpikeProp is an error-back propagating learning algorithm.

• It aims to minimize is the mean squared error defined on the spike
times of the output neurons and the desired spike times

• In ANN we have continuous values therefore back prop computes
gradients by propagating continuous error signals backward.

• Meanwhile, SNN operates on spike events, therefore the
backpropagation accounts for the spike timing of the neurons

• Since the spike timing carries information, the SpikeProp algorithm
aims to adjust the weights and the spike timing to get the desired
output

3. Supervised Learning:
SpikeProp Algorithm

26

Fig. 3.9: Relationship between 𝛿𝑥𝑗 and 𝛿𝑡𝑗 for a small region around 𝑡 = 𝑡𝑎

3. Supervised Learning:
SpikeProp Algorithm

• tj
a is the actual spike timing of neuron j, xj is the threshold post-synaptic input.

• For a small enough region around t = tj
a , the function xj is approximated by a

linear function of t
27

• Other methods were proposed to improve the SpikeProp algorithm.

• Adding a momentum term to improve convergence and tackle possible
occurrence of local minimum

• More generic architecture, which contains recurrent connections which allow
to handle of multiple spikes per neuron at a time

• Learning-rate adjustment algorithm, called resilient propagation (RProp)
accelerates the training process. it performs the weight update based on the
sign of the gradient

• SpikePropAD and SpikePropR are learning rate adaptation methods and robust
versions to tackle the issue of weight convergence

3. Supervised Learning:
SpikeProp Algorithm

28

• Other methods were proposed to improve the SpikeProp algorithm.

• QuickProp makes use of the second derivative of the error with respect to one
weight, assuming it is independent of the others. allowing for more rapid
convergence during training.

• In QuickProp, the current weight change depends on the previous weight
change, and the error minimum can be slowly reached except for the large
step size during the training

• In the original SpikeProp, each connection contains a fixed number of delayed
synaptic terminals, and only the weights are trained.

• Allowing delays to be trained during learning, thus reducing the number of
synaptic terminals and weights

3. Supervised Learning:
SpikeProp Algorithm

29

Fig. 3.10: Approximate derivative method

3. Supervised Learning:
Approximate Derivative Method (ADM)

• LIF neurons in hidden layers generate post-spikes if the membrane potential exceeds a threshold
and reset the membrane potential

• LIF neurons in the final layer, do not generate any spike, but rather accumulate the weighted sum
of pre-spikes till the last time step to quantify the final outputs

• The final errors are propagated backward through the hidden layers and synaptic weights are
modified in a direction to reduce the final errors

Ref: Frontiers | Enabling Spike-Based Backpropagation for Training Deep Neural Network Architectures (frontiersin.org)
30

https://www.frontiersin.org/articles/10.3389/fnins.2020.00119/full

Lecture Contents – Part II
1. Learning Methods

2. Conversion from ANN to SNN
➢ Converted SNNs

➢ Challenges of ANN Conversion

3. Supervised Learning
➢ Tempotron

➢ ReSuMe.

➢ SpikeProp Algorithm

➢ Approximate Derivative Method (ADM)

4. Unsupervised Learning
➢ Pair-Based STDP Learning Rule

➢ Triplet STDP Learning Rule

➢ Reward-Modulated STDP Learning

➢ Other Variants of STDP Learning Rule

5. Summary 31

Fig. 3.11: Basic STDP learning rule

4. Unsupervised Learning

• In this figure we can see the change of synaptic weight relating to the temporal difference
between a pair of presynaptic and postsynaptic spikes.

• According to the Hebbian rule, synapses increase their efficacy if they persistently participate in
the firing of a postsynaptic neuron

• If a pre-synaptic spike arrives before a neuron fires, the weight of that synapse is strengthened,
which allows it to contribute more.

• If a pre-synaptic spike arrives after a neuron fires, the weight of that synapse is weakened,
reducing its contribution.

• STDP is a Hebbian rule-based for adjusting the strength of connections between neurons.
32

• The pair-based STDP rule considers the time difference between a pair of pre-synaptic
and post-synaptic spikes and updates the potentiation and depression potentials
accordingly.

• The weight changes are then based on the values of these potentials at the respective
spike times.

• The time constants τ+ and τ- determine the time scales for the decay of the
potentiation and depression potentials, respectively.

• 𝐴2
− and 𝐴2

+ represent the amplitudes of weight change controlling long-term depression
(LTD) and long-term potentiation (LTP), respectively

4. Unsupervised Learning :
Pair-Based STDP Learning Rule

Fig. 3.12: Pair-based STDP learning rule

33

• In the pair-based STDP it is not possible to capture that with the increase of
frequency, there might rise an additional impact from the presynaptic spikes of
the following couple on the post-synaptic spike of the previous pair.

• triplet-based STDP can capture if either a pre-post-pre and the post-pre-post
scheme is formed

4. Unsupervised Learning :
triplet-Based STDP Learning Rule

Fig. 3.13: Triplet-based STDP Learning Rule

34

• Triplet-based learning rule is associated with All-to-All interactions

• In Nearest-spike interactions, only the nearest spikes are considered and the
weights updates will be performed accordingly

• The Quadruplet protocol by further taking the interaction between a post-pre
pair and a pre-post pair into consideration

4. Unsupervised Learning :
triplet-Based STDP Learning Rule

Fig. 3.14: Spike pairing scheme. All-to-All interaction and Nearest-Neighbor interaction

scheme

35

4. Unsupervised Learning :
Reward-Modulated STDP Learning

• The R-STDP or Reward-Modulated STDP Learning rule is another variant of the
STDP learning rule.

• It adds sparse external reinforcement signals that can modulate an SNN in the
same way that our brain injects dopamine to Dopaminergic neurons

• This reward mechanism depends on the modulation of dopamine during
synaptic adaptation by STDP

• The equation shows how the weight changes are determined for R-STDP: ሶ𝑤 =
𝑒 × (𝑑−𝑏) where:
➢ ሶ𝑤 is the synaptic weight change

➢ 𝑒 the eligibility trace

➢ 𝑑 the reward function

➢ 𝑏 the baseline
36

4. Unsupervised Learning :
Other Variants of STDP Learning Rule

• Another variant for STDP is to use one dynamic variable
instead of measuring the time difference in the pair-based
model

• This variant considers only the voltage dependence of the
postsynaptic neuron of membrane with an integrate-and-fire
neuron model

• In this model, the updating of the synaptic weight depends on
the membrane voltage threshold and a function of
postsynaptic spiking activity.

37

5. Summary:

• The biological brain is a learning machine capable of making complex
computations while using small resources and being power efficient.

• The sparse communication among many spiking neurons is the main property
that enhances this power efficiency.

• By incorporating learning methods and rules seen in this chapter, SNNs gained
popularity and attention in research fields.

• The learning phase, as presented in this chapter, aims to minimize a particular
loss function by acquiring the parameters of the network to output the correct
results.

• Meanwhile, during inference, the SNN outputs a result based on the input and
obtained parameters from the training.

38

