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1. Introduction of Memory
Introduction

• Neuromorphic computing systems are generally 
built with thousands or even millions or neurons.
• Neuromorphic systems’ parameters and temporal values 

are too large to be stored locally.
• Storing and loading is necessary.
• Accessing parameters and values requires a huge 

bandwidth.
•è Designing memory for neuromorphic system is 

an extremely critical task:
• Memory communication could be a bottle neck.
• Power consumed for memory read/write instructions 

can be enourmous.
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Fig. 4.1: Memory Hierarchy.

1. Introduction of Memory
Hierachy

• Memory hierarchy for 
neuromorphic system is 
similar to the conventional 
computing systems.
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Fig. 4.2: (a) Biological neuron. (b) Spiking neuron.

1. Introduction of Memory
Neuron’s structure

In the spiking neuron models, there are three major parameters than need to be 
stored (memorized): 
1. incoming spikes; 
2. synaptic weights, 
3. neuron’s internal parameters (membrane potential, threshold, etc.).
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2. Memory Technology
Introduction

• Memory, in general, consists of a set of memory cells:
• Each memory cell exhibits in states or levels.

• Typically binary value (0 or 1);
• Can be in multiple levels.

• Each memory cell can be read or written into states. 
• A typical memory cell has two control signals:

• Select: to select the memory cell
• Control: direction of the instruction

• And two flows: Input and Output (can be one in Duplex 
mode)

• Memory has mechanisms to access (read/write) the exact 
location of memory cells or sub-set of cells.
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2. Memory Technology
Memory cell structure

• Memory cells are 
usually organized in a 
2D array
• Accessing address is 

split into row and 
column addresses.
• Once row is selected, 

the whole content of 
the row will be 
read/written
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Fig. 4.3: General organization of a memory:
(a) Memory cell write, (b) Memory cell read,
(c) 2D array of memory cell.



2. Memory Technology
Overview of technologies
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Table 4.1 The taxonomy of memory technologies with key design parameters 

F: feature size of the technology



Fig. 4.4: A six transistors (6T) SRAM cell.

2. Memory Technology
SRAM cell

• Conventional Static 
Random Access 
Memory (SRAM) cell 
consists of 6 transisitors 
(6-T) which allow 
reading/writing and 
holding value as long as 
power is supplied.
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Fig. 4.5: eDRAM
cell design:  1T1C.

2. Memory Technology
eDRAM cell
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• Dynamic RAM (DRAM) is another 
technology.
• DRAM cell stores in its capacitor.
• Leakage of capacitor can reduce the 

voltage è refresh needed
• Reading can lose capacitor voltage è

reading also mean writing again

• Most common DRAM cell is 1T1C (1 
transistor 1 capacitor):
• Higher density than SRAM



Fig. 4.6: A STT-RAM 
cell.

2. Memory Technology
STT-RAM cell

• A cell consists of a magnetic 
tunneling junction (MTJ)
• MJT consists of two 

ferromagnets (one is free, 
one is fixed) separated by a 
thin insulator
• MTJ is either:

• low-resistive (parallel) 
• high-resistive (anti-parallel)

• STT-RAM is a non-volatile 
memory è value will not lost 
after cutting power supply
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Fig. 4.9: Phase change memory: (a) A cross-section image of a
mushroom-type PCM device. (b) The programming pulses and the
resulting relative temperature for RESET, SET, and read operation in
PCM.

2. Memory Technology
PCM Memory
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2. Memory Technology
PCM Memory

• PCM is based on the property of certain materials, 
such as Ge2Sb2Te5, which exhibit differences in 
resistivity in their two phases: 
• Crystallized: high resistance
• Amorphous: low resistance

• In a PCM device, a small amount of one of the 
material is put between two metal terminals
• To program, SET or RESET pulses are put to PCM 

memory to increase/reduce the size the 
amorphous region
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2. Memory Technology
RRAM cell

• Resistive Random Access Memory (RRAM) denote 
all memory technologies that rely on the resistance 
change to store the information.
• There are two structures:
• Conventional memory architecture: Accessing like 

normal SRAM/DRAM using row/column decoder. RRAM 
cell stores binary bit (0/1).
• Resistive crossbar architecture: Working with precise 

resistance value. One resistance = once synapse
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Fig. 4.7: RRAM cell: (a) Schematic. (b) I–V characteristics curve of a 𝐻𝑓𝑂𝑥 RRAM cell [17]. Current is in absolute value.
Readers may be more familiar with the I-V characteristics of memristor.

2. Memory Technology
HfOx RRAM cell

• HfOx RRAM can be written by applying voltage (positive and negative) 
• Within the writing voltage values, RRAM cells work like a resistance in two 

modes:
• High Resistance: Current is around  1 μA
• Low Resistance : Current is around  100 μA
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Fig. 4.8: Resistive crossbar design: (a) 1T1R. (b) 1 0T1R

2. Memory Technology
Resistive Crossbar

• There are two design of resistive crossbar:
• With transistor (1T1R): Reading is done via row selection (input 

current) and column selection (transistor enabling).
• Without transistor  (0T1R): Reading is done via row selection (input 

currents) and measuring output current.
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3. Memory Organization
Introduction

• A semiconductor memory consists of a 2D array of 
M×N cells (M rows and N columns)
• If the number of the columns (N) is the accessing bit-

width (word’s width), no column decoder is needed.
• If the number of the columns (N) is a multiples of bit-

width, column decoder is need.
• If the number of the columns (N) is a divisors of the bit-

width, reading process must take several cycles
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Fig. 4.10: Organization of a semiconductor memory

3. Memory Organization
Memory Block-diagram
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3. Memory Organization
Writing process

• Writing process is usually done:
• Enabling chip select (CS) signal
• Enabling the write enable (WE) signal
• Putting the corresponding address (A)
• Putting the data into the data line

• Depending on the technology, writing process can 
take one cycle (SRAM, DRAM) or multiple cycle 
(STT, PCM,…)
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Fig. 4.11: Simplified memory waveform: writing data.

3. Memory Organization
Writing waveform
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3. Memory Organization
Reading process

• Similar to writing, reading process is usually done:
• Enabling chip select (CS) signal
• Enabling the read enable (RE) signal
• Putting the corresponding address (A)
• Reading the data from the data line after a certain 

inveral

• Depending on the technology, reading process can 
take one cycle (SRAM, DRAM) or multiple cycle 
(PCM,NAND,…)
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Fig. 4.12: Simplified memory waveform: reading data.

3. Memory Organization
Reading waveform
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4. Memory for Neuromorphic Systems
Overview

• Neuromorphic systems typically need to store three major 
types of data: spikes, neuron states, and weights
• Spike are usually stored in registers or SRAM for low latency 

reading processes.
• Memory design for spike:

• FIFO: first in first out
• Sorting/scheduling structure: enabling finding the proper spikes for 

processing

• Neuron’s state can be stored internally for parallel neuron 
design or externally for serial neuron design:
• Serial neuron parameter must be load/stored up on request.
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Fig. 4.13: Analog and digital silicon neurons. (a) Analog implementation. (b)
Digital implementation.

Neuron’s architecture can be digital or analog based. For
storing analog neuron’s parameter, sampling and storing
digitally is needed.

4. Memory for Neuromorphic Systems
Neuron’s architecture

27



4. Memory for Neuromorphic Systems
Serial neuron

• In serial neuron design, one physical neuron is used for 
multiple neurons’ computations.
• It starts by loading the parameters of the computing neurons 

from the memory.
• It then compute the neuron
• At the end of the time-step, parameter are stored back to the 

memory.
• After finishing the current computing neuron, the next 

neuron is computed.
• The major benefit of serial neuron design is low 

hardware cost; however, it requires multiple 
reading/writing processes for the computing.
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Fig. 4.14: The serial neuron model. (a) The model architecture (b) The
finite state machine. (c) The parameter structure.

4. Memory for Neuromorphic Systems
Serial neuron
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4. Memory for Neuromorphic Systems
Serial neuron

• In serial neuron design, one physical neuron is used 
for multiple neurons’ computations.
• It starts by loading the parameters of the computing 

neurons from the memory.
• It then compute the neuron
• At the end of the time-step, parameter are stored back 

to the memory.
• After finishing the current computing neuron, the next 

neuron is computed.
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Fig. 4.15: The parallel neuron weight model. (a) The model
architecture (b) The weight structure.
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4. Memory for Neuromorphic Systems
Parallel neuron



4. Memory for Neuromorphic Systems
Parallel neuron

• In parallel neuron design, one physical neuron is 
used for one neuron’ computations.
• Parameter is loaded at the initialization stage.
• No loading and storing needed during the inference

• The major benefit of parallel neuron design is non 
existent loading/storing time.
• However, the hardware cost for parallel neuron is 

problematic.
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4. Memory for Neuromorphic Systems
Weight memory

• Weights (or synapses) are usually stored in memory 
nearby the neuron.
• Neuron (physical) has its own dedicated memory 

due to bottle neck issue of shared memory.
• One word can store one weight or several weight 

(merged).
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4. Memory for Neuromorphic Systems
Weight operation

• Once a spike is received, the corresponding weight 
address is decoded.
• With non-merged weight, each address is for one 

weight; therefore, the reading process is used to 
compute the weighted spike
• With merged weight, each address is for multiple 

weights, therefore, after reading, a column 
decoding is need to split the weighted spike.
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Fig. 4.18: The serial neuron weight memory operation: (a) normal
weight, (b) merged weight.
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4. Memory for Neuromorphic Systems
Serial neuron: Weight operation



Fig. 4.16: The parallel neuron weight memory with merged four
weights in a memory row.
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4. Memory for Neuromorphic Systems
Parallel neuron: Merged weight

• Instead of storing a single weight, several adjacent 
weights are stored in the same address
• It can increase the density; however, power 

consumption may not be efficient



Fig. 4.17: The parallel neuron weight memory operation: (a) separated
weight, (b) merged weight.
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4. Memory for Neuromorphic Systems
Parallel neuron: Weight operation



Fig. 4.19: Schematic for multiple layer neural network using NVM: 
Crossbar for two connected layers. 38

4. Memory for Neuromorphic Systems
Crossbar



4. Memory for Neuromorphic Systems
Crossbard & In-memory computing

• The output current for neuron j (𝐼!) is calculated as the 
summary of the current provided by all presynaptic 
neuron voltage (𝐼"!) (the Kirchhoff’s law):

𝐼! = ∑𝐼"!
• where 𝐼"! is dependent on the applied voltage and the 

conductance of the NVM cell (as the Ohm’s Law):
𝐼"! = 𝑉"×𝐺"!

Hence:
𝐼! = ∑𝑉"×𝐺"!

This act like the multiplication and accumulation process
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5. Dynamics of NVM Synapse
Overview

• Unlike conventional memories, non volatile 
memory (NVM) has a drifting phenomenon:
• Writing process may enable not “accurate” resistance, 

especially with analog in-memory computing
• Material is not homogeneous, therefore, the resistance value 

are different between memory after the writing process 
(assuming with the same writing time)

• The resistance value will be “drifted” over time.
• Low resistance becomes higher resistance
• High resistance becomes lower resistance
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5. Dynamics of NVM Synapse
Learning related

• With ex-situ learning process, weight are not 
adjusted after training.
• It has  little effect for binary NVM as low flipped bit rate 

has small impact on overall performance.
• For in memory computing based, adjustment is needed 

to alleviate the affect

• With in-situ learning, the drifting process must be 
taken into account:
• The new adjust weight value may not be as desired
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5. Conclusion

• In this chapter, we have reviewed several memory 
technologies:
• Conventional memory: SRAM, DRAM
• Non-volatile memory: STT-RAM, PCM, RRAM

• Memory structure is also analyzed:
• Serial vs parallel neuron design
• Merged vs non-merged design

• The other issues such as in-memory computing and 
the drifting process of NVM are also reviewed
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