Neuromorphic Computing

5. Communication Networks
for Neuromorphic Systems
(Part — 1| and Il)

Ben Abdallah Abderazek, Khanh N. Dang
E-mail: {benab, khanh}@u-aizu.ac.jp

This lecture is based on the book ""Neuromorphic Computing Principles and Organization," Publisher: Springer; 2022 edition, ISBN-10 : 3030925242, ISBN-13 : 978-3030925246, by
Abderazek Ben Abdallah, Khanh N. Dang

Lecture Contents

1.

Introduction

Neural Communication

Interconnect for inter-neural communication
Interconnect Design Principle

Network Topologies

Communication Architecture

Advanced Design

Conclusions

1. Introduction

* The brain connectivity is generally described at
several levels of scale:

e Synaptic connections that link individual at the
microscale,

* Networks connecting neuronal populations at the
mesoscale,

* Brain regions linked by fiber pathways at the macroscale

* Designing communication needs:

* High bandwidth for exchanging massive amount of
spikes

* Low-latency to ensure the correctness of arrival time of
spikes

1. Introduction
Type of connections

* Synaptic connections at the microscale:

* Spike vector: in each time-step, a vector of firing (0 for
non firing, 1 for firing) is sent to each neuron.

* Address Event Representation: sending the address of
firing neuron whenever it fires.

* Networks connecting neuronal populations at the
mesoscale and Brain regions linked by fiber
pathways at the macroscale:

* On-chip communications: Bus, Point-to-Point, On-Chip
Network.

e Off-chip communications: direct off-chip link, LAN (via
adapter), extneding on-chip communications

1. Introduction
AER: Address Event Representation

* One of the first chip design for neuromorphic
system using so-called “Address Event
Representation” (AER) for the off-chip
communication.

* The content of the package is the address of the firing
neuron.

* Only send the package once a neuron fired

 For an N axonal fiber, with one active at a time, AER
replaces regular wire with (1+log N) wires

SENDER

1. Introduction

Overview of AER

3

%%

))

))

2

%

/O

)

1

B
I

-
T

INPUTS

E
T

d34d0OON4

DATA BUS

3212113221 —

Fig. 5.1: Address-Event Representation (AER) Protocol.

+«— time

RECEIVER
R R |
: <
| 6
<
|

—

Y

CILATRPUTS

* Instead of sending spike vector, address of the
firing neuron is sent

1. Introduction
Spike Vector vs AER

Spike Vector:

* With N neurons, we need N-bit vector for each time step:
e 1:fired
* 0:not fired

N, :
N, N, neurons * Group-wise vector:

neurons neurons * log,(L) bits for group index

N =3,_, , N; neurons in total * max(N;) bits for group vector

Feedforward network
"f""'\. ———— AER:

\ * With N neurons, we need (log,(N) + 1)-bit vector for each

N O '_‘ N time step:
neurons \'l/.". R ‘neurons e First bit: 1: has spike; 0: no spike
s A * Group-wise AER:
N~/
neurLons * log,(L) bits for group index

* log, (max(N;)) bits for group vector

N =)};—; ;. N; neurons in total

Liquid State Network

Lecture Contents

1.

Introduction

Neural Communication

Interconnect for inter-neural communication
Interconnect Design Principle

Network Topologies

Communication Architecture

Advanced Design

Conclusions

2. Neural Communication
Spike and model

* Biological nheurons communicate predominantly via
an electrochemical impulse known as an action
potential or spike

* Silicon neurons usually follow the ‘point neuron
model’:
* the details of dendrite structures are ignored,
e assume all inputs effectively arrive at the neuron.

e Usually, there is no global clock, signals are sent
asynchronously.

* With digital-base system, clock could be implemented
for synchronization if neccessary

2. Neural Communication
Handshaking

 To communicate between two chips or two neuron
clusters, the request and acknowledgment
protocols are typically use
1. arequestsignalis sent
2. AER signals are transmitted
3. AERsignals is received and stored
4. Acknowledgement signals are sent back

* Pipelining can be used for shorter execution time.

2. Neural Communication
Handshaking

Neuron Encoder Neuron Neuron Fncoder Neuron
Arbiter Decoder Arbiter Decoder
=] —

(a) (b)

Fig. 5.2: Control signal flow starting from a neuron through the arbiter and encoder on on the transmitting side,
to the decoder and a neuron on the receiving side (left to right). (a) Completion of the spike transmission for the
originating neuron before the handshaking is completed in the acknowledge phase. (b) Pipelining reduces the
overall handshaking time by allowing the signals to propagate forward in the set phase without waitinglfor the
acknowledge signal.

2. Neural Communication
Global and Local Communication

* There are two major types of neural
communication
* Local: within the cluster of neurons
* Consisting of short range routing path

 Global: between the cluster of neurons
* Consisting of long range routing path

_.-. Global

Local ---:7"
[

N
~.
~

12

Lecture Contents

1.

Introduction

Neural Communication

Interconnect for inter-neural communication
Interconnect Design Principle

Network Topologies

Communication Architecture

Advanced Design

Conclusions

3. Interconnects for Neural Communication

Overview

Table 5.1 Neuromorphic system communication

Architecture

Configuration

Communication

SpiNNaker [35]

Each ARM core perform 1000
neurons’ operation. A node consists of
18 ARM cores. 1024 neurons per
ARM core. 16-bit for node, 5-bit for
core, 11 bit for axon

Nodes are connected using six
communication links in triangular
lattices folded onto the surface of
a toroid. Multi-cast based using
CAM

TrueNorth [17]

Each core emulates 256 neuron, 4096
(64 x 64) cores per chip. 18-bit for
core distance, 8 bit for axon

Formed in 2D-mesh. Uni-cast
based with relative X and Y
coordinates. X-first routing

Loihi [30]

128 neuromorphic cores and 3 x86
cores per chip and can be scaled up to
4096 cores. Support up to 16,384
inter-chips communication. Each core
implements 1024 neural units.
Variable synaptic resolution

Asynchronous 2D Mesh NoC.
NoC only supports uni-cast, and
the multi-cast is supported by
iteration. NoC routing using
dimension-order routing
algorithm (X-first)

14

3. Interconnects for Neural Communication
“2iNNaker

e Each node has 18 ARM cores

A connected via Network-on-Chip
=2k * Off-chip communication using
et ¥ packet-router modules

i e T * Scale up to 57,600 processing node

® SpiNNaker CMP_

(1 million cores)

Host System

* Adopts the AER protocol as the
central idea

* Four types of packets:

Packet * Nearest neighbors

Router

* Point-to-Point

* Neural event multi-cast

* Fixed route

Fig. 5.3: SpiNNaker 15

3. Interconnects for Neural Communication

TrueNorth
* Each TrueNorth chip consists of 4096 cores SN
connected via Network-on-Chip B Cpperishery

(asynchronous 2D Mesh)

AAAcA ﬁAAA"'M

* Each neuron has 256 programmable
synapses that emulate the strength
between two neurons

&
SR B T

Asayduagdiyd
Chip Periphery

ABAcA

AAAA
+

Off-chip wires

* TrueNorth uses the X-first routing algorithm On-chip and off-chip interconnect
where the relative distance in X-coordinate :
(dx) value is increased or decreased first
until it gets to zero.

e After dx became zero, routing in Y-dimension
is used.

e Off-chip connection is considered as of
extending the Mesh Network-on-Chip

F. Akopyan et al., "TrueNorth: Design and Tool Flow of a 65 mW 1 Million Neuron Programmable Router Architecture

Neurosynaptic Chip," in IEEE Transactions on Computer-Aided Design of Integrated Circuits and 16
Systems, vol. 34, no. 10, pp. 1537-1557, Oct. 2015, doi: 10.1109/TCAD.2015.2474396.

Bufier

3. Interconnects for Neural Communication
Loihi-1
* Loihi-1 chip consists of 3 x86 cores t|=1 |BElEalEE]
and 128 neuromorphic cores EEEEENEENEES

connected via asynchronous 2D I ——
NoC

* Each neuron has 256-1024 B @ EE
programmable synapses that (= E] s sl]
emulate the strength between ¢ N—
two neurons |

» Off-chip connection is considered
as of extending the Mesh Loihi-1 NoC
Network-on-Chip

https://en.wikichip.org/wiki/intel/loihi

Lecture Contents

1.

Introduction

Neural Communication

Interconnect for inter-neural communication
Interconnect Design Principle

Network Topologies

Communication Architecture

Advanced Design

Conclusions

4. Interconnect Design Principle
Major principles

When designing interconnect, followings are the
major design choices:

* Network topology: For example, SpiNNaker uses a
folded triangle lattice topology, TrueNorth and
Loihi-1 use Mesh topology.

 Classification of the communications: beside inter-
neural communication (i.e. spikes), other
communication such as data transaction or
debugging is needed.

4. Interconnect Design Principle
Major principles (cnt)

Network support for communication:
* Multi-cast
* Uni-cast
* Broadcast

Time constraints

* Spikes in neuromorphic systems must arrive before a predefine
time (as synchronization)

* There two type: local and long-range communication. Long-range
communication take long time to arrive which may violate the time
constraint.

Mapping
Fault-tolerance

4. Interconnect Design Principle
OSI Model

Application & Presentation — I _—

Layers S source core \> (_ destination core />
I messages/transactions E—
v
Session & Transport network adapter network adapter
Layers
packet/streams >1
v
Network o intermediate
Layer | sourcenode (T4 o (sourcenode
Link & Data T physical link ﬂ physical link T

Layers — - : .
Y flits/phits

Fig. 5.5: OSI reference model for Network-on-Chip.

21

4. Interconnect Design Principle
Mapping Issue

ol
IS
N
BandWIdth D T— AFL
- [
v
Neuron
2
ﬁ

Fig. 5.8: Mapping neuromorphic systems in two phases: partitioning and placing.

Lecture Contents

1.

Introduction

Neural Communication

Interconnect for inter-neural communication
Interconnect Design Principle

Network Topologies

Communication Architecture

Advanced Design

Conclusions

5. Network Topology
Topology: 2D Mesh

RR :#?_&

S V .\

h—

PE

Fig. 5.6: 2D Mesh topology.

MxN mesh of routers (or
switches) interconnecting
Processing Element (PE) placed
near the router

Routing can be done via X or Y
direction

Each router (except the one on
border) can connect up to 4
neighboring routers and its
attached PE.

In multi-chip system, bordering
routers can connect to
“neighboring chips”

* Routing stay unchanged in multi-
chip system

24

5. Network Topology
Topology: 3D Mesh

Fig. 5.7: 3D Mesh topology.

MxNxL mesh of routers (or
switches) interconnecting
Processing Element (PE)
placed near the router

Routing can be done via X,
Y or Z direction

Each router (except the one
on border) can connect up
to 6 neighboring routers
and its attached PE.

In multi-chip system,
bordering routers can
connect to “neighboring
chips”

* Routing stay unchanged in
multi-chip system

25

5. Network Topology
Topology: Triangular Lattice (SpiNNaker)

——— = Asynchronous
——— Interconnect

® SpiNNaker CMP

Host Sy;tem

S. B. Furber et al., "Overview of the SpiNNaker System Architecture,"
Computers, vol. 62, no. 12, pp. 2454-2467, Dec. 2013, doi: 10.1109/TC.2012.142.

The six communications
links are used to connect
the nodes in a triangular
lattice

The lattice is then folded
onto the surface of a toroid

1TrT
3/37 e

HHH&—»
///

in IEEE Transactions on

26

Lecture Contents

1.

Introduction

Neural Communication

Interconnect for inter-neural communication
Interconnect Design Principle

Network Topologies

Communication Architecture

Advanced Design

Conclusions

6. Communication Architecture
Overview

* On the communication, there are some parts must
be decided:

* Switching techniques: packet switching, circuit switch or
hybrid.

* Within the switching, there are several models. For instance,
with packet switching, there are store-and-forward, virtual-cut-
through and wormhole.

* Packet routing:
e Deterministic or nondeterministic routing
* Minimal or non-minimal routing
* Deadlock/livelock awareness

6. Communication Architecture
Overview

* On the communication, there are some parts must
be decided:

* Flow-control:
* NACK/ACK: issue signal whether sucesfully receive data.
* STALL/GO: stop the sender by using stall signal
e CREDIT: issue the index of the received flit to the sender
* QoS:

* Best Effort: do not reserve any resource and the flit arrive
without any constraint. Package dropping is possible

e Guarantee Service: pre-allocating resource for delivering the
package.

6. Communication Architecture
Generic Router

Number of ports? .
Scheduling?

/R%u;'l?g 3 Phit size?

| 4 | —i utput Poft

Allocator ‘
Input Buffer

. i Routing
Buffer size? unit \

| —

Input Buffer Crossbar

Input Buffer i

ig. 5.9: The generic architecture of a router.

30

Lecture Contents

1.

Introduction

Neural Communication

Interconnect for inter-neural communication
Interconnect Design Principle

Network Topologies

Communication Architecture

Advanced Design

Conclusions

/. Advanced Design
Router

sw_grant (7)
»-L switch req (7) !

xaddr (3) Lokl
ddr (3 :
‘z{:dd: 23; Input_port port_req (35) N data_sent (7)
data_in_L (81)
r—3 !
South .
4 Input port . tail sent (7)
data_in_S (81)
= VN - Tail Sent
Input_port control (49)
data_in_N (81)
- | 2 » data_out_L (81)
West Switch_allocator data_out S (81)
Input port y data_out_N (81)
. I Crosshar »data_out_W (81)
data_in_W (81) » data_out_E (81)
+— — » data_out’U (81)
Ez st | » data_out_D (81)
Input_port
data_in_E (81)
¥ e - data_in (567)
es
Input port
data_in_U (81)
— -
3 Eait
data_in_D (81) Input_port » stop_out (7)
stop in (7)
BW RC/SA CT

Fig. 5.12: 3D-ONoC pipeline stages: Buffer writing (BW), Routing Calculation and
Switch Allocation (RC/SA) and Crossbar Traversal stage (CT).

32

/. Advanced Design
Router

One router has three important elements

Sy _grant (7)
xaddr (3) J—*f A switch req (7)

Local
yaddr (3) ort_req (35
zaddr (3) Input_port povregida) data_sent (7)
data_in_L (81)
| ¢ South — .
4 Input port | tail sent (7)
data_in_S (81)
= d W - /\ Tail Sent
- Input_port control (49)
data_in_N (8T) / A
1 — i y data_out_L (81)
L west H Switch_allocator data_out S (81)
|| 5 Input port [—— > ga:a_ou:_‘lllv((%]i))
.] rosshar »data_ou
data_in_W (81) 1 » data_out E (81)
- - » data”out”U (81)
— E&it » data_out_D (81)
T Input_port | [
data_in_E (8T)
i West — data i 67)
es
T Input port
data_in_U (81)
2 Est |-
data_in D (81) « Input_port / » stop_out (7)
stop in (7) - - - -

sw \./ RC/SA cT

Fig. 5.12: 3D-ONoC pipeline stages: Buffer writing (BW), Routing Calculation and
Switch Allocation (RC/SA) and Crossbar Traversal stage (CT).

33

5. Communication Architecture
Router

One router has three important elements

SN _grant (7)
xaddr (3)] ﬁ switch req (7)
z:g::: g% Input_port port.req {35) > data sent (7)
First element: myn e
tail sent (7)
e 0 but port le—
Buffer-writing and
— Tail Sent
: : No th
Routing-calculation 3. 7 N lowroien
dﬂﬁ:l'n\ / ~\
13 — i y data_out_L (81)
™ L west H Switch_allocator data_out S (81)
| | 5 Input port [y data_out’N (81)
data_in_W (8T) Elpestar 1 : gg::_ga:_\é\l((sfill))
- - » data_out’U (81)
— E&it » data_out_D (81)
] Input_port
data_in_E (81)
i West — data i 67)
es
T Input’ port
data_in_U (81)
'_ East [
data_in D (81) < Input_port 5 stop_out (7)
stop_in (7) L} -

sw \./ RC/SA cT

Fig. 5.12: 3D-ONoC pipeline stages: Buffer writing (BW), Routing Calculation and
Switch Allocation (RC/SA) and Crossbar Traversal stage (CT).

34

/. Advanced Design
Router

One router has three important elements

7w _grant (7)
xaddr (3) A switch req (7)
Lo al
. port_req (35) > data_sent (7)
First element:
i . 4
The\{ have buffe.rmg and Second element:
routing mechanisms] Scheduling and flow
N No th .
- ut._port control mechanism
data_in_N (8T) e — / TR T
‘e' e Switch_allocator :g:ﬁ: gﬂ§ Hgill))
| 175 Input port [3 data"out'N (81)
data_in_W (8T) Cpssar 1 :ggg gt:: ‘év((ﬁall))
3 — » data_out’U (81)
—+ East > data _out_D (81)
T Input_port | [
data_in_E (81)
i — data i 67)
West
T Input port
data_in_U (81)
2 Eait |-
data_in D (81) « Input_port / » stop_out (7)
stop in (7) - - - -

sw \./ RC/SA cT

Fig. 5.12: 3D-ONoC pipeline stages: Buffer writing (BW), Routing Calculation and
Switch Allocation (RC/SA) and Crossbar Traversal stage (CT).

35

/. Advanced Design
Router

One router has three important elements

7w _grant (7)
xaddr (3) A switch req (7)
Lo al
. port req (35) | data_sent (7)
First element:
i - 4
The\{ have buffe.rmg and Second element:
routing mechanisms] Scheduling and flow
N No th .
- ut._port control mechanism
data_in_N (8T) — / TNITIT T
‘e‘ e Switch_allocator :ggzg gﬂ§ Hg}))
| | 5 Input port [—— \ga:a ou: \rll\l((%ll))
data_in_W (81) — 1 dgt: gﬂt E (81)
3 — data —out_U (81)
3 Ez st ~ data out D (81)
T Input_port | [
data_in_E (8T) Third element:
- = data_in/(56 .
LA west = It sends flits each
Input port
data_in_U (81) adequate next port
) Eait |-
data_in D (81) 4 Input_port / » stop_out (7)
stop in (7) L -

sw \./ RC/SA cT

Fig. 5.12: 3D-ONoC pipeline stages: Buffer writing (BW), Routing Calculation and
Switch Allocation (RC/SA) and Crossbar Traversal stage (CT).

36

/. Advanced Design
nput-Port

zaddr (3) 4
B ——— It has FIFO and routing modules
enqueue (1) fifo_out[13;11] = ydest
fifo_out[10:8] = xdest
S TR . 81 bit |—|I 1 .FIFO
always @(posedge clk) hegin _ :
if (!reset) begin fAIf out of reset It has pointers for qu.eue systems
if {(engueue) begin //Write a flit to the buffer -It makes nearly full signal for flow control
fifo[tail_ptr] <= data_in;
tail_ptr <= tail_ptr + 1; (stop)
end]
_ . tail head
if (dequeue) hegin //Read a flit from the buffer
head_ptr <= head_ptr + 1; 1 1
end
£/ evaluate empty and nearly_full control signals. this could be done combir AA
if ((((head_ptr + 1’h1)==tail_ptr) & degueue & !engueue) | (empty & !engueutrremprg—= 1’h1;

if {(empty & engueue) empty <= 17h0;

fsevaluate stop signal - ohtained sequentially to ensure it arrives at upstream
s/router, early in it’s clock cycle
if ({((tail_ptr + FULL_LVL[LOG2D-1:0] + 1’bl)==zhead_ptr) &% engueue && !degueue)
stop_out <= 1’bhi1;
if ({((tail_ptr + FULL_LVL[LOG2D-1:0])==(head_ptr+1’h1)) &2 !engueue && degueue)
stop_out <= 1’b1;
if ({tail_ptr + FULL_LVLI[LOGZ2D-1:0])==head_ptr)
if {(engueue && !dequeue) || (!engueue &2 dequeue))
stop_out <= 1’h0;

37

/. AC

zaddr (3)
yaddr (3)
xaddr (3)
fifo out[16:14] = zdest
enqueue (1) fifo_out[13:11] = ydest
r—+ fifo_out[10:8] = xdest
]
. 81 bit
data_in (81) F — fifo_out (81) fifo out[1:7] R v v
1 [81bit - o | %ﬁ =
F | 81bit next_port u
sw_grant (1) lo) T
I 81 bit L
= >\ mux
B b
ol |5 data_out[1:7](= next_port
< <
A

A 4

‘
=<—~|

f/assign next addresses
if (nextport == EAST) next_xaddr
else if (nextport 510 next_xaddr
else next_xaddr = xaddr;

xaddr + 1’b1;
xaddr - 1’b1;

yaddr + 1’°h1;
yaddr - 17h1;

if (nextport NORTH) next_yaddr
else if (nextport SOUTHY next_yaddr
else next_yaddr = yaddr;

First, next router’s address is computed

vanced Design
nput-Port

It has FIFO and routing modules

-It decides transaction direction to
use the current address and
destination address

data_out (81)
stop_out (1)

sw_req (1)

port_req (7)

sfevaluate next port

if (next_xaddr xdest) bhegin
if (next_yaddr ydest) route
else if (next_yaddr <

— oLl

ydest) route

else route = SOUTH;
end else hegin
if (next_xaddr < xdest) route = EAST;
else route = HWEST;
end

Next-port is decided by using next address

38

stop_in [6:0]

/. Advanced Design

Arbiter

data_sent [6:0

sw_req [6:0]

Iblocked f = — =

—

149
-

sw_cntrl

|
I
|
|
]

port_req [48:0]

tail_sent

7’1111111

/mo\

L -

Reg

(6¥) syues3 qae

—>
grant_out

Fig. 5.14: Switch allocator architecture.

Output bandwidth is limited
for one flit data size per
output port

Therefore, scheduling is
needed

Matrix-Arbiter Scheduling
will decide which input port
can send flit to output port

39

/. Advanced Design
Arbiter: Matrix arbiter

X P, Pz Py
P,y X Pj3 Py
P, B, X Py

Py Py Pz X
When the priority i > j, P(i,j) becomes 1 and P(j, i) become 0

X 1 1 1 X 0 0 0

X 0 1 X 0 0
(1 1>$(11x1)

1 X 1 1 0 X

(a) (b)

oo o
o KO

For instance)

»Request 1 has the highest priority
»Second highest is request 3
»Third is request 4

»The lowest is request 2

Request 1 can be granted a resource
' The priority will be change to the lowest

40

/. Advanced Design
Arbiter: Matrix arbiter

Blocked[4:0] e

stop_in[4:0 : — B op_port_grants[4:0] // generate grants
data_seht[4:0} WE N)) o 25 sw_cntrl 74
Stall_Go T generate
- | i Erseian] for {i=0; i<SIZE; i=i+1) begin:oll
Suall_say _iégmtpm // generate grant i
for (j=0: Jj<SIZ2E: j=j+l) begingill
IE (I==4)
// request i wins if regquesting and....
assign pri[i] [j]=request[i]:
1 arb_success arb_grants[24:0] else
sw_req[4:0] /¢4no other recquest with higher priority
port_req[24:0] " 1 IE (9>d)
tail_sent s /{3 beats 1
matrix_arb_f %— assign pri[i] [J]=!(request[]] &&state[J*SIZE+i])
5'b11111-] arb_req[4:0] ormultistage else
matrix_arb_formultistage.v f4 V({1 beats 3)
[% AR g assign pri[i] [J]=!(request[]j] &&!state[i*SIZE+]3]):
5b11111 1 ¥ end

assign grant[i]=&pri[i]:
end

- Right code indicates endgenerate

// update state
comparison of priority it/ T
between current transmitting e T e e e
input port and other routers

assign new state[j*SIZE+i] = (success&s((state[J*SIZE+i] &&!grant[3])
which send request to arbiter i

|| igrant[1i]))) || ('Success&sstate[J*3IZE+1i])
end|

endgenerate

Friday, June 16, 2023 Advanced Computer Organization 41

/. Advanced Design
Arbiter: Stall and Go

module stall_go(clk, reset, data_sent,
stop_in, blocked);

~ Sw. Al |
1 input clk, reset;
Data_in_L (81) stop 1 d4—+ input data_sent, stop_in;
———A oere i 4 Stop-Go
” _port_ <
nearly_full_out 1 output blocked;
1) —— Sched. L
[=
| 3;'1 reg [1:0] state;
......... o
! 1 h 4 Y .§ nearly- always @(posedge clk) begin
i =5 81 iF () Y sl
> 4 i Ireset) hegin
Data_in D (81) 1 Eroschar | 8% i Data_o
—_— > : o et .
; In_port_D = 81 L if ((state== G0) && stop_in && data_sent)
nearly_full_out)ata_in_s > 181 state <= ‘SENT1:
(1)
Data_out_D if (state=='SENT1) begin
if (stop_in && !data_sent)
state <= "G0;
if (!stop_in && data_sent)
Fig. 5.15: Stall-Go flow « | state & 'SToRs
nc
if ((state== STOF) && stop_in)
state <= 'GO;
end else
state <= "G0;

end
42

/. Advanced Design
Arbiter: Stall and Go (Cnt.)

nearly_ful==1, data_sent==1 nearly_ful==0, data_sent==1

nearly_ful==1, data_sent==0

nearly_ful==1

Fig. 5.16: Stall-Go flow control Finite State Machine.

tail head
Nearly full means... (I 1 1 (R
i ' flit
it has one flit space > N R
Router FIFIFl Router
< Nearly full < <
stall_go treats flow control v * v ¢

* It has state machine to decide when it issues stall signal

43

Lecture Contents

1.

Introduction

Neural Communication

Interconnect for inter-neural communication
Interconnect Design Principle

Network Topologies

Communication Architecture

Advanced Design

Conclusions

8. Conclusion

* |n this lecture, we have reviewed the
communication network for neuromorphic
computing.

e Address Event Representation vs Spike Vector
* Overview of the SOTA architectures
* Network-on-Chip design and principle

* We also discuss about the detailed design of the
OASIS Network on Chip

9. Exercises

OASIS NoC is available at:
https://github.com/benabdallah-dang-lab/MigSpike

with 2D NoC (9 cores, 3x3)

1.

A S

Reconfigure OASIS NoC to 3x3x3

Generate Random Input/Output configuration
Evaluate the overall latency of the system
Indicate which is the longest routing path
Indicate the most congestion path

46

https://github.com/benabdallah-dang-lab/MigSpike%20with%202D%20NoC%20(9

