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1. Introduction

• When manufacturing Integrated Circuits, 
“imperfection” may occur which lead to unwanted 
fabricated parts.
• This inaccuracy in the design which lead to mistakes in 

the functionality which is “fault”.

• Another aspect is the wear-out or aging process:
• Devices will be degraded over time.
• Output of the gates can be erroneous
• Disconnected wires may occur
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1. Introduction
Measure of Reliability

• Reliability can be expressed as 𝑅(𝑡): the probability 
of the system work normally.
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1. Introduction
Measure of Reliability (cnt.)

• Reliability depends on the fault rate 𝜆 which may 
vary over time.
• Fault rate usually in bathub model
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1. Introduction
Measure of Reliability (cnt.)

• Mean-time-to-Failure (MTTF):

MTTF = %
!

"
R t dt

R(t): the reliability of the system in the interval [0, t]

• MTTF represents the average time that the system work correctly è Higher MTTF 
means more reliable system

• Availability (A(t)) is another measurement of the ratio of online time of the system 
(with faults and repair)
• Example: In average, cars can run 1000 hours then repair for 2 hour (not running). MTTF is 1000 

hours. Mean time to repair is 2 hours. The Avaibility is:
1000

1000 + 2
= 0.998
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1. Introduction
Faults in Semiconductor

• There are three types of faults:
• Permanent fault: fault occurs constantly and never 

return to be functional.
• Example: disconnected wires, gate connected to ground wire

• Intermittent fault:fault does not go away, but it usually 
oscillates.
• Example: crack in wire that connect when a stress applied 

(thermal expansion can cause this stress)
• Transient fault:  fault causes a component malfunction 

some time and can go away after a short period.
• Example: alpha particles flip the voltage of an output of a gate 
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Fig. 6.2: System type.

1. Introduction
Type of system

• Any system can be classified into serial, parallel or mixed one

• In parallel system, parallel modules are exchangable which make 
the system failed once all module failed.

• In serial system, once a model failed, the whole system failed.
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1. Introduction
Serial System
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• If one of the modules fails, the whole system will 
malfunction. 
• Assuming the modules fail independently, the fault 

rate of the system is the product of the fault rates 
of all modules:

𝑅 !"!#$% 𝑡 = $
&''(%)*+'$!

𝑅%)*+'$ (𝑡)

Example of a serial system of four modules

Module-1 Module-2 Module-3 Module-4 System

0.9 0.95 0.85 0.99 0.7195



1. Introduction
Parallel System
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• In the parallel system, the system only fails when all 
modules are failed
• Assuming the modules fail independently, the fault 

rate of the system is the product of the fault rates 
of all modules:

𝑅 !"!#$% 𝑡 = 1 − $
&''(%)*+'$!

(1 − 𝑅%)*+'$(𝑡))

Example of a parallel system of four modules

Module-1 Module-2 Module-3 Module-4 System

0.9 0.95 0.85 0.99 0.9999925



1. Introduction
Mixed System
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• For the mixed system, we can divide it into sub-
systems to analyze.
• Example

Module-1 Module-2 Module-3 Module-4 System

0.9 0.95 0.85 0.99 ?

1

2

3

4



1. Introduction
Mixed System (cnt)
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• First, let consider sub-system 2&3 which is a 
parallel system of module 2 and 3

Module-1 Module-2 Module-3 Sub-system 
2&3

Module-4 System

0.9 0.95 0.85 0.9925 0.99 ?

1

2

3

42&3



1. Introduction
Mixed System (cnt)
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• Then, we can convert into a serial system of 
module-1, module 2&3, and module 4

Module-1 Module-2 Module-3 Sub-system 
2&3

Module-4 System

0.9 0.95 0.85 0.9925 0.99 0.8842

1

2

3

42&3



1. Introduction
Mixed System (cnt.)
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• However, sometimes the divide and conquer 
method is not feasible

1 2

3

4

5

Module-1 Module-2 Module-3 Module-4 Module-5 System

0.9 0.95 0.85 0.99 0.8 ?



1. Introduction
Markov State Model

15

• To analyze the mixed model, it is better to have the 
Markov state model. Each state represents one of 
scenario when one or more modules become 
failed.
• States are divided into:

• Heathy state
• Failure state

• Reliability = probability in the Heathy states; or
• Reliability = 1 - probability in the Failure states



1. Introduction
Markov State Model
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• Let’s build a Markov satte model
• It is always start  with initial state S
• Probability for S start with 1.0 at the begining

1 2

3

4

5

S



1. Introduction
Markov State Model
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• Assuming a module is failed, we 
can have a new state 1 2

3

4

5

S

F1

F2

F3

F4

F5

• Probablity to transfer for S to Fi (i = 
1,2,3,4 or 5) is failure probability of 
module – i (or 1– reliability of 
module i).

Module-1 Module-2 Module-3 Module-4 Module-5 System

0.9 0.95 0.85 0.99 0.8 ?

0.1

0.05

0.15
0.01

0.2



1. Introduction
Markov State Model
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• Next, we add extra states for two 
or more modules failed 1 2

3

4

5

S

F1

F2

F3

F4

F5

Module-1 Module-2 Module-3 Module-4 Module-5 System

0.9 0.95 0.85 0.99 0.8 ?

0.1

0.05

0.15
0.01

0.2

F1&2
0.1

0.05

F1&2: state when both module 1 and 2 failed

Prob. of module 2 failed

Prob. of module 1 failed



1. Introduction
Markov State Model
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• Next, we add extra states for two 
or more modules failed 1 2

3

4

5

S

F1

F2

F3

F4

F5

0.1

0.05

0.15
0.01

0.2

F1&2
0.1

0.05

F1&2&3: state when module 1, 2 and 3 failed.
This is Failure state

Prob. of module 2 failed

Prob. of module 1 failed

F1&2&3

Prob. of module 3 failed

0.15

• Here, we can calculate one branch of failures:
• Sà F1 à F1&2 à F1&2&3

Prob = 0.1 * 0.05*0.15 = 0.00075
By finding all possible failure states, we can 
summarize their probabilities to have the probability 
of failure.



1. Introduction
Impact on SNN
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Part of 
Neuromorphic 

systems

Fault Types Causes of faults How to correctHow to detectBehaviors



1. Introduction
Impact on SNN: Example

• Memory:
• Permanent defect: stuck-at –zero
• Value )𝑄 is shorten to Vdd which make it stay at `1`
• Value 𝑄 is now stuck at 0
• Value of memory cell is 
always 0

• Behavior:
• If the 1st bit is stuck at 0
• Writen weight: 110010102

• Read weight: 010010102

21
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1. Introduction
Impact on SNN: Example (cnt.)

• Computing Unit:
• Permanent defect: stuck-at–one
• An wire is shorten to Vdd
• Value transimitting on the wire stay at 1

• Behavior:
• If the 1st bit is stuck at 1
• Transmitted value: 000010102

• Read weight: 100010102
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Fig. 6.1: Impact of faults on a neuromorphic system.

1. Introduction
Impact on SNN
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Strong drop in 
terms of 
accuracy

Strong drop in 
terms of 
accuracy

• Insert stuck-at-0/ stuck-at-1 into weight or threshold
• Two benchmarks: MNIST/CIFAR10
è SNN provides some resilient again the faults; however, under high defect 
rates, it starts to collapsed.

Quite resilient 
again stuck-at 0

Strong resilient 
again faults

Strong resilient 
again faults
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2. Conventional Fault Tolerance
Overview

• In conventional computing system fault tolerance, 
we can classify them into three main approach
• Hardware approach: adding extra hardware to correct 

the faulty modules
• Information redundancy: adding extra information to 

correct the faulty information
• Software approach: dealing with fault by using software
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2. Conventional Fault Tolerance
Hardware

• The most common approach in hardware fault 
tolerance is to add extra modules which work in 
parallel
• Multiple modules work in parallel can help detect 

the defect
• Once a module failed, we can use the added 

module as the replacement
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Fig. 6.3: Triple Modular 
Redundancy.

2. Conventional Fault Tolerance
Hardware (cnt)

• Triple Modular Redundancy:
• Replicate the module to have 2 

extra copy.
• Voter is added to decide the 

healthy status of the modules.
• If one module has different result, 

that module is considered as 
failed.
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2. Conventional Fault Tolerance
Information Redundancy

• By adding extra information, we can prevent the 
data corruption.
• For instance (triple repetition code):
• instead of storing value “a”, we stored three 

consecutive values of “a” as “aaa”.
• If the second value is corrupted a →  b, the three 

consectutive value become “aba”
• By comparing three value “a”, “b”, and “a”, we can 

conclude that the correct value is “a”
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Fig. 6.5: Even parity code: (a) 
encoder; (b) decoder.

2. Conventional Fault Tolerance
Parity Code

• Parity code is a 
systematic code with 
only one extra bit P
• P is 1 if the number of 

bit 1 in the data is odd
• P is 0 if the number of 

bit 1 in the data is even
• Example:
• data: 1010 à P=0
• data: 0111 à P=1
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2. Conventional Fault Tolerance
Parity Code (cnt)

• Parity code can detect one bit error; but it cannot correct.
• Detection by counting the bit-1 in data:

• If the number of bit 1 is even (in even parity codeword): the data is 
correct

• If the number of bit 2 is odd (in even parity codeword): the data is 
incorrect

• For example:
• Data : 0 1 0 1 0 1 1 0
• Even parity codeword : 0 1 0 1 0 1 1 0 0
• If one bit is error, we can detect:

• 1st bit error: 1 1 0 1 0 1 1 0 0: check parity of this array
• # bit – 1: 5 à the data is incorrect

• 4th bit error: 0 1 0 0 0 1 1 0 0
• # bit – 1: 3 à the data is incorrect

• In logic (and LSI), XOR function (⊕) is used for
parity check. 

30

Input Output

A B A XOR B

0 0 0

0 1 1

1 0 1

1 1 0



2. Conventional Fault Tolerance
Hamming Code

• Hamming code provides the ability to correct one 
error bit
• An extension of Hamming code (SECDED) can 

correct one error bit and detect two error bits
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2. Conventional Fault Tolerance
Hamming Code (cnt.)
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• Assuming the data is 
“0110”.
• The parity bit is:
• p1= b1⊕b2⊕b4 = 1
• p2= b1⊕b3⊕b4 =1
• p3= b2⊕b3⊕b4 =0

• Codeword: “0110110”

data p1 p2 p3

b1 0 x x

b2 1 x x

b3 1 x x

b4 0 x x x

1 1 0



2. Conventional Fault Tolerance
Hamming Code (cnt.)
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• Let’s call codeword’ is the value of the codeword after 
transmission/loading. codeword’ can be different from 
codeword.
• To simplify the correctability, we can understand one bit can 

have three versions:
• Version 1: the bit in the codeword’ (received codeword)
• Version 2& 3: the bit extract from parity bit and other bit

• For example, b1 bit can be obtained from:
• b1’ in the codeword’ 
• p1= b1⊕b2⊕b4 è b1’’ = p1’ ⊕b2’⊕b4’ 
• p2= b1⊕b3⊕b4 è b1’’’ = p2’ ⊕b3’⊕b4’ 

• From three version: b1’, b1’’, b1’’’, we can decide the 
correct value of b1



2. Conventional Fault Tolerance
Hamming Code (cnt.)
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• Let’s flip bit b1 in the codeword’ 0à1
• Ver1: 1
• Ver2: 0
• Ver3: 0

codeword 0 1 1 0 1 1 0

codeword’ 1 1 1 0 1 1 0

codeword’’ 0

codeword’’’ 0

Corrected
codeword

0

Corrected b1 = 0

p1 p2 p3

b1 x x

b2 x x

b3 x x

b4 x x x



2. Conventional Fault Tolerance
Hamming Code (cnt.)
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• Let’s check another bit: b2
• Ver1: 1
• Ver2: 0
• Ver3: 1

codeword 0 1 1 0 1 1 0

codeword’ 1 1 1 0 1 1 0

codeword’’ 0 0

codeword’’’ 0 1

Corrected
codeword

0 1

Corrected b2 = 1

p1 p2 p3

b1 x x

b2 x x

b3 x x

b4 x x x



2. Conventional Fault Tolerance
Hamming Code (cnt.)
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• Let’s flip bit p1, we can see it only affect b1,b2 and 
b4. For instance we can see b2:
• Ver1: 1
• Ver2: 0
• Ver3: 1

codeword 0 1 1 0 1 1 0

codeword’ 0 1 1 0 0 1 0

codeword’’ 0 0

codeword’’’ 0 1

Corrected
codeword

0 1

Corrected b2 = 1

p1 p2 p3

b1 x x

b2 x x

b3 x x

b4 x x x



2. Conventional Fault Tolerance
Software Fault Tolerance

• Another approach is software fault tolerance:
• Algorithm-based fault tolerance where the 

computation includes the correction method itself.
• The computing algorithm has built-in fault-tolerance feature 

instead of realizing on hardware.

• Check-pointing and rolling-back is another approach 
where checkpoint of the system is saved for rolling back
when an error occurs.
• This mostly works against soft errors the the error could 

disappear when the system rolls back.
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3. Fault Tolerance for Neuromorphic Computing
Overviews

• To protect the neuromorphic computing system, 
we can divide them into three major parts:
• Computing: for all the modules that compute the neural 

network tasks
• Memory: for storing and load the memory where the 

defect can cause incorrect reading, writing or storing
• Communication: for transferring the message between 

modules which can lead to data corruption
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3. Fault Tolerance for Neuromorphic Computing
Memory Protection

• To protect the information stored in the memory, 
we can use the information redundancy approach:
• By adding extra information to allow the system detect

and correct potential error bits. For example: Hamming, 
SECDED (Hamming with one extra bit), …
• Accepting the error bits with potential graceful acurracy 

loss by considering neuromorphic computing as an 
approximate computing method.

• Software approach can also be used for soft errors:
• Once we detect error bit, we re-write the system’s

memory with the safe copy
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3. Fault Tolerance for Neuromorphic Computing
Communication Protection

• To protect the communication, we first need to 
divide the errors into two types:
• First one is the error in the transmitting data where the 

routing and handshaking is considered as corrected. 
Here, we can convert the problem into the memory 
protection problem.
• The second one is the error in the routing or 

handshaking processes. With this type of error:
• Finding the alternative routing path to avoid defective ones is 

necessary.
• Retranmission with package dropping could be used since 

misrouted package could lead to deadlock/livelock.
• Protection and recovery can be deal using hardware approach 

(adding redundancies).
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3. Fault Tolerance for Neuromorphic Computing
Computation Protection

• To protect the computation errors:
• The first approach is to accept the errors by considering 

them as noise. Furthermore, adjusting parameter (i.e.,
threshold voltage with input losses) can be used to 
alleviate the impact.
• Another apporach is to use hardware redundancy by 

replicating the computing units and consider as 
replacements.
• Redundancy can be at fine grained level.
• Since computing units are identical, adding extra ones and 

perform system remapping is also possible.
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4. Mapping for Tolerating Faults for NC
Problem Formulation

• Assuming the neuromorphic system 𝑆 has 𝑁 nodes 
(neuron clusters) connected via Network-on-Chip.
• Each node 𝑖 has 𝐸* neurons (could be different 

between nodes).
• Total number of neurons:

𝑋 = ,
*+,

-./

𝐸*

44
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for Scalable Robust Neuromorphic Systems”, IEEE Transactions on Emerging Topics in Computing (TETC), IEEE, Volume 10, Issue 2, pp. 
602-617, 2022.



4. Mapping for Tolerating Faults for NC
Problem Formulation (cnt.)

• Here, we assume the SNN application need 𝑊
neurons to work (𝑊 ≤ 𝑋).
• The number of spare neurons  R = 𝑋 −𝑊 which is 

the redundancy for correcting potential defects
• Once a defect in the neuron occurs, a spare neuron 

can be used for correction
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Fig. 6.6: System model for
fault tolerance SNN: (a)
Designed SNN system using
nodes of neurons with an initial
mapping; (b) node-level
recovery; (c) The case node-
level recovery fails to correct;
(d) System level recovery: a
mapping flow of 100 faulty
neurons to its node’s
neighbors. Values next the
circle indicate the number of
neurons in the circle type
(gray: healthy and utilized;
gray: healthy and spared; red:
faulty; purple: migrating).

4. Mapping for Tolerating Faults for NC
Correcting method
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4. Mapping for Tolerating Faults for NC
Problem Conversion

• Here, we convert the problem into the graph theory 
problem (max flow min cut).
• We create the graph of N+2 vertices:

• N vertices for N nodes
• 2 vertices for virtual source and virtual sink.

• Edges are added:
• From the virtual source to each node with defects; capacity = 

number of defects
• From each node with spares to the virtual sink ; capacity = 

number of spares
• Between neighboring nodes; capacity = number of neurons 

can be migrated from one node to other node
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Fig. 6.7: Flow graph for max-flow min-cut problem: (a) Converted flow from the NoC-based
SNN; (b) A solution of max-flow min-cut problem

4. Mapping for Tolerating Faults for NC
Generated Graph and Potential Solutions

48



Fig. 6.8: An illustration of the proposed algorithm: (a) Faulty case; (b) Post-mapping
using the proposed algorithm.

4. Mapping for Tolerating Faults for NC
Input and Potential Solution
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5. Conclusion

• In this lecture, we first review reliability 
measurement and defective types.
• Impact of faults into neuromorphic system is 

analyzed.
• Traditional approaches for fault-tolerance are 

reviewed with the potential usage in 
neuromorphic system
• Case study: remapping to tolerate defective 

neurons in large scale system
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