
Neuromorphic Computing

Ben Abdallah Abderazek, Khanh N. Dang
E-mail: {benab, khanh}@u-aizu.ac.jp

This lecture is based on the book ''Neuromorphic Computing Principles and Organization,'' Publisher: Springer; 2022 edition, ISBN-10 : 3030925242, ISBN-13 : 978-3030925246, by
Abderazek Ben Abdallah, Khanh N. Dang

6. Fault-Tolerant Neuromorphic
System Design
(Part – I and II)

Lecture Contents

1. Introduction

2. Conventional Computing System Fault Tolerance

3. Fault Tolerance for Neuromorphic Computing

1. Memory Protection

2. Communication Protection

3. Computation Protection

4. Mapping for Tolerating Faults in Neuromorphic Computing

5. Conclusions

2

1. Introduction

• When manufacturing Integrated Circuits,
“imperfection” may occur which lead to unwanted
fabricated parts.
• This inaccuracy in the design which lead to mistakes in

the functionality which is “fault”.

• Another aspect is the wear-out or aging process:
• Devices will be degraded over time.
• Output of the gates can be erroneous
• Disconnected wires may occur

3

1. Introduction
Measure of Reliability

• Reliability can be expressed as 𝑅(𝑡): the probability
of the system work normally.

4

1 2 3 4 5 6 7 8

System-1

Years

1. Introduction
Measure of Reliability (cnt.)

• Reliability depends on the fault rate 𝜆 which may
vary over time.
• Fault rate usually in bathub model

5

Fault Rate

Early Failure Constant Failure

1. Introduction
Measure of Reliability (cnt.)

• Mean-time-to-Failure (MTTF):

MTTF = %
!

"
R t dt

R(t): the reliability of the system in the interval [0, t]

• MTTF represents the average time that the system work correctly è Higher MTTF
means more reliable system

• Availability (A(t)) is another measurement of the ratio of online time of the system
(with faults and repair)
• Example: In average, cars can run 1000 hours then repair for 2 hour (not running). MTTF is 1000

hours. Mean time to repair is 2 hours. The Avaibility is:
1000

1000 + 2
= 0.998

6

1. Introduction
Faults in Semiconductor

• There are three types of faults:
• Permanent fault: fault occurs constantly and never

return to be functional.
• Example: disconnected wires, gate connected to ground wire

• Intermittent fault:fault does not go away, but it usually
oscillates.
• Example: crack in wire that connect when a stress applied

(thermal expansion can cause this stress)
• Transient fault: fault causes a component malfunction

some time and can go away after a short period.
• Example: alpha particles flip the voltage of an output of a gate

7

Fig. 6.2: System type.

1. Introduction
Type of system

• Any system can be classified into serial, parallel or mixed one

• In parallel system, parallel modules are exchangable which make
the system failed once all module failed.

• In serial system, once a model failed, the whole system failed.
8

1. Introduction
Serial System

9

• If one of the modules fails, the whole system will
malfunction.
• Assuming the modules fail independently, the fault

rate of the system is the product of the fault rates
of all modules:

𝑅 !"!#$% 𝑡 = $
&''(%)*+'$!

𝑅%)*+'$ (𝑡)

Example of a serial system of four modules

Module-1 Module-2 Module-3 Module-4 System

0.9 0.95 0.85 0.99 0.7195

1. Introduction
Parallel System

10

• In the parallel system, the system only fails when all
modules are failed
• Assuming the modules fail independently, the fault

rate of the system is the product of the fault rates
of all modules:

𝑅 !"!#$% 𝑡 = 1 − $
&''(%)*+'$!

(1 − 𝑅%)*+'$(𝑡))

Example of a parallel system of four modules

Module-1 Module-2 Module-3 Module-4 System

0.9 0.95 0.85 0.99 0.9999925

1. Introduction
Mixed System

11

• For the mixed system, we can divide it into sub-
systems to analyze.
• Example

Module-1 Module-2 Module-3 Module-4 System

0.9 0.95 0.85 0.99 ?

1

2

3

4

1. Introduction
Mixed System (cnt)

12

• First, let consider sub-system 2&3 which is a
parallel system of module 2 and 3

Module-1 Module-2 Module-3 Sub-system
2&3

Module-4 System

0.9 0.95 0.85 0.9925 0.99 ?

1

2

3

42&3

1. Introduction
Mixed System (cnt)

13

• Then, we can convert into a serial system of
module-1, module 2&3, and module 4

Module-1 Module-2 Module-3 Sub-system
2&3

Module-4 System

0.9 0.95 0.85 0.9925 0.99 0.8842

1

2

3

42&3

1. Introduction
Mixed System (cnt.)

14

• However, sometimes the divide and conquer
method is not feasible

1 2

3

4

5

Module-1 Module-2 Module-3 Module-4 Module-5 System

0.9 0.95 0.85 0.99 0.8 ?

1. Introduction
Markov State Model

15

• To analyze the mixed model, it is better to have the
Markov state model. Each state represents one of
scenario when one or more modules become
failed.
• States are divided into:

• Heathy state
• Failure state

• Reliability = probability in the Heathy states; or
• Reliability = 1 - probability in the Failure states

1. Introduction
Markov State Model

16

• Let’s build a Markov satte model
• It is always start with initial state S
• Probability for S start with 1.0 at the begining

1 2

3

4

5

S

1. Introduction
Markov State Model

17

• Assuming a module is failed, we
can have a new state 1 2

3

4

5

S

F1

F2

F3

F4

F5

• Probablity to transfer for S to Fi (i =
1,2,3,4 or 5) is failure probability of
module – i (or 1– reliability of
module i).

Module-1 Module-2 Module-3 Module-4 Module-5 System

0.9 0.95 0.85 0.99 0.8 ?

0.1

0.05

0.15
0.01

0.2

1. Introduction
Markov State Model

18

• Next, we add extra states for two
or more modules failed 1 2

3

4

5

S

F1

F2

F3

F4

F5

Module-1 Module-2 Module-3 Module-4 Module-5 System

0.9 0.95 0.85 0.99 0.8 ?

0.1

0.05

0.15
0.01

0.2

F1&2
0.1

0.05

F1&2: state when both module 1 and 2 failed

Prob. of module 2 failed

Prob. of module 1 failed

1. Introduction
Markov State Model

19

• Next, we add extra states for two
or more modules failed 1 2

3

4

5

S

F1

F2

F3

F4

F5

0.1

0.05

0.15
0.01

0.2

F1&2
0.1

0.05

F1&2&3: state when module 1, 2 and 3 failed.
This is Failure state

Prob. of module 2 failed

Prob. of module 1 failed

F1&2&3

Prob. of module 3 failed

0.15

• Here, we can calculate one branch of failures:
• Sà F1 à F1&2 à F1&2&3

Prob = 0.1 * 0.05*0.15 = 0.00075
By finding all possible failure states, we can
summarize their probabilities to have the probability
of failure.

1. Introduction
Impact on SNN

20

Part of
Neuromorphic

systems

Fault Types Causes of faults How to correctHow to detectBehaviors

1. Introduction
Impact on SNN: Example

• Memory:
• Permanent defect: stuck-at –zero
• Value)𝑄 is shorten to Vdd which make it stay at `1`
• Value 𝑄 is now stuck at 0
• Value of memory cell is
always 0

• Behavior:
• If the 1st bit is stuck at 0
• Writen weight: 110010102

• Read weight: 010010102

21

w
ire

1. Introduction
Impact on SNN: Example (cnt.)

• Computing Unit:
• Permanent defect: stuck-at–one
• An wire is shorten to Vdd
• Value transimitting on the wire stay at 1

• Behavior:
• If the 1st bit is stuck at 1
• Transmitted value: 000010102

• Read weight: 100010102

22
w
ire

data
wire

Vdd

Fig. 6.1: Impact of faults on a neuromorphic system.

1. Introduction
Impact on SNN

23

Strong drop in
terms of
accuracy

Strong drop in
terms of
accuracy

• Insert stuck-at-0/ stuck-at-1 into weight or threshold
• Two benchmarks: MNIST/CIFAR10
è SNN provides some resilient again the faults; however, under high defect
rates, it starts to collapsed.

Quite resilient
again stuck-at 0

Strong resilient
again faults

Strong resilient
again faults

Lecture Contents

1. Introduction

2. Conventional Computing System Fault Tolerance

3. Fault Tolerance for Neuromorphic Computing

1. Memory Protection

2. Communication Protection

3. Computation Protection

4. Mapping for Tolerating Faults in Neuromorphic Computing

5. Conclusions

24

2. Conventional Fault Tolerance
Overview

• In conventional computing system fault tolerance,
we can classify them into three main approach
• Hardware approach: adding extra hardware to correct

the faulty modules
• Information redundancy: adding extra information to

correct the faulty information
• Software approach: dealing with fault by using software

25

2. Conventional Fault Tolerance
Hardware

• The most common approach in hardware fault
tolerance is to add extra modules which work in
parallel
• Multiple modules work in parallel can help detect

the defect
• Once a module failed, we can use the added

module as the replacement

26

Fig. 6.3: Triple Modular
Redundancy.

2. Conventional Fault Tolerance
Hardware (cnt)

• Triple Modular Redundancy:
• Replicate the module to have 2

extra copy.
• Voter is added to decide the

healthy status of the modules.
• If one module has different result,

that module is considered as
failed.

27

2. Conventional Fault Tolerance
Information Redundancy

• By adding extra information, we can prevent the
data corruption.
• For instance (triple repetition code):
• instead of storing value “a”, we stored three

consecutive values of “a” as “aaa”.
• If the second value is corrupted a → b, the three

consectutive value become “aba”
• By comparing three value “a”, “b”, and “a”, we can

conclude that the correct value is “a”

28

Fig. 6.5: Even parity code: (a)
encoder; (b) decoder.

2. Conventional Fault Tolerance
Parity Code

• Parity code is a
systematic code with
only one extra bit P
• P is 1 if the number of

bit 1 in the data is odd
• P is 0 if the number of

bit 1 in the data is even
• Example:
• data: 1010 à P=0
• data: 0111 à P=1

29

2. Conventional Fault Tolerance
Parity Code (cnt)

• Parity code can detect one bit error; but it cannot correct.
• Detection by counting the bit-1 in data:

• If the number of bit 1 is even (in even parity codeword): the data is
correct

• If the number of bit 2 is odd (in even parity codeword): the data is
incorrect

• For example:
• Data : 0 1 0 1 0 1 1 0
• Even parity codeword : 0 1 0 1 0 1 1 0 0
• If one bit is error, we can detect:

• 1st bit error: 1 1 0 1 0 1 1 0 0: check parity of this array
• # bit – 1: 5 à the data is incorrect

• 4th bit error: 0 1 0 0 0 1 1 0 0
• # bit – 1: 3 à the data is incorrect

• In logic (and LSI), XOR function (⊕) is used for
parity check.

30

Input Output

A B A XOR B

0 0 0

0 1 1

1 0 1

1 1 0

2. Conventional Fault Tolerance
Hamming Code

• Hamming code provides the ability to correct one
error bit
• An extension of Hamming code (SECDED) can

correct one error bit and detect two error bits

31

2. Conventional Fault Tolerance
Hamming Code (cnt.)

32

• Assuming the data is
“0110”.
• The parity bit is:
• p1= b1⊕b2⊕b4 = 1
• p2= b1⊕b3⊕b4 =1
• p3= b2⊕b3⊕b4 =0

• Codeword: “0110110”

data p1 p2 p3

b1 0 x x

b2 1 x x

b3 1 x x

b4 0 x x x

1 1 0

2. Conventional Fault Tolerance
Hamming Code (cnt.)

33

• Let’s call codeword’ is the value of the codeword after
transmission/loading. codeword’ can be different from
codeword.
• To simplify the correctability, we can understand one bit can

have three versions:
• Version 1: the bit in the codeword’ (received codeword)
• Version 2& 3: the bit extract from parity bit and other bit

• For example, b1 bit can be obtained from:
• b1’ in the codeword’
• p1= b1⊕b2⊕b4 è b1’’ = p1’ ⊕b2’⊕b4’
• p2= b1⊕b3⊕b4 è b1’’’ = p2’ ⊕b3’⊕b4’

• From three version: b1’, b1’’, b1’’’, we can decide the
correct value of b1

2. Conventional Fault Tolerance
Hamming Code (cnt.)

34

• Let’s flip bit b1 in the codeword’ 0à1
• Ver1: 1
• Ver2: 0
• Ver3: 0

codeword 0 1 1 0 1 1 0

codeword’ 1 1 1 0 1 1 0

codeword’’ 0

codeword’’’ 0

Corrected
codeword

0

Corrected b1 = 0

p1 p2 p3

b1 x x

b2 x x

b3 x x

b4 x x x

2. Conventional Fault Tolerance
Hamming Code (cnt.)

35

• Let’s check another bit: b2
• Ver1: 1
• Ver2: 0
• Ver3: 1

codeword 0 1 1 0 1 1 0

codeword’ 1 1 1 0 1 1 0

codeword’’ 0 0

codeword’’’ 0 1

Corrected
codeword

0 1

Corrected b2 = 1

p1 p2 p3

b1 x x

b2 x x

b3 x x

b4 x x x

2. Conventional Fault Tolerance
Hamming Code (cnt.)

36

• Let’s flip bit p1, we can see it only affect b1,b2 and
b4. For instance we can see b2:
• Ver1: 1
• Ver2: 0
• Ver3: 1

codeword 0 1 1 0 1 1 0

codeword’ 0 1 1 0 0 1 0

codeword’’ 0 0

codeword’’’ 0 1

Corrected
codeword

0 1

Corrected b2 = 1

p1 p2 p3

b1 x x

b2 x x

b3 x x

b4 x x x

2. Conventional Fault Tolerance
Software Fault Tolerance

• Another approach is software fault tolerance:
• Algorithm-based fault tolerance where the

computation includes the correction method itself.
• The computing algorithm has built-in fault-tolerance feature

instead of realizing on hardware.

• Check-pointing and rolling-back is another approach
where checkpoint of the system is saved for rolling back
when an error occurs.
• This mostly works against soft errors the the error could

disappear when the system rolls back.

37

Lecture Contents

1. Introduction

2. Conventional Computing System Fault Tolerance

3. Fault Tolerance for Neuromorphic Computing

1. Memory Protection

2. Communication Protection

3. Computation Protection

4. Mapping for Tolerating Faults in Neuromorphic Computing

5. Conclusions

38

3. Fault Tolerance for Neuromorphic Computing
Overviews

• To protect the neuromorphic computing system,
we can divide them into three major parts:
• Computing: for all the modules that compute the neural

network tasks
• Memory: for storing and load the memory where the

defect can cause incorrect reading, writing or storing
• Communication: for transferring the message between

modules which can lead to data corruption

39

3. Fault Tolerance for Neuromorphic Computing
Memory Protection

• To protect the information stored in the memory,
we can use the information redundancy approach:
• By adding extra information to allow the system detect

and correct potential error bits. For example: Hamming,
SECDED (Hamming with one extra bit), …
• Accepting the error bits with potential graceful acurracy

loss by considering neuromorphic computing as an
approximate computing method.

• Software approach can also be used for soft errors:
• Once we detect error bit, we re-write the system’s

memory with the safe copy

40

3. Fault Tolerance for Neuromorphic Computing
Communication Protection

• To protect the communication, we first need to
divide the errors into two types:
• First one is the error in the transmitting data where the

routing and handshaking is considered as corrected.
Here, we can convert the problem into the memory
protection problem.
• The second one is the error in the routing or

handshaking processes. With this type of error:
• Finding the alternative routing path to avoid defective ones is

necessary.
• Retranmission with package dropping could be used since

misrouted package could lead to deadlock/livelock.
• Protection and recovery can be deal using hardware approach

(adding redundancies).

41

3. Fault Tolerance for Neuromorphic Computing
Computation Protection

• To protect the computation errors:
• The first approach is to accept the errors by considering

them as noise. Furthermore, adjusting parameter (i.e.,
threshold voltage with input losses) can be used to
alleviate the impact.
• Another apporach is to use hardware redundancy by

replicating the computing units and consider as
replacements.
• Redundancy can be at fine grained level.
• Since computing units are identical, adding extra ones and

perform system remapping is also possible.

42

Lecture Contents

1. Introduction

2. Conventional Computing System Fault Tolerance

3. Fault Tolerance for Neuromorphic Computing

1. Memory Protection

2. Communication Protection

3. Computation Protection

4. Mapping for Tolerating Faults in Neuromorphic Computing

5. Conclusions

43

4. Mapping for Tolerating Faults for NC
Problem Formulation

• Assuming the neuromorphic system 𝑆 has 𝑁 nodes
(neuron clusters) connected via Network-on-Chip.
• Each node 𝑖 has 𝐸* neurons (could be different

between nodes).
• Total number of neurons:

𝑋 = ,
*+,

-./

𝐸*

44
Reference: Khanh N. Dang, Nguyen Anh Vu Doan, Abderazek Ben Abdallah “MigSpike: A Migration Based Algorithm and Architecture
for Scalable Robust Neuromorphic Systems”, IEEE Transactions on Emerging Topics in Computing (TETC), IEEE, Volume 10, Issue 2, pp.
602-617, 2022.

4. Mapping for Tolerating Faults for NC
Problem Formulation (cnt.)

• Here, we assume the SNN application need 𝑊
neurons to work (𝑊 ≤ 𝑋).
• The number of spare neurons R = 𝑋 −𝑊 which is

the redundancy for correcting potential defects
• Once a defect in the neuron occurs, a spare neuron

can be used for correction

45

Fig. 6.6: System model for
fault tolerance SNN: (a)
Designed SNN system using
nodes of neurons with an initial
mapping; (b) node-level
recovery; (c) The case node-
level recovery fails to correct;
(d) System level recovery: a
mapping flow of 100 faulty
neurons to its node’s
neighbors. Values next the
circle indicate the number of
neurons in the circle type
(gray: healthy and utilized;
gray: healthy and spared; red:
faulty; purple: migrating).

4. Mapping for Tolerating Faults for NC
Correcting method

46

4. Mapping for Tolerating Faults for NC
Problem Conversion

• Here, we convert the problem into the graph theory
problem (max flow min cut).
• We create the graph of N+2 vertices:

• N vertices for N nodes
• 2 vertices for virtual source and virtual sink.

• Edges are added:
• From the virtual source to each node with defects; capacity =

number of defects
• From each node with spares to the virtual sink ; capacity =

number of spares
• Between neighboring nodes; capacity = number of neurons

can be migrated from one node to other node

47

Fig. 6.7: Flow graph for max-flow min-cut problem: (a) Converted flow from the NoC-based
SNN; (b) A solution of max-flow min-cut problem

4. Mapping for Tolerating Faults for NC
Generated Graph and Potential Solutions

48

Fig. 6.8: An illustration of the proposed algorithm: (a) Faulty case; (b) Post-mapping
using the proposed algorithm.

4. Mapping for Tolerating Faults for NC
Input and Potential Solution

49

Lecture Contents

1. Introduction

2. Conventional Computing System Fault Tolerance

3. Fault Tolerance for Neuromorphic Computing

1. Memory Protection

2. Communication Protection

3. Computation Protection

4. Mapping for Tolerating Faults in Neuromorphic Computing

5. Conclusions

50

5. Conclusion

• In this lecture, we first review reliability
measurement and defective types.
• Impact of faults into neuromorphic system is

analyzed.
• Traditional approaches for fault-tolerance are

reviewed with the potential usage in
neuromorphic system
• Case study: remapping to tolerate defective

neurons in large scale system
51

