
Neuromorphic Computing

Ben Abdallah Abderazek, Khanh N. Dang
E-mail: {benab, khanh}@u-aizu.ac.jp

This lecture is based on the book ''Neuromorphic Computing Principles and Organization,'' Publisher: Springer; 2022 edition, ISBN-10 : 3030925242, ISBN-13 : 978-3030925246, by
Abderazek Ben Abdallah, Khanh N. Dang

1

7. Reconfigurable Neuromorphic
Computing System

Lecture Contents
1. Introduction

2. Inter-Neuron Communication Network

3. Reconfigurable Neuromorphic System Building Blocks

4. Fault-Tolerant Spike Routing Algorithm

5. Mapping

6. Complexity Analysis

7. Summary

2

DNN Structural Organization

7. Reconfigurable Neuromorphic
Computing System:

3

Fig. 7.1: Typical DNN Accelerator Organization.

• The DNN is a typical ANN that consists of several layers
expressed as a 3D structure.

• Mapping such a 3D structure onto a 2D circuit requires long
wires between layers or congestion points.

Fault-Tolerant Neural Networks

4
4

7. Reconfigurable Neuromorphic
Computing System:

Fig. 7.2: A self-detect and self-repair mechanism mimicking capability in the
human brain. This mechanism is based on indirect feedback from the astrocyte
cell (i.e. glial cell) by regulating the synaptic transmission probability of release

when faults occur.

Inter-Neuron Communication Network

5

• Hardware implementations were proposed to overcome the
problems of the software simulation.

• These architectures will offer high-parallelism and scalable
interconnect architecture for huge spikes transfer.

Fig. 7.3: 2D-based Interconnect architectures for Neuromorphic systems

7. Reconfigurable Neuromorphic
Computing System:

PKT 1PKT 2PKT 3PKT 4

PKT 1

DD D

D

PKT 1

D

PKT 1

Routing Methods for NoC-based SNNs

6

• Routing method is important because it affects the load
balance and spikes latency across the network.

• In general, the methods are classified into unicast-based, path-
based, and tree-based.

7. Reconfigurable Neuromorphic
Computing System:

Fig. 7.4: 3D-based Multicast routing mechanisms: (a) Unicast-based (b) Path-based
(c) Tree-based

PKT 2
PKT 3

PKT 1
PKT 1

PKT 2
PKT 1

Reconfigurable Neuromorphic System Building Blocks

7

• Composed of several nodes.
• Each node has a Spiking Neuron Processing Core (SNPC), a

network interface (NI), and a fault-tolerant multicast 3D router
(FTMC-3DR).

• Nodes are connected in a 2D mesh topology and stacked to
form a 3D architecture.

7. Reconfigurable Neuromorphic
Computing System:

Fig. 7.5: Reconfigurable 3D-NoC-based neuromorphic Architecture (i.e. NASH)

Reconfigurable Neuromorphic System Building Blocks: SNPC

8

• Composed of 256 physical leaky integrate and fire neurons, a
crossbar-based synapse, a control unit, a synapse memory, an
STDP learning block, and an encoder/decoder.

• The SNPC uses a spike array for spike events to avoid memory
overflow and extended pipeline time.

7. Reconfigurable Neuromorphic
Computing System:

Fig. 7.6: Architecture of spiking neuron processing core (SNPC)

Reconfigurable Neuromorphic System Building Blocks: LIF
Neuron

9

• The neuron membrane potential is accumulated by adding up
the input weighted spikes in the integrator.

• Fires an output spike if the value of the accumulated
membrane potential exceeds the threshold constant.

• Enters refractory count until the next spike is fired.

7. Reconfigurable Neuromorphic
Computing System:

Fig. 7.7: LIF Neuron Architecture

Reconfigurable Neuromorphic System Building Blocks: STDP

10

• The STDP is based on a trace-based learning rule which
enables the parallel update of synapses.

• A single learning operation requires 16 presynaptic spike trace
vectors, each from a simulation time step.

7. Reconfigurable Neuromorphic
Computing System:

Fig. 7.8: STDP Learning Module Architecture.

Reconfigurable Neuromorphic System Building Blocks:
Encoder and Decoder

11

7. Reconfigurable Neuromorphic
Computing System:

Fig. 7.9: Encoder and Decoder (Network interface to and from the router). (a) The
encoder encodes output spikes that will be transmitted from source SNPC to destination
SNPCs into flits. (b) The Decoder, on the other hand, decodes flits that arrive at a
destination SNPC into a spike.

Reconfigurable Neuromorphic System Building Blocks: Fault-
Tolerant Spike Routing Algorithm

12

7. Reconfigurable Neuromorphic
Computing System:

Fig. 7.10: Fault-tolerant multicast 3D router architecture

• The FTMC-3DR has 7 I/O ports, fault-tolerant mechanisms at the
input buffer (RAB), and Byline on demand (BLoD) at the crossbar.

• It uses 4 pipeline stages (Buffer writing, Routing calculation,
Switch-allocation, and Crossbar traversal.) to route packets

Fault-Tolerant Spike Routing Algorithm

13

7. Reconfigurable Neuromorphic
Computing System:

Fig. 7.11: Example of SP-KMCR for a 6×3×2 3DNoC-SNN system, where nodes in L1
send spike packets to all nodes in L2: (a) destinations are partitioned by adopting K-

means clustering with centroids 26 and 29, (b) the formation of the first part of the tree
from a given source (node 3) to shortest path node of each subgroup (SP node), (c) the
second part of the tree from SP nodes to its destinations, (d) the routing tree from the

given source to destinations.

Fault-Tolerant Spike Routing Algorithm: Fault-Tolerant K-
means Multicast Spike Routing Algorithm

14

7. Reconfigurable Neuromorphic
Computing System:

Fig. 7.12: Primary and backup branches.

• The FT-KMCR provides some backup branch(es) to bypass faulty
links when there is a faulty primary branch.

• The backup branches are alternative routes to the primary ones.

PKT 1

PKT 2
PKT 3
PKT 4

Fault-Tolerant Spike Routing Algorithm: Fault
Management Algorithm Flow Chart

15

7. Reconfigurable Neuromorphic
Computing System:

Fig. 7.13: Fault-management algorithm applied for ”son”, on-backup, ”father”
and ”grandfather” routers.

Mapping

16

7. Reconfigurable Neuromorphic
Computing System:

• The aim of a mapping is to establish measurable links between the
parameters of the SNN application and the NASH.

• The NASH mapping approach is layer-based where each network
layer is mapped to a corresponding NASH layer.

Fig. 7.14: 784:225:10 SNN mapping on a 3 × 3 × 3 NASH configuration for
MNIST classification application

Complexity Analysis: Area

17

7. Reconfigurable Neuromorphic
Computing System:

Fig. 7.15: Area analysis of NASH node

Complexity Analysis: Accuracy Evaluation

18

7. Reconfigurable Neuromorphic
Computing System:

Fig. 7.16: Accuracy evaluation over various synapse precision

Complexity Analysis: Synapse Precision

19

7. Reconfigurable Neuromorphic
Computing System:

Fig. 7.17: Area and power evaluation over various synapse precision

NASH Layout Design and Floor Plan

20

7. Reconfigurable Neuromorphic
Computing System:

Fig. 7.18: (a) Layout of a 2 × 2 NASH layer. (b) A NASH node comprising of 256 neuron
logic and 65k synapses in 256 SRAMs (256-bank 8-bits each), network interface logic and

memory, and an FTMC-3DR logic and TSVs

Chapter Summary

▪ This chapter presented the architecture, hardware
design, and complexity analysis of a reconfigurable
neuromorphic system NASH.

▪ The focus is on:
➢ The SNPC, learning, interconnect, spike routing, and mapping.

◼ The system leverages the high scalability and parallelism,
low communication cost, and high throughput available in
3D-NoC-based systems.

21

Conclusions
▪ Neuromorphic Computing is the use of hardware (VLSI) to

simulate the biological architecture of the human nervous system
(brain, complex network of nerves, etc.),

▪ Spiking Neural Network:
➢ More analogous to the brain, communicating via spikes in a sparse event-driven

manner.
➢ Exploits spike sparsity to achieve low power.

◼ Synaptic dynamics is the time-dependent changes in synaptic
currents that change the strength of coupling between neurons.

◼ There are various training/learning algorithms for SNNs:
➢ Unsupervised Spike-timing-dependent plasticity (STDP)
➢ ANN to SNN conversion

◼ Synthesizing a Neuromorphic System:
➢ Define Problem→ Partition AI Tasks → Understand Constraints → Develop

AI HW/SW Model → Embed into Device → Solve the Problem
22

Exercises

23

