
Neuromorphic Computing 

Ben Abdallah Abderazek, Khanh N. Dang
E-mail: {benab, khanh}@u-aizu.ac.jp

This lecture is based on the book ''Neuromorphic Computing Principles and Organization,'' Publisher: Springer; 2022 edition, ISBN-10 : 3030925242, ISBN-13 : 978-3030925246, by 
Abderazek Ben Abdallah, Khanh N. Dang

1

7. Reconfigurable Neuromorphic
Computing System 



Lecture Contents 
1. Introduction

2. Inter-Neuron Communication Network

3. Reconfigurable Neuromorphic System Building Blocks

4. Fault-Tolerant Spike Routing Algorithm

5. Mapping

6. Complexity Analysis

7. Summary

2



DNN Structural Organization
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Fig. 7.1: Typical DNN Accelerator Organization.

• The DNN is a typical ANN that consists of several layers 
expressed as a 3D structure.

• Mapping such a 3D structure onto a 2D circuit requires long 
wires between layers or congestion points.



Fault-Tolerant Neural Networks
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Fig. 7.2: A self-detect and self-repair mechanism mimicking capability in the 
human brain. This mechanism is based on indirect feedback from the astrocyte 
cell (i.e. glial cell) by regulating the synaptic transmission probability of release 

when faults occur.



Inter-Neuron Communication Network
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• Hardware implementations were proposed to overcome the 
problems of the software simulation.

• These architectures will offer high-parallelism and scalable 
interconnect architecture for huge spikes transfer.

Fig. 7.3: 2D-based Interconnect architectures for Neuromorphic systems
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Routing Methods for NoC-based SNNs
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• Routing method is important because it affects the load 
balance and spikes latency across the network.

• In general, the methods are classified into unicast-based, path-
based, and tree-based.
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Fig. 7.4: 3D-based Multicast routing mechanisms: (a) Unicast-based (b) Path-based 
(c) Tree-based
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Reconfigurable Neuromorphic System Building Blocks
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• Composed of several nodes.
• Each node has a Spiking Neuron Processing Core (SNPC), a 

network interface (NI), and a fault-tolerant multicast 3D router 
(FTMC-3DR).

• Nodes are connected in a 2D mesh topology and stacked to 
form a 3D architecture.
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Fig. 7.5: Reconfigurable 3D-NoC-based neuromorphic Architecture (i.e. NASH)



Reconfigurable Neuromorphic System Building Blocks: SNPC
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• Composed of 256 physical leaky integrate and fire neurons, a 
crossbar-based synapse, a control unit, a synapse memory, an 
STDP learning block, and an encoder/decoder.

• The SNPC uses a spike array for spike events to avoid memory 
overflow and extended pipeline time.
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Fig. 7.6: Architecture of spiking neuron processing core (SNPC)



Reconfigurable Neuromorphic System Building Blocks: LIF 
Neuron
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• The neuron membrane potential is accumulated by adding up 
the input weighted spikes in the integrator.

• Fires an output spike if the value of the accumulated 
membrane potential exceeds the threshold constant.

• Enters refractory count until the next spike is fired.
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Fig. 7.7: LIF Neuron Architecture



Reconfigurable Neuromorphic System Building Blocks: STDP
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• The STDP is based on a trace-based learning rule which 
enables the parallel update of synapses.

• A single learning operation requires 16 presynaptic spike trace 
vectors, each from a simulation time step.
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Fig. 7.8: STDP Learning Module Architecture.



Reconfigurable Neuromorphic System Building Blocks: 
Encoder and Decoder
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Fig. 7.9: Encoder and Decoder (Network interface to and from the router). (a) The
encoder encodes output spikes that will be transmitted from source SNPC to destination
SNPCs into flits. (b) The Decoder, on the other hand, decodes flits that arrive at a
destination SNPC into a spike.



Reconfigurable Neuromorphic System Building Blocks: Fault-
Tolerant Spike Routing Algorithm
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Fig. 7.10: Fault-tolerant multicast 3D router architecture

• The FTMC-3DR has 7 I/O ports, fault-tolerant mechanisms at the 
input buffer (RAB), and Byline on demand (BLoD) at the crossbar. 

• It uses 4 pipeline stages (Buffer writing, Routing calculation, 
Switch-allocation, and Crossbar traversal.) to route packets



Fault-Tolerant Spike Routing Algorithm
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Fig. 7.11: Example of SP-KMCR for a 6×3×2 3DNoC-SNN system, where nodes in L1 
send spike packets to all nodes in L2: (a) destinations are partitioned by adopting K-

means clustering with centroids 26 and 29, (b) the formation of the first part of the tree 
from a given source (node 3) to shortest path node of each subgroup (SP node), (c) the 
second part of the tree from SP nodes to its destinations, (d) the routing tree from the 

given source to destinations.



Fault-Tolerant Spike Routing Algorithm: Fault-Tolerant K-
means Multicast Spike Routing Algorithm
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Fig. 7.12: Primary and backup branches.

• The FT-KMCR provides some backup branch(es) to bypass faulty 
links when there is a faulty primary branch.

• The backup branches are alternative routes to the primary ones.
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Fault-Tolerant Spike Routing Algorithm: Fault 
Management Algorithm Flow Chart
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Fig. 7.13: Fault-management algorithm applied for ”son”, on-backup, ”father” 
and ”grandfather” routers.



Mapping
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• The aim of a mapping is to establish measurable links between the 
parameters of the SNN application and the NASH.

• The NASH mapping approach is layer-based where each network 
layer is mapped to a corresponding NASH layer.

Fig. 7.14: 784:225:10 SNN mapping on a 3 × 3 × 3 NASH configuration for 
MNIST classification application



Complexity Analysis: Area
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Fig. 7.15: Area analysis of NASH node



Complexity Analysis: Accuracy Evaluation
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Fig. 7.16: Accuracy evaluation over various synapse precision



Complexity Analysis: Synapse Precision
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Fig. 7.17: Area and power evaluation over various synapse precision



NASH Layout Design and Floor Plan
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Fig. 7.18: (a) Layout of a 2 × 2 NASH layer. (b) A NASH node comprising of 256 neuron 
logic and 65k synapses in 256 SRAMs (256-bank 8-bits each), network interface logic and 

memory, and an FTMC-3DR logic and TSVs



Chapter Summary 

▪ This chapter presented the architecture, hardware 
design, and complexity analysis of a reconfigurable 
neuromorphic system NASH.

▪ The focus is on: 
➢ The SNPC, learning, interconnect, spike routing, and mapping.

◼ The system leverages the high scalability and parallelism, 
low communication cost, and high throughput available in 
3D-NoC-based systems.
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Conclusions
▪ Neuromorphic Computing is the use of hardware (VLSI) to 

simulate the biological architecture of the human nervous system 
(brain, complex network of nerves, etc.),

▪ Spiking Neural Network: 
➢ More analogous to the brain, communicating via spikes in a sparse event-driven 

manner. 
➢ Exploits spike sparsity to achieve low power.

◼ Synaptic dynamics is the time-dependent changes in synaptic 
currents that change the strength of coupling between neurons. 

◼ There are various training/learning algorithms for SNNs:
➢ Unsupervised Spike-timing-dependent plasticity (STDP)
➢ ANN to SNN conversion

◼ Synthesizing a Neuromorphic System: 
➢ Define Problem→ Partition AI Tasks → Understand Constraints → Develop 

AI HW/SW  Model → Embed into Device → Solve the Problem 
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Exercises
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